Influencia de los incendios forestales en la composición y estructura de combustibles vegetales en zonas quemadas del Santuario de Fauna y Flora de Iguaque

dc.contributor.advisorArmenteras Pascual, Dolors
dc.contributor.authorReyes Palacios, Alejandra Cecilia
dc.contributor.orcid0000-0002-0540-080Xspa
dc.contributor.researcherMeza Elizalde María Constanza
dc.contributor.researchgateAlejandra Reyes Palaciosspa
dc.contributor.researchgroupEcología del Paisaje y Modelación de Ecosistemasspa
dc.coverage.regionIguaque
dc.date.accessioned2023-10-09T15:02:53Z
dc.date.available2023-10-09T15:02:53Z
dc.date.issued2023-10
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractLos bosques degradados en un escenario de condiciones climáticas extremas presentan mayor desecación y carga de combustibles. Estas condiciones aumentan la susceptibilidad a incendios forestales ya que la propagación del fuego depende de la disponibilidad del combustible, su disposición y su inflamabilidad. Este estudio tiene como objetivo analizar los impactos de los incendios forestales sobre las características del combustible vegetal en los bosques de robles del Santuario de Flora y Fauna de Iguaque. Para lograr esto, se establecieron doce parcelas de monitoreo, seis en bosques quemados y seis en bosques no quemados. El monitoreo se llevó a cabo en 2018 y 2019, recolectando información sobre troncos de árboles, vegetación del sotobosque y plántulas, además de emplear transectos de Brown para recolectar desechos y evaluar rasgos funcionales relacionados con hojas y corteza de la especie Quercus humboldtii. En cuanto a los resultados, se observan cambios en la estructura y composición del bosque en términos de diversidad y riqueza en la regeneración natural, así como la perdida de biomasa en los bosques quemados, para el segundo año, comienza a aparecer la presencia de especies herbáceas y helechos, y se registra la supervivencia de los individuos arbóreos en los bosques quemados, no obstante, con el tiempo, su mortalidad aumenta. Con relación a los rasgos funcionales, se encontró que contenido de humedad de las hojas es mayor en los bosques no quemados, mientras que el contenido foliar de materia seca y el espesor presentan mayores valores en los bosques quemados, respecto a la corteza se evidencio que la corteza interna en los bosques quemados es menor, mientras que la corteza externa tiende a tener mayor grosor. Las cargas de combustible en los bosques quemados son mayores en comparación con los bosques no quemados, principalmente debido a la acumulación de combustible que se asocia también a la composición de especies, a causa de la apertura de claros que crean condiciones favorables para el desarrollo de vegetación herbácea y arbustiva, y favorece la perdida de humedad lo cual contribuye a las cargas de combustible de los bosques afectados. (texto tomado de la fuente)spa
dc.description.abstractDegraded forests in a scenario of extreme climatic conditions experience increased drying and fuel load. These conditions raise the susceptibility to wildfires, as fire propagation depends on fuel availability, arrangement, and flammability. This study aims to analyze the impacts of wildfires on the characteristics of vegetal fuel in the oak forests of the Iguaque Flora and Fauna Sanctuary. To achieve this, twelve monitoring plots were established, six in burned forests and six in unburned forests. Monitoring took place in 2018 and 2019, gathering information on tree trunks, understory vegetation, and saplings, as well as employing Brown transects to collect debris and assess functional traits related to leaves and bark of the Quercus humboldtii species. Regarding the results, changes have been in the structure and composition of the forest in terms of diversity and richness in natural regeneration, as well as the loss of biomass in burned forests. In the second year, the presence of herbaceous species and ferns begins to emerge, and there is survival of tree individuals in burned forests. However, over time, their mortality increases. Regarding the functional traits, it was found that the wet weight of the leaves is higher in the unburned forests, while the foliar dry matter content and the thickness present higher values in the burned forests, with respect to the bark it was evidenced that the inner crust in conserved forests is larger, while the outer crust tends to be ticker in fire affected forests. Burned forests exhibit higher fuel loads compared to unburned forests, primarily due to fuel accumulation and the opening of gaps that create favorable conditions for the development of herbaceous and shrubby vegetation, contributing to the fuel loads of affected forests.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaEcología del fuegospa
dc.format.extent119 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84788
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAckerly, D. D., & Cornwell, W. K. (2007). A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters, 10(2), 135–145. https://doi.org/10.1111/j.1461-0248.2006.01006.xspa
dc.relation.referencesAger, A. A., A. Day, M., Finney, M. A., Vance-Borland, K., & Vaillant, N. M. (2014). Analyzing the transmission of wildfire exposure on a fire-prone landscape in Oregon, USA. Forest Ecology and Management, 334, 377–390. https://doi.org/10.1016/j.foreco.2014.09.017spa
dc.relation.referencesAguilar-garavito, M., Cortina-segarra, J., & Matoma, M. (2023). Postfire resprouting and recruitment of Quercus humboldtii in the Iguaque Mountains ( Colombia ) Forest Ecology and Management Postfire resprouting and recruitment of Quercus humboldtii in the Iguaque Mountains ( Colombia ). Forest Ecology and Management, April. https://doi.org/10.1016/j.foreco.2023.120937spa
