Método de clasificación de imágenes, empleando técnicas de inteligencia artificial, integrado a una plataforma IoT de agricultura inteligente

dc.contributor.advisorBranch Bedoya, John Willian
dc.contributor.advisorAwad Aubad, Gabriel
dc.contributor.authorRestrepo-Arias, Juan F.
dc.contributor.cvlacRestrepo. Felipe [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000487007]spa
dc.contributor.orcidRestrepo Arias, Juan Felipe [0000-0002-9689-1017]spa
dc.contributor.orcidBranch Bedoya, John Willian [0000-0002-0378-028X]spa
dc.contributor.researchgroupGidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificialspa
dc.date.accessioned2023-05-24T14:40:41Z
dc.date.available2023-05-24T14:40:41Z
dc.date.issued2023
dc.descriptionilustraciones, diagrama
dc.description.abstractLa mayor parte de las variables que se miden en un cultivo agrícola solo pueden ser detectadas de manera visual, por ejemplo, el inventario de plantas y frutos, el desarrollo y las etapas fenológicas de un cultivo o la presencia de plagas y enfermedades. La llegada de las tecnologías de la Industria 4.0 a la agricultura, le ha dado la posibilidad a este dominio de resolver muchos de sus problemas. Una de las herramientas que actualmente vienen siendo implementadas son las plataformas basadas en el Internet de las Cosas (IoT por sus siglas en inglés), mejor conocidas como plataformas de Agricultura Inteligente. Sin embargo, muchas veces las explotaciones agrícolas cubren áreas muy grandes y/o remotas, en las cuales no es fácil acceder a recursos de energía o conectividad. Por lo tanto, implementar tecnologías como las ofrecidas por la Industria 4.0 algunas veces se convierte en un desafío. Este trabajo de investigación tiene como objetivo principal aportar en la solución de este tipo de problemas, al proponer un método de clasificación de imágenes integrado a una plataforma de agricultura inteligente, que busca reducir el costo computacional del proceso de clasificación de imágenes digitales, aplicado en un contexto rural con dispositivos que tienen limitaciones en su capacidad de cómputo local. La primera parte de esta investigación se enfoca en la revisión de trabajos previos, con el fin de reconocer cuales son las estrategias arquitectónicas que otros investigadores han propuesto para resolver esta problemática, y en qué tipo de aplicaciones se han enfocado. Con base en esta revisión se seleccionó una arquitectura IoT de referencia, que posteriormente fue usada en la implementación de la solución. Esta arquitectura se basó en el uso de la tecnología de comunicación LoRa (Long Range), especialmente creada para trabajar en contextos con limitaciones de conectividad y energía. Luego se seleccionó el caso de aplicación de la clasificación de enfermedades en plantas, por ser uno de los que más impacto tiene en la economía y productividad de los agricultores, para lo cual se generó un conjunto de datos de imágenes digitales, basado en el conjunto de datos (dataset). PlantVillage, uno de los más usados en investigaciones de este tipo. Posteriormente, con base en los resultados que otros investigadores han obtenido en el entrenamiento de algoritmos de Inteligencia Artificial con el conjunto de datos seleccionado, se hizo una preselección de métodos basados en redes neuronales convolucionales que combinan dos características: (1) un desempeño con exactitud en la clasificación por encima del 90 % y (2) un numero de parámetros de entrenamiento menor de cinco millones. El método seleccionado fue MobileNet, con los siguientes resultados de desempeño: exactitud (Accuracy) del 96,31 %, precisión (Precision) del 95,55 %, sensibilidad (Recall) del 95,93 %, F1—score del 95,72 %, con 3.762.056 de parámetros y un tamaño de 28,7 MB. Finalmente, el método seleccionado fue evaluado en tres escenarios de reducción de su arquitectura, para conocer su robustez al tener que adaptarse a condiciones con limitadas capacidades de cómputo. Para la evaluación se implementó una plataforma de agricultura inteligente en condiciones reales de trabajo, en dos unidades productivas de cultivo de tomate bajo invernadero, obteniendo métricas por encima del 90 % en todos los casos. (Texto tomado de la fuente)spa
dc.description.abstractMost of the variables measured in an agricultural crop can only be detected visually, for example, the inventory of plants and fruits, the development and phenological stages of a crop, or the presence of pests and diseases. The arrival of industry 4.0 technologies in agriculture has allowed this domain to solve many of its problems. One of the tools currently being implemented is the platforms based on the Internet of Things (IoT), better known as smart agriculture platforms. However, farms often cover very large and/or remote areas where it is not easy to access energy resources or connectivity. Therefore, implementing technologies like those offered by Industry 4.0 sometimes becomes challenging. Therefore, the main objective of this research is to contribute to the solution of this type of problem by proposing an image classification method integrated into a smart agriculture platform. The proposed method seeks to reduce the computational cost of the digital image classification process applied in a rural context with devices that have limitations in their local computing capacity. The very first part of this research focuses on reviewing previous works to recognize the architectural strategies that other researchers have proposed to solve this problem and what type of applications they have focused on. Based on this review, a reference IoT architecture was selected and later used in implementing the solution. This architecture was based on LoRa (Long Range) communication technology, specially created to work in contexts with connectivity and energy limitations. Then, the case of application of the disease classification in plants was selected, as it is one of those that have the greatest impact on the economy and productivity of farmers. Next, a data set of digital images was generated based on the dataset PlantVillage, one of the most used in research of this type. Subsequently, based on the results from previous research works whit plant village dataset, a preselection of methods based on convolutional neural networks was made that combine two characteristics: (1) accurate performance in the classification above 90 % and (2) the number of training parameters less than five million. The selected method was MobileNet, with the following performance results: 96,31 % accuracy, 95,55 % precision, 95,93 % recall, and 95,72 % F1-score, with 3,762,056 parameters and a size of 28.7 MB. Finally, the selected method was evaluated in three reduction scenarios of its architecture to know its robustness when adapting to conditions with limited computing capabilities. For the evaluation, a smart agriculture platform was implemented in real working conditions in two productive units of greenhouse tomato cultivation, obtaining metrics above 90 % in all cases.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaAgricultura inteligentespa
dc.format.extentx, 147 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83849
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemasspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesL. Trivelli, A. Apicella, F. Chiarello, R. Rana, and A. Tarabella, “From precision agriculture to Industry 4.0 the agrifood sector,” British Food Journal, vol. 121, no. 8, pp. 1730–1743, 2019, doi: 10.1108/BFJ-11-2018-0747.spa
dc.relation.referencesF. Mazzetto, R. Gallo, and P. Sacco, “Reflections and methodological proposals to treat the concept of ‘information precision’ in smart agriculture practices,” Sensors (Switzerland), vol. 20, no. 10, pp. 1–27, 2020, doi: 10.3390/s20102847.spa