dc.relation.referencesAhrends, A., Burgess, N. D., Milledge, S. A. H., Bulling, M. T., Fisher, B., Smart, J. C. R., Clarke, G. P., Mhoro, B. E., & Lewis, S. L. (2010). Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14556– 14561. https://doi.org/10.1073/pnas.0914471107spa
dc.relation.referencesAlbini, F. A., & Reinhardt, E. D. (1995). Modeling Ignition And Burning Rate Of Large Woody Natural Fuels. International Journal of Wildland Fire, 5(2), 81–91. https://doi.org/10.1071/WF9950081spa
dc.relation.referencesAlbornoz, F. E., Gaxiola, A., Seaman, B. J., Pugnaire, F. I., & Armesto, J. J. (2013). Nucleation-driven regeneration promotes post-fire recovery in a Chilean temperate forest. Plant Ecology, 214(5), 765–776. https://doi.org/10.1007/s11258-013-0206-xspa
dc.relation.referencesAlcázar-Caicedo, C., & Ramíres-Hernandez, W. (2011). El Uso De Rasgos Funcionales En Flora Como Herramienta Para Establecer Prioridades De Conservación. Letras Biologicas, April, 215–222.spa
dc.relation.referencesAndela, N., Morton, D. C., Giglio, L., Chen, Y., Van Der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., & Randerson, J. T. (2017). A human-driven decline in global burned area. Science, 356(6345), 1356–1362. https://doi.org/10.1126/science.aal4108spa
dc.relation.referencesAnderson, H. (1982). Aids to determining fuel models for sstimating fire behavior. In United States Department of Agriculture Forest Service (Vol. 44, Issue 1, pp. 42–53).spa
dc.relation.referencesAraujo-Murakami, A., Parada, A. G., Terán, J. J., Baker, T. R., Feldpausch, T. R., Phillips, O. L., & Brienen, R. J. W. (2011). Necromasa de los bosques de Madre de Dios, Perú; una comparación entre bosques de tierra firme y de bajíos. Revista Peruana de Biología, 18(1), 113–118. https://doi.org/10.15381/rpb.v18i1.155spa
dc.relation.referencesArmenteras, D., González, T. M., Ríos, O. V., Elizalde, M. C. M., & Oliveras, I. (2020). Fire in the ecosystems of northern south america: Advances in the ecology of tropical fires in Colombia, Ecuador and Peru. Caldasia, 42(1), 1–16. https://doi.org/10.15446/caldasia.v42n1.77353spa
dc.relation.referencesArmenteras, D., González, T. M., Vargas Ríos, O., Meza Elizalde, M. C., & Oliveras, I. (2020). Incendios en ecosistemas del norte de Suramérica: avances en la ecología del fuego tropical en Colombia, Ecuador y Perú . In Caldasia (Vol. 42, pp. 1–16). scieloco .spa
dc.relation.referencesArmenteras, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., & Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002spa
dc.relation.referencesAvella, A., & Cardenas, L. (2010). Conservación y uso sostenible de los bosques de roble en el corredor de conservación guantiva - la Rusia - Iguaque, departamentos de santander y Boyacá, Colombia. Colombia Forestal, 13(1), 5. https://doi.org/10.14483/udistrital.jour.colomb.for.2010.1.a01spa
dc.relation.referencesBabl, E., Alexander, H. D., Siegert, C. M., & Willis, J. L. (2020). Could canopy, bark, and leaf litter traits of encroaching non-oak species influence future flammability of upland oak forests? Forest Ecology and Management, 458(September), 117731. https://doi.org/10.1016/j.foreco.2019.117731spa
dc.relation.referencesBaker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Lloyd, J., Monteagudo, A., Neill, D. A., Patino, S., Pitman, N. C. A., Silva, J. N. M., & Martínez, R. V. (2004). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10(5), 545–562. https://doi.org/10.1111/j.1365-2486.2004.00751.xspa
dc.relation.referencesBalch, J. R. K., Nepstad, D. C., Brando, P. M., Curran, L. M., Portela, O., de Carvalho, O., & Lefebvre, P. (2008). Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 14(10), 2276–2287. https://doi.org/10.1111/j.1365-2486.2008.01655.xspa
dc.relation.referencesBarlow, J., Berenguer, E., Carmenta, R., & França, F. (2020). Clarifying Amazonia’s burning crisis. Global Change Biology, 26(2), 319–321. https://doi.org/10.1111/gcb.14872spa
dc.relation.referencesBarlow, J., Ewers, R. M., Anderson, L., Aragao, L. E. O. C., Baker, T. R., Boyd, E., Feldpausch, T. R., Gloor, E., Hall, A., Malhi, Y., Milliken, W., Mulligan, M., Parry, L., Pennington, T., Peres, C. A., Phillips, O. L., Roman-Cuesta, R. M., Tobias, J. A., & Gardner, T. A. (2011). Using learning networks to understand complex systems: A case study of biological, geophysical and social research in the Amazon. Biological Reviews, 86(2), 457–474. https://doi.org/10.1111/j.1469-185X.2010.00155.xspa
dc.relation.referencesBarlow, J., & Peres, C. A. (2008). Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), 1787–1794. https://doi.org/10.1098/rstb.2007.0013spa
dc.relation.referencesBerget, C., Duran, E., & Bray, D. B. (2015). Participatory Restoration of Degraded Agricultural Areas Invaded by Bracken Participatory Restoration of Degraded Agricultural Areas Invaded by Bracken Fern ( Pteridium aquilinum ) and Conservation in the Chinantla Region , Oaxaca , Mexico. April 2016. https://doi.org/10.1007/s10745-015-9762-0spa
dc.relation.referencesBianchi, L., Defosse, G., Dentoni, M., & Kunst, C. (2014). Dinámica de la humedad de los combustibles y su relación con la ecología y manejo de fuego, region chaqueña occidental (Argentina) II: Follaje y residuos de árboles y arbustos. Revista de Investigaciones Agropecuarias, 40(2), 165–181.spa
dc.relation.referencesBiddulph, J., & Kellman, M. (1998). Fuels and fire at savanna-gallery forest boundaries in southeastern Venezuela. Journal of Tropical Ecology, 14(4), 445–461. https://doi.org/10.1017/S0266467498000339spa
dc.relation.referencesBlackhall, M., Veblen, T. T., & Raffaele, E. (2015). Recent fire and cattle herbivory enhance plant-level fuel flammability in shrublands. Journal of Vegetation Science, 26(1), 123– 133. https://doi.org/10.1111/jvs.12216spa