dc.relation.referencesY. Lu, “Industry 4.0: A survey on technologies, applications and open research issues,” J Ind Inf Integr, vol. 6, pp. 1–10, 2017, doi: 10.1016/j.jii.2017.04.005.spa
dc.relation.referencesS. Wolfert, L. Ge, C. Verdouw, and M. J. Bogaardt, “Big Data in Smart Farming – A review,” Agric Syst, vol. 153, pp. 69–80, 2017, doi: 10.1016/j.agsy.2017.01.023. URL:http://dx.doi.org/10.1016/j.agsy.2017.01.023spa
dc.relation.referencesA. A. R. Madushanki, M. N. Halgamuge, W. A. H. S. Wirasagoda, and A. Syed, “Adoption of the Internet of Things (IoT) in agriculture and smart farming towards urban greening: A review,” International Journal of Advanced Computer Science and Applications, vol. 10, no. 4, pp. 11–28, 2019.spa
dc.relation.referencesM. L. C. Delos Santos, L. L. Lacatan, and F. G. Balazon, “Cloud-based smart farming for crop production suitability using wireless sensor technology,” Test Engineering and Management, vol. 81, no. 11–12, pp. 5043–5052, 2019.spa
dc.relation.referencesS. P. Jaiswal, V. S. Bhadoria, A. Agrawal, and H. Ahuja, “Internet of things (Iot) for smart agriculture and farming in developing nations,” International Journal of Scientific and Technology Research, vol. 8, no. 12, pp. 1049–1056, 2019.spa
dc.relation.referencesS. Terence and G. Purushothaman, “Systematic review of Internet of Things in smart farming,” Transactions on Emerging Telecommunications Technologies, vol. 31, no. 6, 2020, doi: 10.1002/ett.3958.spa
dc.relation.referencesK. Sekaran, M. N. Meqdad, P. Kumar, S. Rajan, and S. Kadry, “Smart agriculture management system using internet of things,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 18, no. 3, pp. 1275–1284, 2020, doi: 10.12928/TELKOMNIKA.v18i3.14029.spa
dc.relation.referencesS. K. S. K. Verma, M. Rajesh, and R. Vincent, “Smart-farming using internet of things,” J Comput Theor Nanosci, vol. 17, no. 1, pp. 172–176, 2020, doi: 10.1166/jctn.2020.8646.spa
dc.relation.referencesK. Ravindranath, C. S. Bhargavi, K. Samaikya Reddy, and M. Sai Chandana, “Cloud of things for smart agriculture,” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 6, pp. 30–33, 2019.spa
dc.relation.referencesP. Lashitha Vishnu Priya, N. Sai Harshith, and N. V. K. V. K. Ramesh, “Smart agriculture monitoring system using IoT,” International Journal of Engineering and Technology(UAE), vol. 7, no. 4, pp. 308–311, 2018, doi: 10.17148/IJARCCE.2019.8419.spa
dc.relation.referencesE. Navarro, N. Costa, and A. Pereira, “A systematic review of iot solutions for smart farming,” Sensors (Switzerland), vol. 20, no. 15, pp. 1–29, 2020, doi: 10.3390/s20154231.spa
dc.relation.referencesM. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E.-H. M. Aggoune, “Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp. 129551–129583, 2019, doi: 10.1109/ACCESS.2019.2932609.spa
dc.relation.referencesJ. M. Talavera et al., “Review of IoT applications in agro-industrial and environmental fields,” Computers and Electronics in Agriculture, vol. 142. 2017. doi: 10.1016/j.compag.2017.09.015.spa
dc.relation.referencesM. Jankowski, D. Gündüz, and K. Mikolajczyk, “Deep Joint Transmission-Recognition for Power-Constrained Iot Devices,” ArXiv, pp. 1–10, 2020.spa
dc.relation.referencesH. Tian, T. Wang, Y. Liu, X. Qiao, and Y. Li, “Computer vision technology in agricultural automation —A review,” Information Processing in Agriculture, vol. 7, no. 1, pp. 1–19, 2020, doi: 10.1016/j.inpa.2019.09.006. URL:https://doi.org/10.1016/j.inpa.2019.09.006spa
dc.relation.referencesA. O. Adedoja, P. A. Owolawi, T. Mapayi, and C. Tu, “Intelligent Mobile Plant Disease Diagnostic System Using NASNet-Mobile Deep Learning,” IAENG Int J Comput Sci, vol. 49, no. 1, pp. 216–231, 2022.spa
dc.relation.referencesP. Angin, M. H. Anisi, F. Göksel, C. Gürsoy, and A. Büyükgülcü, “Agrilora: A digital twin framework for smart agriculture,” J Wirel Mob Netw Ubiquitous Comput Dependable Appl, vol. 11, no. 4, pp. 77–96, 2020, doi: 10.22667/JOWUA.2020.12.31.077.spa