dc.relation.referencesBlanquet, B. (1979). Plant Sociology: The study of plant communities.spa
dc.relation.referencesBond, W. J., & Midgley, J. J. (2012). Fire and the angiosperm revolutions. International Journal of Plant Sciences, 173(6), 569–583. https://doi.org/10.1086/665819spa
dc.relation.referencesBond, W. J., Woodward, F., & Midgley, G. (2005). The global distribution of ecosystems in a world without fire. New Phytologist, 165(1), 525–537. https://doi.org/10.1016/B978- 0-12-424255-5.50017-1spa
dc.relation.referencesBradstock, R. A. (2010). A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecology and Biogeography, 19(2), 145–158. https://doi.org/10.1111/j.1466-8238.2009.00512.xspa
dc.relation.referencesBrown, J. (1970). PHYSICAL FUEL PROPERTIES OF PONDEROSA PINE FOREST FLOORS AND CHEATGRASS. USDA Forest Service - Research Paper RMRS-RP, 84401.spa
dc.relation.referencesBrown, J. K. (1971). A planar intersect method for sampling fuel volume and surface area.spa
dc.relation.referencesBrown, J., & See, T. (1981). Downed dead woody fuel and biomass in the Northern Rocky Mountains.spa
dc.relation.referencesBurrows, N. D. (1994). Experimental development of a fire management model for Jarrah (Eucalyptus marginata Donn ex Sm.) Forest. Australian National University.spa
dc.relation.referencesByram, G. (1959). Combustion of forest fuels. Forest Fire Control and Use, 42(3), 609–610. https://doi.org/10.2307/1932261spa
dc.relation.referencesCárdenas, C. (2013). El fuego y el pastoreo en el páramo húmedo de Chingaza (Colombia): efectos de la perturbación y respuestas de la vegetación. In Universitat Autónoma de Barcelona, Tesis Doctoral. http://www.tesisenxarxa.net/handle/10803/120219spa
dc.relation.referencesCavallero, L., Raffaele, E., & Aizen, M. A. (2013). Birds as mediators of passive restoration during early post-fire recovery. Biological Conservation, 158, 342–350. https://doi.org/10.1016/j.biocon.2012.10.004spa
dc.relation.referencesCawson, J. G., Duff, T. J., Tolhurst, K. G., Baillie, C. C., & Penman, T. D. (2017). Fuel moisture in Mountain Ash forests with contrasting fire histories. Forest Ecology and Management, 400, 568–577. https://doi.org/10.1016/j.foreco.2017.06.046spa
dc.relation.referencesChao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12), 2533–2547. https://doi.org/10.1890/11-1952.1spa
dc.relation.referencesChao, K J, Phillips, O. L., Baker, T. R., Peacock, J., Monteagudo, A., Resources, N., Hsing, N. C., & Vargas, H. (2009). After trees die : quantities and determinants of necromass across Amazonia. Biogeosciences, 1615–1626.spa
dc.relation.referencesChao, Kuo Jung, Phillips, O. L., & Baker, T. R. (2008). Wood density and stocks of coarse woody debris in a northwestern Amazonian landscape. Canadian Journal of Forest Research, 38(4), 795–805. https://doi.org/10.1139/X07-163spa
dc.relation.referencesChave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629spa
dc.relation.referencesChazdon, R. L. (2008). Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science, 320(5882), 1458–1460. https://doi.org/10.1126/science.1155365spa
dc.relation.referencesCochrane, M. A. (2003). Fire science for rainforests. Nature, 421(6926), 913–919. https://doi.org/10.1038/nature01437spa
dc.relation.referencesCochrane, M. A., & Laurance, W. F. (2002). Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology, 18(3), 311–325. https://doi.org/10.1017/S0266467402002237spa
dc.relation.referencesCornelissen, J. H. C., Amsterdam, V. U., Lavorel, S., & Diaz, S. (2003). Handbook of protocols for standardised and easy measurement of plant functional traits worldwide A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. January. https://doi.org/10.1071/BT02124spa
dc.relation.referencesCornwell, W. K., Ackerly, D. D., Cornwell, W. K., & Ackerly, D. D. (2016). Community Assembly and Shifts in Plant Trait Distributions across an Environmental Gradient in Coastal California Stable URL : http://www.jstor.org/stable/27646168 Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. 79(1), 109–126.spa
dc.relation.referencesDale, V., Joyce, L., Mcnulty, S., Neilson, R., Ayres, M., Flannigan, M., Hanson, P., Irland, L., Lugo, A., & Peterson, C. (2001). Climate Change and Forest Disturbances. BioScience, 51(9), 723–734.spa
dc.relation.referencesDe Ruiz, M. L. V. (2006). Incendios Forestales. Ciencias, 60–66.spa
dc.relation.referencesDeBano, L., Neary, D., & Ffolliott, P. (1998). Fire’s Effects on Ecosystems (John Wiley).spa
dc.relation.referencesDi Bella, C. M., Jobbágy, E. G., Paruelo, J. M., & Pinnock, S. (2006). Continental fire density patterns in South America. Global Ecology and Biogeography, 15(2), 192–199. https://doi.org/10.1111/j.1466-822X.2006.00225.xspa
dc.relation.referencesDíaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489spa
dc.relation.referencesDíaz, S., Purvis, A., Cornelissen, J. H. C., Mace, G. M., Donoghue, M. J., Ewers, R. M., Jordano, P., & Pearse, W. D. (2013). Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 3(9), 2958–2975. https://doi.org/10.1002/ece3.601spa
dc.relation.referencesDouterlungne, D., Thomas, E., Levy-tacher, S. I., Sur, S. N., Box, P. O., & Auxiliadora, M. (2013). Fast-growing pioneer tree stands as a rapid and effective strategy for bracken elimination in the Neotropics. July, 1257–1265. https://doi.org/10.1111/1365- 2664.12077spa
dc.relation.referencesDufrene, M., & Legendre, P. (1997). Speccies assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67, 345–366.spa
dc.relation.referencesEtter, A., & Van Wyngaarden, W. (2000). Patterns of landscape transformation in Colombia, with emphasis in the Andean region. Ambio, 29(7), 432–439. https://doi.org/10.1579/0044-7447-29.7.432spa
dc.relation.referencesFeeley, K. J., & Silman, M. R. (2010). Land-use and climate change effects on population size and extinction risk of Andean plants. Global Change Biology, 16(12), 3215–3222. https://doi.org/10.1111/j.1365-2486.2010.02197.xspa
dc.relation.referencesFernández-garcía, V., Marcos, E., Fulé, P. Z., Reyes, O., Santana, V. M., & Calvo, L. (2020). Fire regimes shape diversity and traits of vegetation under different climatic conditions. Science of the Total Environment, 716, 137137. https://doi.org/10.1016/j.scitotenv.2020.137137spa
dc.relation.referencesFernández-méndez, F., Velasco-salcedo, V. M., Guerrero-contecha, J., Galvis, M., & Neri, A. V. (2016). RECUPERACIÓN ECOLÓGICA DE ÁREAS AFECTADAS POR UN INCENDIO FORESTAL EN LA MICROCUENCA TINTALES ( BOYACÁ , COLOMBIA ). Colombia Forestal, 19(2), 143–160.spa
dc.relation.referencesFetcher, N., Oberbauer, S. F., & Strain, B. R. (1985). Vegetation effects on microclimate in lowland forest in Costa Rica. January. https://doi.org/10.1007/BF02189035spa
dc.relation.referencesFinol, H. (1971). Nuevos parametros a considerarse en el análisis estructural de las selvas virgenes tropicales.spa
dc.relation.referencesFood and Agriculture Organization of the United, & Nations, I. (2009). Hacia una definición de degradación de los bosques: Análisis comparativo de las definiciones existentes. Evaluación de Los Recursos Forestales Mundiales (Documento de Trabajo 154).spa
dc.relation.referencesFosberg, M. (1971). Moisture content calculations for the 100-hour timelag fuel in fire danger rating. Forest Service, u.s. Department of Agriculture, usda Forest Service.spa
dc.relation.referencesFosberg, M. (1977). Forecasting the 10-Hour timelag fuel moisture (Vol. 7, Issue 1, pp. 541–559). Rocky Mountain Forest and Range Experiment Station, Forest Service.spa
dc.relation.referencesGamarra, Y., Restrepo, R., Cerón, A., Villamizar, M., Arenas, R., Vega, C. I., & Ávila, A. A. (2017). Aplicación del protocolo CERA-S para determinar la calidad ecológica de la microcuenca Mamarramos (cuenca Cane-Iguaque), Santuario de Fauna y Flora Iguaque (Boyacá), Colombia . Biota Colombiana, 18(2), 11–30. https://doi.org/10.21068/c2017.v18n02a02spa
dc.relation.referencesGarnier, E., Laurent, G., Bellmann, A., Debain, S., Berthelier, P., Ducout, B., Roumet, C., & Navas, M. L. (2001). Consistency of species ranking based on functional leaf traits. New Phytologist, 152(1), 69–83. https://doi.org/10.1046/j.0028-646X.2001.00239.xspa
dc.relation.referencesGarnier, E., Navas, M., & Grigulis, K. (2015). Plant Functional Diversity: Organism traits, community structure, and ecosystem properties. https://doi.org/10.1093/acprof:oso/9780198757368.003.0001spa
dc.relation.referencesGhermandi, L., Beletzky, N. A., de Torres Curth, M. I., & Oddi, F. J. (2016). From leaves to landscape: A multiscale approach to assess fire hazard in wildland-urban interface areas. Journal of Environmental Management, 183, 925–937. https://doi.org/10.1016/j.jenvman.2016.09.051spa
dc.relation.referencesGill, A. M., & Zylstra, P. (2005). Flammability of Australian forests. Australian Forestry, 68(2), 87–93. https://doi.org/10.1080/00049158.2005.10674951spa
dc.relation.referencesGonzález, J. C. W., & De Ruiz, M. L. V. (2007). Evaluación de combustibles y su disponibilidad en incendios forestales: Un estudio en el Parque Nacional la Malinche. Investigaciones Geograficas, 62, 87–103.spa
dc.relation.referencesGonzalez, S., Alejandro, F., Guncay, T., & Sebastián, W. (2020). Estimación del carbono almacenado en la biomasa aérea, necromasa (hojarasca) y en el suelo en un bosque de pino en la comuna Paquizhapa (provincia de Loja).spa
dc.relation.referencesGonzález, T. M., Meza, M. C., Armenteras, D., & Vélez, J. (2018). Causas de Degradación Forestal en Colombia: una primera aproximación. In Journal of Materials Processing Technology (Vol. 1, Issue 1). http://dx.doi.org/10.1016/j.cirp.2016.06.001%0Ahttp://dx.doi.org/10.1016/j.powtec.20 16.12.055%0Ahttps://doi.org/10.1016/j.ijfatigue.2019.02.006%0Ahttps://doi.org/10.10 16/j.matlet.2019.04.024%0Ahttps://doi.org/10.1016/j.matlet.2019.127252%0Ahttp://d x.doi.ospa
dc.relation.referencesGould, J. S., Lachlan McCaw, W., & Phillip Cheney, N. (2011). Quantifying fine fuel dynamics and structure in dry eucalypt forest (Eucalyptus marginata) in Western Australia for fire management. Forest Ecology and Management, 262(3), 531–546. https://doi.org/10.1016/j.foreco.2011.04.022spa
dc.relation.referencesGovender, N., Trollope, W. S. W., & Van Wilgen, B. W. (2006). The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. Journal of Applied Ecology, 43(4), 748–758. https://doi.org/10.1111/j.1365-2664.2006.01184.xspa
dc.relation.referencesGrime, J. P. (1977). Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. The American Naturalist, 111(982), 1169–1194.spa
dc.relation.referencesHernández, H. (2019). Lo que usted debe saber sobre incendios de cobertura vegetal.spa
dc.relation.referencesHofstede, R. G., & Rossenaar, A. J. (1995). Biomass of grazed, burned, and undisturbed Paramo Grasslands, Colombia. II. Root mass and aboveground:belowground ratio. Arctic and Alpine Research, 27(1), 13–18. https://doi.org/10.2307/1552063spa
dc.relation.referencesHollis, J. J., Matthews, S., Anderson, W. R., Cruz, M. G., & Burrows, N. D. (2011). Behind the flaming zone: Predicting woody fuel consumption in eucalypt forest fires in southern Australia. Forest Ecology and Management, 261(11), 2049–2067. https://doi.org/10.1016/j.foreco.2011.02.031spa
dc.relation.referencesJaureguiberry, P., Bertone, G., & Díaz, S. (2011). Device for the standard measurement of shoot flammability in the field. Austral Ecology, 36(7), 821–829. https://doi.org/10.1111/j.1442-9993.2010.02222.xspa