dc.relation.referencesG. Delnevo, R. Girau, C. Ceccarini, and C. Prandi, “A Deep Learning and Social IoT Approach for Plants Disease Prediction Toward a Sustainable Agriculture,” IEEE Internet Things J, vol. 9, no. 10, pp. 7243–7250, May 2022, doi: 10.1109/JIOT.2021.3097379.spa
dc.relation.referencesN. Farooqui, A. Mishra, and R. Mehra, “IOT based Automated Greenhouse Using Machine Learning Approach,” International Journal of Intelligent Systems and Applications in Engineering, vol. 10, no. 2, pp. 226–231, 2022, [Online]. Available: https://ijisae.org/index.php/IJISAE/article/view/1522. URL:https://ijisae.org/index.php/IJISAE/article/view/1522spa
dc.relation.referencesR. Gajjar, N. Gajjar, V. J. Thakor, N. P. Patel, and S. Ruparelia, “Real-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platform,” Visual Computer, 2021, doi: 10.1007/s00371-021-02164-9. URL:https://doi.org/10.1007/s00371-021-02164-9spa
dc.relation.referencesV. Gonzalez-Huitron, J. A. León-Borges, A. E. Rodriguez-Mata, L. E. Amabilis-Sosa, B. Ramírez-Pereda, and H. Rodriguez, “Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4,” Comput Electron Agric, vol. 181, no. January, 2021, doi: 10.1016/j.compag.2020.105951.spa
dc.relation.referencesM. Ji, J. Yoon, J. Choo, M. Jang, and A. Smith, “LoRa-based Visual Monitoring Scheme for Agriculture IoT,” SAS 2019 - 2019 IEEE Sensors Applications Symposium, Conference Proceedings, 2019, doi: 10.1109/SAS.2019.8706100.spa
dc.relation.referencesN. Islam, B. Ray, and F. Pasandideh, “IoT Based Smart Farming: Are the LPWAN Technologies Suitable for Remote Communication?,” Proceedings - 2020 IEEE International Conference on Smart Internet of Things, SmartIoT 2020, no. October, pp. 270–276, 2020, doi: 10.1109/SmartIoT49966.2020.00048.spa
dc.relation.referencesK. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “Overview of Cellular LPWAN Technologies for IoT Deployment: Sigfox, LoRaWAN, and NB-IoT,” 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018, no. January 2019, pp. 197–202, 2018, doi: 10.1109/PERCOMW.2018.8480255.spa
dc.relation.referencesA. Carlsson, I. Kuzminykh, R. Franksson, and A. Liljegren, “Measuring a LoRa Network: Performance, Possibilities and Limitations,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11118 LNCS, pp. 116–128, 2018, doi: 10.1007/978-3-030-01168-0_11.spa
dc.relation.referencesG. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “LoraFarM: A LoRaWAN-based smart farming modular IoT architecture,” Sensors (Switzerland), vol. 20, no. 7, 2020, doi: 10.3390/s20072028.spa
dc.relation.referencesT. U. Pathan and S. Chakole, “Sensor based smart farming and plant diseases monitoring,” Int J Eng Adv Technol, vol. 8, no. 2, pp. 442–446, 2019.spa
dc.relation.referencesY. Zhong, J. Gao, Q. Lei, and Y. Zhou, “A vision-based counting and recognition system for flying insects in intelligent agriculture,” Sensors (Switzerland), vol. 18, no. 5, 2018, doi: 10.3390/s18051489.spa
dc.relation.referencesI. Sa et al., “WeedNet: Dense Semantic Weed Classification Using Multispectral Images and MAV for Smart Farming,” IEEE Robot Autom Lett, vol. 3, no. 1, pp. 588–595, 2018, doi: 10.1109/LRA.2017.2774979.spa
dc.relation.referencesD. Koc-San, S. Selim, N. Aslan, and B. T. San, “Automatic citrus tree extraction from UAV images and digital surface models using circular Hough transform,” Comput Electron Agric, vol. 150, no. February, pp. 289–301, 2018, doi: 10.1016/j.compag.2018.05.001. URL:https://doi.org/10.1016/j.compag.2018.05.001spa
dc.relation.referencesR. G. R. G. De Luna, E. P. E. P. Dadios, A. A. A. A. Bandala, and R. R. P. R. R. P. Vicerra, “Tomato growth stage monitoring for smart farm using deep transfer learning with machine learning-based maturity grading,” Agrivita, vol. 42, no. 1, pp. 24–36, 2020, doi: 10.17503/agrivita.v42i1.2499.spa