dc.relation.referencesJolly, W. M. (2007). Sensitivity of a surface fire spread model and associated fire behaviour fuel models to changes in live fuel moisture. International Journal of Wildland Fire, 16(4), 503–509. https://doi.org/10.1071/WF06077spa
dc.relation.referencesKeane, R. E., Burgan, R., & van Wagtendonk, J. (2001). Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire, 10(4), 301–319. http://www.publish.csiro.au/paper/WF01028spa
dc.relation.referencesKitzberger, T., Perry, G. L. W., Paritsis, J., Gowda, J. H., Tepley, A. J., Holz, A., & Veblen, T. T. (2016). Fire–vegetation feedbacks and alternative states: common mechanisms of temperate forest vulnerability to fire in southern South America and New Zealand. New Zealand Journal of Botany, 54(2), 247–272. https://doi.org/10.1080/0028825X.2016.1151903spa
dc.relation.referencesKitzberger, Thomas, Aráoz, E., Gowda, J. H., Mermoz, M., & Morales, J. M. (2012). Decreases in Fire Spread Probability with Forest Age Promotes Alternative Community States, Reduced Resilience to Climate Variability and Large Fire Regime Shifts. Ecosystems, 15(1), 97–112. https://doi.org/10.1007/s10021-011-9494-yspa
dc.relation.referencesLaurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution, 29(2), 107–116. https://doi.org/10.1016/j.tree.2013.12.001spa
dc.relation.referencesLavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545–556.spa
dc.relation.referencesLópez Hernández, J. M., , González Rodríguez, H., , Lozano, Ramírez, R. G., , Cantú Silva, I., , Gómez Meza, M. V., , Pando Moreno, M., & , Estrada Castillón, A. E. (2013). Producción De Hojarasca Y Retorno Potencial De Nutrientes En Tres Sitios Del Estado De Nuevo León, México. Polibotánica, 35(December 2009), 41–64.spa
dc.relation.referencesLund, H. G. (2009). What is a degraded forest?spa
dc.relation.referencesLutes, D. C. (2006). FIREMON : Fire Effects Monitoring and Inventory System Technical . In United States Departament of Agriculture. Forest Service Research Paper (Issue June 2014).spa
dc.relation.referencesM. kellman, Tackaberry. R, Brokaw. N, M. J. (1994). Tropical Gallery forests. National Geographic Research & Exploration, 10, 92–103.spa
dc.relation.referencesMalhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R., & Zelazowski, P. (2014). Tropical forests in the anthropocene. Annual Review of Environment and Resources, 39, 125– 159. https://doi.org/10.1146/annurev-environ-030713-155141spa
dc.relation.referencesMascaraque, Á. (2003). Índices De Causalidad Y Riesgo De Incendio En Los Espacios Protegidos De La Comunidad De Madrid. L.spa
dc.relation.referencesMatthews, S. (2014). Dead fuel moisture research: 1991-2012. International Journal of Wildland Fire, 23(1), 78–92. https://doi.org/10.1071/WF13005spa
dc.relation.referencesMcArthur, A. G., & Cheney, N. P. (2015). The Characterization of Fires in Relation to Ecological Studies. Fire Ecology, 11(1), 3–9. https://doi.org/10.1007/bf03400629spa
dc.relation.referencesMeyn, A., White, P. S., Buhk, C., & Jentsch, A. (2007). Environmental drivers of large, infrequent wildfires: The emerging conceptual model. Progress in Physical Geography, 31(3), 287–312. https://doi.org/10.1177/0309133307079365spa
dc.relation.referencesMeza, M., Espelta, J. M., Gonzáles, T., & Armenteras, D. (2023). Fire reduces taxonomic and functional diversity in Neotropical moist seasonally flooded forests. 21, 101–111. https://doi.org/10.1016/j.pecon.2023.04.003spa
dc.relation.referencesMiller, C., & Urban, D. L. (2000). Connectivity of forest fuels and surface fire regimes. Landscape Ecology, 15(2), 145–154. https://doi.org/10.1023/A:1008181313360spa
dc.relation.referencesMontenegro, A. L., & Ríos, O. V. (2008). Caracterización de bordes de bosque altoandino e implicaciones para la restauración ecológica en la Reserva Forestal de Cogua (Colombia). Revista de Biologia Tropical, 56(3), 1543–1556. https://doi.org/10.15517/rbt.v56i3.5728spa
dc.relation.referencesMontorio, R., Pérez-Cabello, F., García-Martín, A., Vlassova, L., & De la Riva, J. (2014). La severidad del fuego: revisión de conceptos, métodos y efectos ambientales. Geoecología, Cambio Ambiental y Paisaje: Homenaje Al Profesor José María García Ruiz, 427–440.spa
dc.relation.referencesMooney. H, Bonnicksen. T, Christensen. N, Lotan. J, R. W. (1981). Fire Regimes and Ecosystem Properties.spa
dc.relation.referencesMoraga Peralta, J. (2010). Evaluación del riesgo ante incendios forestales en la cuenca del río Tempisque. Revista Geográfica de América Central, 2(45), 33–64.spa
dc.relation.referencesMorales, J. M., Mermoz, M., Gowda, J. H., & Kitzberger, T. (2015). A stochastic fire spread model for north Patagonia based on fire occurrence maps. Ecological Modelling, 300, 73–80. https://doi.org/10.1016/j.ecolmodel.2015.01.004spa
dc.relation.referencesMosquera, H. Q., Rengifo, R., & Ramos, Y. A. (2009). MORTALIDAD Y RECLUTAMIENTO DE ÁRBOLES EN UN BOSQUE PLUVIAL TROPICAL DE CHOCÓ (COLOMBIA). 62(1), 4855–4868.spa
dc.relation.referencesMutlu, M., Popescu, S. C., Stripling, C., & Spencer, T. (2008). Mapping surface fuel models using lidar and multispectral data fusion for fire behavior. Remote Sensing of Environment, 112(1), 274–285. https://doi.org/10.1016/j.rse.2007.05.005spa
dc.relation.referencesMyers, N., Mittermeler, R., Mittermeler, C., Fonseca, G., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 468(7326), 895. https://doi.org/10.1038/468895aspa
dc.relation.referencesMyers, R., O’Brien, J., & Morrison, S. (2006). Fire management overview of the Caribbean Pine (Pinus caribaea) savannas of Mosquitia, Honduras. June.spa