dc.relation.referencesO. E. Apolo-Apolo, J. Martínez-Guanter, G. Egea, P. Raja, and M. Pérez-Ruiz, “Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV,” European Journal of Agronomy, vol. 115, Apr. 2020, doi: 10.1016/j.eja.2020.126030.spa
dc.relation.referencesH. Yalcin, “Phenology recognition using deep learning: DeepPheno,” 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018, pp. 1–4, 2018, doi: 10.1109/SIU.2018.8404165.spa
dc.relation.referencesA. Khanna and S. Kaur, “Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture,” Comput Electron Agric, vol. 157, no. December 2018, pp. 218–231, 2019, doi: 10.1016/j.compag.2018.12.039.spa
dc.relation.referencesX. Pham and M. Stack, “How data analytics is transforming agriculture,” Bus Horiz, vol. 61, no. 1, pp. 125–133, 2018, doi: 10.1016/j.bushor.2017.09.011.spa
dc.relation.referencesA. Kamilaris, A. Kartakoullis, and F. X. Prenafeta-Boldú, “A review on the practice of big data analysis in agriculture,” Computers and Electronics in Agriculture, vol. 143. Elsevier B.V., pp. 23–37, Dec. 2017. doi: 10.1016/j.compag.2017.09.037.spa
dc.relation.referencesO. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia, “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE Internet Things J, vol. 5, no. 5, pp. 3758–3773, 2018, doi: 10.1109/JIOT.2018.2844296.spa
dc.relation.referencesW. Feng, W. Ju, A. Li, W. Bao, and J. Zhang, “High-Efficiency Progressive Transmission and Automatic Recognition of Wildlife Monitoring Images with WISNs,” IEEE Access, vol. 7, pp. 161412–161423, 2019, doi: 10.1109/ACCESS.2019.2951596.spa
dc.relation.referencesS. W. Lee and H. Y. Kim, “An energy-efficient low-memory image compression system for multimedia IoT products,” EURASIP J Image Video Process, vol. 2018, no. 1, 2018, doi: 10.1186/s13640-018-0333-3.spa
dc.relation.referencesG. Campobello and A. Segreto, “A low complexity image compression algorithm for IoT multimedia applications,” European Signal Processing Conference, vol. 2019-Septe, pp. 1–5, 2019, doi: 10.23919/EUSIPCO.2019.8902678.spa
dc.relation.referencesZ. Liu et al., “DeepN-JPEG: A deep neural network favorable JPEG-based image compression framework,” Proc Des Autom Conf, vol. Part F1377, no. 3, pp. 1–6, 2018, doi: 10.1145/3195970.3196022.spa
dc.relation.referencesM. J. Page et al., “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews,” The BMJ, vol. 372, 2021, doi: 10.1136/bmj.n71.spa
dc.relation.referencesS. Wolfert, D. Goense, and C. A. G. Sorensen, “A future internet collaboration platform for safe and healthy food from farm to fork,” Annual SRII Global Conference, SRII, no. April, pp. 266–273, 2014, doi: 10.1109/SRII.2014.47.spa
dc.relation.referencesS. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based plant disease detection,” Front Plant Sci, vol. 7, no. September, 2016, doi: 10.3389/fpls.2016.01419.spa
dc.relation.referencesP. Wspanialy and M. Moussa, “A detection and severity estimation system for generic diseases of tomato greenhouse plants,” Comput Electron Agric, vol. 178, no. August, p. 105701, 2020, doi: 10.1016/j.compag.2020.105701. URL:https://doi.org/10.1016/j.compag.2020.105701spa
dc.relation.referencesD. J. A. Rustia and T. te Lin, “An IoT-based wireless imaging and sensor node system for remote greenhouse pest monitoring,” Chem Eng Trans, vol. 58, no. January, pp. 601–606, 2017, doi: 10.3303/CET1758101.spa
dc.relation.referencesA. A. Sarangdhar, P. V. R. Pawar, and A. B. Blight, “Machine Learning Regression Technique for using IoT,” International Conference on Electronics, Communication and Aerospace Technology ICECA 2017, pp. 449–454, 2017.spa
dc.relation.referencesA. Thorat, S. Kumari, and N. D. Valakunde, “An IoT based smart solution for leaf disease detection,” 2017 International Conference on Big Data, IoT and Data Science, BID 2017, vol. 2018-Janua, no. December, pp. 193–198, 2018, doi: 10.1109/BID.2017.8336597.spa