dc.relation.referencesNajera, J., & Hernández, E. (n.d.). Estimación De La Carga De Combustibles Forestales En Un Bosque Coetáneo De La Región De El Salto, Durango. Produccionbovina.Com, 4–7. http://www.produccionbovina.com/produccion_y_manejo_pasturas/curso_fuego/44- durango.pdfspa
dc.relation.referencesNaranjo-Esquivel, E. D. (2014). Evaluación De La Carga De Combustibles Forestales En Un Bosque Mixto De La Sierra De Coyuca De Benítez, Estado De Guerrero, México.spa
dc.relation.referencesOcampo-Zuleta, K., & Bravo, S. (2019). Recruitment of woody species in tropical forests exposed to wildlandfires: An overview. Ecosistemas, 28(1), 106–117. https://doi.org/10.7818/ECOS.1642spa
dc.relation.referencesOdion, D. C., Moritz, M. A., & Dellasala, D. A. (2010). Alternative community states maintained by fire in the Klamath Mountains, USA. Journal of Ecology, 98(1), 96–105. https://doi.org/10.1111/j.1365-2745.2009.01597.xspa
dc.relation.referencesOlguín, L. (2017). “ Implicaciones sociales y ecológicas de la restauración de áreas degradadas por helecho invasivo ( Pteridium aquilinum ) en San Pedro Tlatepusco, Oaxaca , México .” Instituto Politécnico Nacional.spa
dc.relation.referencesOliveras, I., Malhi, Y., Salinas, N., Huaman, V., Urquiaga-Flores, E., Kala-Mamani, J., Quintano-Loaiza, J. A., Cuba-Torres, I., Lizarraga-Morales, N., & Román-Cuesta, R. M. (2013). Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline. Plant Ecology and Diversity, 7(1–2), 329–340. https://doi.org/10.1080/17550874.2013.816800spa
dc.relation.referencesOliveras, I., Román-Cuesta, R. M., Urquiaga-Flores, E., Quintano Loayza, J. A., Kala, J., Huamán, V., Lizárraga, N., Sans, G., Quispe, K., Lopez, E., Lopez, D., Cuba Torres, I., Enquist, B. J., & Malhi, Y. (2017). Fire effects and ecological recovery pathways of tropical montane cloud forests along a time chronosequence. Global Change Biology, 24(2), 758–772. https://doi.org/10.1111/gcb.13951spa
dc.relation.referencesParitsis, J., Holz, A., Veblen, T. T., & Kitzberger, T. (2013). Habitat distribution modeling reveals vegetation flammability and land use as drivers of wildfire in SW Patagonia. Ecosphere, 4(5), 1–20. https://doi.org/10.1890/ES12-00378.1spa
dc.relation.referencesParitsis, J., Veblen, T. T., & Holz, A. (2015). Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire-prone shrublands in Patagonia. Journal of Vegetation Science, 26(1), 89–101. https://doi.org/10.1111/jvs.12225spa
dc.relation.referencesParra, C., & Bernal, A. (2010). Incendios de cobertura vegetal y biodiversidad: una mirada a los impactos y efectos ecológicos potenciales sobre la diversidad vegetal. El Hombre y La Máquina, 35, 67–81. https://www.redalyc.org/articulo.oa?id=47817140008spa
dc.relation.referencesPasquis, R. G. (2016). Informe de comisión al Santuario de Flora y Fauna IGUAQUE - SFFI , Boyacá. April 2016.spa
dc.relation.referencesPeet, G. B. (1971). Litter accumulation in jarrah and karri forests. Australian Forestry, 35(4), 258–262. https://doi.org/10.1080/00049158.1971.10675559spa
dc.relation.referencesPeláez, B. C., López, B. L., González, J. M., Manuel, J., Camey, R., & Merino, G. (2020). Sample size for estimating fuel loads in oak forest in the Mountain Region of Guerrero State. Revista Mexicana de Ciencias Forestales, 11(57).spa
dc.relation.referencesPodur, J. J., & Martell, D. L. (2009). The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996-2006. Ecological Applications, 19(5), 1246–1252. https://doi.org/10.1890/08-0790.1spa
dc.relation.referencesPorrero, M. (2001). Incendios forestales, investigación de causas (Mundi-Pren).spa
dc.relation.referencesQuesada, C. A., Lloyd, J., Schwarz, M., Baker, T. R., Phillips, O. L., Patiño, S., Czimczik, C., Hodnett, M. G., Herrera, R., Arneth, A., Lloyd, G., Malhi, Y., Dezzeo, N., Luizão, F. J., Santos, A. J. B., Schmerler, J., Arroyo, L., Silveira, M., Priante Filho, N., … Ramírez, H. (2009). Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties. Biogeosciences Discussions, 6(2), 3993–4057. https://doi.org/10.5194/bgd-6-3993- 2009spa
dc.relation.referencesQuintero, S., Jardel, E., Cuevas, R., García, F., & Martínez, A. (2019). Cambio postincendio en la estructura y composición del estrato arbóreo y carga de combustibles en un bosque de Pinus douglasiana de México. Madera y Bosques, 25, 1–14. https://doi.org/10.21829/myb.2019.2531888spa
dc.relation.referencesRamos, M. P. (2010). Manejo del fuego. February, 240. https://www.researchgate.net/publication/313385091spa
dc.relation.referencesRangel-Ch, O. (2000). Colombia Diversidad Biótica III La región de vida paramuna. Igarss 2014, 1, 1–5.spa
dc.relation.referencesReich, R. M., Lundquist, J. E., & Bravo, V. A. (2004). Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA. International Journal of Wildland Fire, 13(1), 119–129. https://doi.org/10.1071/WF02049spa
dc.relation.referencesRodrigo, A., Retana, J., & Picó, F. X. (2004). Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology, 85(3), 716–729. https://doi.org/10.1890/02-0492spa
dc.relation.referencesRodríguez-Alarcón, S. J., Pinzón-Pérez, L., Cruz, J. L., & Amaya, D. C. (2020). Functional traits of woody plants at green spaces in Bogotá, Colombia. Biota Colombiana, 21(2), 108–133. https://doi.org/10.21068/C2020.V21N02A08spa
dc.relation.referencesRodriguez, W., & Vargas, O. (2002). Estrategias de regeneración postquema en áreas de vegetación altoandina tipo matorral. Perez-Arbelaezia, 13(May 2014), 26.spa
dc.relation.referencesRomero-Mieres, M., González, M. E., & Lara, A. (2014). Recuperación natural del bosque siempreverde afectado por tala rasa y quema en la Reserva Costera Valdiviana, Chile. Bosque, 35(3), 257–267. https://doi.org/10.4067/S0717-92002014000300001spa