dc.relation.referencesN. Kitpo and M. Inoue, “Early rice disease detection and position mapping system using drone and IoT architecture,” Proceedings - 12th SEATUC Symposium, SEATUC 2018, no. September 2019, 2018, doi: 10.1109/SEATUC.2018.8788863.spa
dc.relation.referencesD. Brunelli, A. Albanese, D. Acunto, and M. Nardello, “E nergy N eutral M achine L earning B ased I o T D evice for P est D etection in P recision A griculture,” no. December 2019, pp. 2019–2022, 2019.spa
dc.relation.referencesR. D. Devi, S. A. Nandhini, R. Hemalatha, and S. Radha, “IoT enabled efficient detection and classification of plant diseases for agricultural applications,” 2019 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2019, pp. 447–451, 2019, doi: 10.1109/WiSPNET45539.2019.9032727.spa
dc.relation.referencesC. J. Chen, Y. Y. Huang, Y. S. Li, C. Y. Chang, and Y. M. Huang, “An AIoT Based Smart Agricultural System for Pests Detection,” IEEE Access, vol. 8, pp. 180750–180761, 2020, doi: 10.1109/ACCESS.2020.3024891.spa
dc.relation.referencesS. Zhang, W. Huang, and H. Wang, “Crop disease monitoring and recognizing system by soft computing and image processing models,” Multimed Tools Appl, vol. 79, no. 41–42, pp. 30905–30916, 2020, doi: 10.1007/s11042-020-09577-z.spa
dc.relation.referencesR. C. Gonzalez and R. E. Woods, Digital Image Processing, 4e, 4°. Pearson Education Limited, 2018.spa
dc.relation.referencesN. Otsu, “A Tlreshold Selection Method from Gray-Level Histograms,” IEEE Transaction on Systems, Man and Cybernetics, vol. 20, no. 1, pp. 62–66, 1979.spa
dc.relation.referencesA. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow : concepts, tools, and techniques to build intelligent systems, Second Edition. O’Reilly Media, Inc., 2019. Accessed: Oct. 02, 2022. [Online]. Available: http://oreilly.com/catalog/errata.csp?isbn=9781492032649. URL:http://oreilly.com/catalog/errata.csp?isbn=9781492032649spa
dc.relation.referencesM. Gehan and N. Fahlgren, “PlantCV.” Missouri, United States., pp. 1–14, 2022.spa
dc.relation.referencesA. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” Apr. 2017, [Online]. Available: http://arxiv.org/abs/1704.04861. URL:http://arxiv.org/abs/1704.04861spa
dc.relation.referencesA. Howard et al., “Searching for mobileNetV3,” Proceedings of the IEEE International Conference on Computer Vision, vol. 2019-Octob, pp. 1314–1324, 2019, doi: 10.1109/ICCV.2019.00140.spa
dc.relation.referencesM. Tan and Q. v. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” 36th International Conference on Machine Learning, ICML 2019, vol. 2019-June, pp. 10691–10700, 2019.spa
dc.relation.referencesM. Tan et al., “Mnasnet: Platform-aware neural architecture search for mobile,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2019-June, pp. 2815–2823, 2019, doi: 10.1109/CVPR.2019.00293.spa
dc.relation.referencesF. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” pp. 1–13, 2016, [Online]. Available: http://arxiv.org/abs/1602.07360. URL:http://arxiv.org/abs/1602.07360spa
dc.relation.referencesX. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 6848–6856, 2018, doi: 10.1109/CVPR.2018.00716.spa
dc.relation.referencesÁ. B. Jiménez, J. L. Lázaro, and J. R. Dorronsoro, “Finding optimal model parameters by deterministic and annealed focused grid search,” Neurocomputing, vol. 72, no. 13–15, pp. 2824–2832, 2009, doi: 10.1016/j.neucom.2008.09.024.spa
dc.relation.referencesJ. Bergstra, J. B. Ca, and Y. B. Ca, “Random Search for Hyper-Parameter Optimization Yoshua Bengio,” 2012. [Online]. Available: http://scikit-learn.sourceforge.net. URL:http://scikit-learn.sourceforge.net.spa
dc.relation.referencesJ. Wu, X. Y. Chen, H. Zhang, L. D. Xiong, H. Lei, and S. H. Deng, “Hyperparameter optimization for machine learning models based on Bayesian optimization,” Journal of Electronic Science and Technology, vol. 17, no. 1, pp. 26–40, Mar. 2019, doi: 10.11989/JEST.1674-862X.80904120.spa
dc.relation.referencesN. M. Aszemi and P. D. D. Dominic, “Hyperparameter Optimization in Convolutional Neural Network using Genetic Algorithms,” 2019. [Online]. Available: www.ijacsa.thesai.org. URL:www.ijacsa.thesai.orgspa
dc.relation.referencesM. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Inf Process Manag, vol. 45, no. 4, pp. 427–437, Jul. 2009, doi: 10.1016/j.ipm.2009.03.002.spa
dc.relation.referencesA. Tharwat, “Classification assessment methods,” Applied Computing and Informatics, vol. 17, no. 1, pp. 168–192, 2018, doi: 10.1016/j.aci.2018.08.003.spa
dc.relation.references“IEEE Standard for Binary Floating-Point Arithmetic Standards Committee of the IEEE Computer Society IEEE Standards Board American National Standards Institute,” 1985.spa
dc.relation.references“The GFLOPS/W of the various machines in the VMW Research Group,” 2022. https://web.eece.maine.edu/~vweaver/group/green_machines.html (accessed Dec. 22, 2022). URL:https://web.eece.maine.edu/~vweaver/group/green_machines.htmlspa
dc.relation.referencesS. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015, doi: 10.1007/s10796-014-9492-7.spa
dc.relation.referencesA. Kaloxylos et al., “Farm management systems and the Future Internet era,” Comput Electron Agric, vol. 89, pp. 130–144, 2012, doi: 10.1016/j.compag.2012.09.002.spa
dc.relation.referencesA. Kaloxylos et al., “The Use of Future Internet Technologies in the Agriculture and Food Sectors: Integrating the Supply Chain,” Procedia Technology, vol. 8, no. Haicta, pp. 51–60, 2013, doi: 10.1016/j.protcy.2013.11.009.spa
dc.relation.referencesC. Li and B. Niu, “Design of smart agriculture based on big data and Internet of things,” Int J Distrib Sens Netw, vol. 16, no. 5, 2020, doi: 10.1177/1550147720917065.spa
dc.relation.referencesJ. Muangprathub, N. Boonnam, S. Kajornkasirat, N. Lekbangpong, A. Wanichsombat, and P. Nillaor, “IoT and agriculture data analysis for smart farm,” Comput Electron Agric, vol. 156, pp. 467–474, 2019, doi: 10.1016/j.compag.2018.12.011.spa
dc.relation.referencesC. C. Baseca, S. Sendra, J. Lloret, and J. Tomas, “A smart decision system for digital farming,” Agronomy, vol. 9, no. 5, 2019, doi: 10.3390/agronomy9050216.spa
dc.relation.referencesM. Colezea, G. Musat, F. Pop, C. Negru, A. Dumitrascu, and M. Mocanu, “CLUeFARM: Integrated web-service platform for smart farms,” Comput Electron Agric, vol. 154, pp. 134–154, Nov. 2018, doi: 10.1016/j.compag.2018.08.015.spa
dc.relation.referencesD. Budaev et al., “Conceptual design of smart farming solution for precise agriculture,” International Journal of Design and Nature and Ecodynamics, vol. 13, no. 3, pp. 307–314, 2018, doi: 10.2495/DNE-V13-N3-307-314.spa
dc.relation.referencesA. Tzounis, N. Katsoulas, T. Bartzanas, and C. Kittas, “Internet of Things in agriculture, recent advances and future challenges,” Biosyst Eng, vol. 164, pp. 31–48, 2017, doi: 10.1016/j.biosystemseng.2017.09.007.spa
dc.relation.referencesM. De Donno, K. Tange, and N. Dragoni, “Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog,” IEEE Access, vol. 7, pp. 150936–150948, 2019, doi: 10.1109/ACCESS.2019.2947652.spa
dc.relation.referencesIOF - European Union, “IOF-2020 (Internet of Food) REFERENCE ARCHITECTURE FOR INTEROPERABILITY , REPLICABILITY AND REUSE,” EU, 2020.spa
dc.relation.referencesM. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Cla, “Middleware for internet of things: A survey,” IEEE Internet Things J, vol. 3, no. 1, pp. 70–95, 2016, doi: 10.1109/JIOT.2015.2498900.spa
dc.relation.referencesU. Barman, R. D. Choudhury, D. Sahu, and G. G. Barman, “Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease,” Comput Electron Agric, vol. 177, no. August, p. 105661, 2020, doi: 10.1016/j.compag.2020.105661. URL:https://doi.org/10.1016/j.compag.2020.105661spa
dc.relation.referencesS. S. Chouhan, U. P. Singh, and S. Jain, “Automated Plant Leaf