dc.relation.referencesRothmell, R. C. (1972). A Mathematical Model for Predicting Fire Spread. United States Departament of Agriculture. Forest Service Research Paper, 46.spa
dc.relation.referencesSchwartzman, A. Moreira, D. N. (2000). Rethinking Tropical Forest Conservation: Perils in Parks. Conservation Forum, 12(1), 39–45. https://www.redalyc.org/articulo.oa?id=47817140008spa
dc.relation.referencesSalazar, N., Meza, M. C., Espelta, J. M., & Armenteras, D. (2020). Post-fire responses of Quercus humboldtii mediated by some functional traits in the forests of the tropical Andes. Global Ecology and Conservation, 22, e01021. https://doi.org/10.1016/j.gecco.2020.e01021spa
dc.relation.referencesSalvador, R., & Lloret, F. (1995). Germinación en el laboratorio de varias especies arbustivas mediterráneas: efecto de la temperatura. Orsis: Organismes i Sistemes, 10, 25–34.spa
dc.relation.referencesSantacruz-Garcia. (2020). Impacto del fuego en la defensa de las plantas: Rasgos funcionales y síntesis de metabolitos secundarios en especies leñosas del Chaco semiárido de Argentina. Facultad De Ciencias Agrarias Y Forestales Tesis Doctoral. Universidad Nacional De La Plata, Facultad De Ciencias Agrarias Y Forestales, 218.spa
dc.relation.referencesSantacruz, A., Bravo, S., & F.Ojeda. (2015). Combustibles En Latifoliadas En El Chaco Semiárido (Vol. 4500950, Issue 0385).spa
dc.relation.referencesSantamaría, C. T., & Rodríguez, W. A. (2017). Identificación de rasgos funcionales de especies vegetales del bosque alto andino y páramo relacionados con su respuesta regenerativa postfuego. https://repository.udistrital.edu.co/bitstream/handle/11349/7614/RodriguezDuarteWilli amAndres2017.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesSantana, V. M., & Marrs, R. H. (2014). Flammability properties of British heathland and moorland vegetation: Models for predicting fire ignition. Journal of Environmental Management, 139, 88–96. https://doi.org/10.1016/j.jenvman.2014.02.027spa
dc.relation.referencesSasaki, N., & Putz, F. E. (2009). Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conservation Letters, 2(5), 226– 232. https://doi.org/10.1111/j.1755-263x.2009.00067.xspa
dc.relation.referencesSchaffhauser, A., Curt, T., Véla, E., & Tatoni, T. (2012). Forest Ecology and Management Fire recurrence effects on the abundance of plants grouped by traits in Quercus suber L . woodlands and maquis. Forest Ecology and Management, 282, 157–166. https://doi.org/10.1016/j.foreco.2012.06.047spa
dc.relation.referencesSchoennagel, T., Veblen, T. T., & Romme, W. H. (2004). The interaction of fire, fuels, and climate across Rocky Mountain forests. BioScience, 54(7), 661–676. https://doi.org/10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2spa
dc.relation.referencesScott, J. H., & Reinhardt, E. D. (2001). Assessing crown fire potential by linking models of surface and crown fire behavior. USDA Forest Service - Research Paper RMRS-RP, 29 RMRS-RP, 1–62. https://doi.org/10.2737/RMRS-RP-29spa
dc.relation.referencesSecaira, S. C. (2020). El regimén de incendio y los rasgos funcionales de Quercus en los ecosistemas de montaña de Guatemala. CATIE.spa
dc.relation.referencesShlisky, A., Waugh, J., Gonzalez, P., Gonzalez, M., Manta, M., Santoso, H., Alvarado, E., Ainuddin, A., Rodríguez-trejo, D. A., Swaty, R., Schmidt, D., Kaufmann, M., Myers, R., Alencar, A., Kearns, F., Johnson, D., Smith, J., & Zollner, D. (2007). Fire, ecosystems and people : threats and strategies for global biodiversity conservation. The Nature Conservancy Global Fire Initiative Technical Report, January, 17. http://mrcc.isws.illinois.edu/living_wx/wildfires/fire_ecosystems_and_people.pdfspa
dc.relation.referencesSimpson, K. J., Ripley, B. S., Christin, P. A., Belcher, C. M., Lehmann, C. E. R., Thomas, G. H., & Osborne, C. P. (2016). Determinants of flammability in savanna grass species. Journal of Ecology, 104(1), 138–148. https://doi.org/10.1111/1365- 2745.12503spa
dc.relation.referencesSimula, M., & Mansur, E. (2011). Un desafío mundial que reclama una respuesta local. Unasylva 238, 62(2), 3–7. http://www.fao.org/docrep/015/i2560s/i2560s01.pdfspa
dc.relation.referencesStevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., Morgan, P., & Veblen, T. T. (2018). Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 21(2), 243–252. https://doi.org/10.1111/ele.12889spa
dc.relation.referencesTaber, E. M., & Mitchell, R. M. (2023). Rapid changes in functional trait expression and decomposition following high severity fire and experimental warming. Forest Ecology and Management, 541(May), 121019. https://doi.org/10.1016/j.foreco.2023.121019spa
dc.relation.referencesTejero, D., Mehltreter, K., Torres, A., & Kromer, T. (2011). Helechos y licopodios. La Biodiversidad En Veravruz Estudio de Caso, II(January).spa
dc.relation.referencesThompson, I., Mackey, B., McNulty, S., & Mosseler, A. (2009). Forest Resilience, Biodiversity, and Climate Change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. In Technical Series: Vol. no. 43 (Issue April 2014). http://www.cbd.int/doc/publications/cbd-ts-43-en.pdfspa
dc.relation.referencesTolhurst, K., & Cheney, N. P. (1999). Synopsis of the Knowledge Used in Prescribed Burning in Victoria. Victoria.spa
dc.relation.referencesUhl, C., & Buschbacher, R. (1985). A Disturbing Synergism Between Cattle Ranch Burning Practices and Selective Tree Harvesting in the Eastern Amazon. Biotropica, 17(4), 265. https://doi.org/10.2307/2388588spa
dc.relation.referencesUhl, C., & Kauffman, B. (1990). Deforestation , Fire Susceptibility , and Potential Tree Responses to Fire in the Eastern Amazon. Ecological Society of America, 71(2), 437– 449. http://www.jstor.org/stable/1940299 DEFORESTATIspa
dc.relation.referencesVan Wagner, C. E. (1977). Conditions for the start and spread of crown fire. Canadian Journal of Forest Research, 283.spa
dc.relation.referencesVásquez, A., Donoso, P., & Gerding, V. (2018). Degradación de los bosques: Concepto, proceso y estado - Un ejemplo de aplicación en bosques adultos nativos de Chile. In Silvicultura en bosques nativos Experiencias en silvicultura y restauración en Chile, Argentina y el oeste de Estados Unidos (pp. 1–281). https://www.researchgate.net/profile/Marina_Caselli/publication/325848341_Propues tas_silviculturales_para_el_manejo_de_bosques_de_Austrocedrus_chilensis_sanos _y_afectados_por_el_mal_del_cipres_de_Argentina/links/5b28eb610f7e9b1d0034b0 0b/Propuestas-silvicuspa
dc.relation.referencesVeblen, T. T. (1982). Growth patterns of Chusquea bamboos in the understory of Chilean Nothofagus forests and their influences in forest dynamics ( Andes) . Bulletin - Torrey Botanical Club, 109(4), 474–487. https://doi.org/10.2307/2996488spa
dc.relation.referencesVega, J. Cuiñas, P. Fontúrbel, M. F. C. (2000). PLANIFICAR LA PRESCRIPCIÓN PARA REDUCIR COMBUSTIBLES Y DISMINUIR EL IMPACTO SOBRE EL SUELO EN LAS QUEMAS PRESCRITAS. Cuadernos de La S.E.C.F., 189–198.spa
dc.relation.referencesVélez, R. (2000). La defensa contra los incendios forestales (McGraw-Hil).spa
dc.relation.referencesVillarreal, H., Nuñez, M., Zorro, W., & Pacheco, C. (2017). Plan de Manejo del Santuario de Fauna y Flora Iguaque. Parques Nacionales Naturales de Colombia. Unidad Administrativa Especial Del Sistema de Parques Nacionales Naturales, 263.spa
dc.relation.referencesViney, N. R. (1991). A review of fine fuel moisture modelling. International Journal of Wildland Fire, 1(4), 215–234. https://doi.org/10.1071/WF9910215spa
dc.relation.referencesWhelan, R. (1995). The Ecology of Fire.spa
dc.relation.referencesWhelan, R. J. (2009). The ecology of fire-developments since 1995 and outstanding questions. Proceedings of the Royal Society of Queensland, 115, 59–68.spa
dc.relation.referencesWilliams, R., Cook, G., Gill, A., & Moore, P. (1999). Fire regime, fire intensity and tree survival in a tropical savanna in northern Australia. Australian Journal of Ecology, 24(9), 50–59. https://doi.org/10.1890/12-0354.1spa
dc.relation.referencesXelhuantzi, J., Flores, J., & Chávez, Á. (2011). Análisis comparativo de cargas de combustibles en ecosistemas forestales afectados por incendios. Revista Mexicana de Ciencias Forestales, 2(3), 37–52.spa
dc.relation.referencesYebra, M., & Chuvieco, E. (2007). Generación de un Modelo de Peligro de Incendios Forestales mediante Teledetección y SIG. TELEDETECCIÓN - Hacia Un Mejor Entendimiento de La Dinámica Global y Regional.spa
dc.relation.referencesBerenguer, E., Ferreira, J., Gardner, T. A., Aragão, L. E. O. C., De Camargo, P. B., Cerri, C. E., Durigan, M., De Oliveira, R. C., Vieira, I. C. G., & Barlow, J. (2014). A large scale field assessment of carbon stocks in human-modified tropical forests. Global Change Biology, 20(12), 3713–3726. https://doi.org/10.1111/gcb.12627spa
dc.relation.referencesKeeley, J. E., & Pausas, J. G. (2019). Distinguishing disturbance from perturbations in fireprone ecosystems. International Journal of Wildland Fire, 28(4), 282–287. https://doi.org/10.1071/WF18203spa
dc.relation.referencesNepstad, D. C., Veríssimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., Schlesinger, P., Potter, C., Moutinho, P., Mendoza, E., Cochrane, M., & Brooks, V. (1999). Large scale impoverishment of amazonian forests by logging and fire. Nature, 398(6727), 505–508. https://doi.org/10.1038/19066spa
dc.relation.referencesPérez, M., Lagunes-Espinoza, L. del C., López-Upton, J., Ramos-Juárez, J., & Aranda Ibáñez, E. M. (2013). Morfometría, germinación y composición mineral de semillas de Lupinus silvestres. Bioagro, 25(2), 101–108.spa
dc.relation.referencesRuiz-corzo, R., Aryal, D. R., Venegas-sandoval, A., Jerez-ramírez, D. O., Fernández zúñiga, K. S., López-cruz, S. C., López-hernández, J. C., Peña-alvarez, B., & Velázquez-sanabria, C. A. (2022). Temporal dynamics of forest fuels and effect of fire in cerro Nambiyugua , Chiapas , Mexico. Ecosistemas y Recursos Agropecuarios, 9(2), 1–12. https://doi.org/10.19136/era.a9n2.3253spa
dc.relation.referencesRussell-Smith, J., Monagle, C., Jacobsohn, M., Beatty, R. L., Bilbao, B., Millán, A., Vessuri, H., & Sánchez-Rose, I. (2017). Can savanna burning projects deliver measurable greenhouse emissions reductions and sustainable livelihood opportunities in fireprone settings? Climatic Change, 140(1), 47–61. https://doi.org/10.1007/s10584-013- 0910-5spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocSanidad de los bosques
dc.subject.agrovocForest healtheng
dc.subject.agrovocIncendios forestalesspa
dc.subject.agrovocForest fireseng
dc.subject.agrovocCombustiblesspa
dc.subject.agrovocFuelseng
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Surspa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc580 - Plantasspa
dc.subject.proposalincendio forestalspa
dc.subject.proposalcombustiblespa
dc.subject.proposalrasgos funcionalesspa
dc.subject.proposalForest Fireeng
dc.subject.proposalFuelseng
dc.subject.proposalFunctional traitseng
dc.titleInfluencia de los incendios forestales en la composición y estructura de combustibles vegetales en zonas quemadas del Santuario de Fauna y Flora de Iguaquespa
dc.title.translatedInfluence of forest fires on the composition and structure of vegetative fuels in burned areas of the Santuario de Fauna y Flora Iguaqueeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDegradation of tropical forest in Colombia: Impacts of firespa
oaire.fundernameUSAIDspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016022627.2023.pdf
Tamaño:
1.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: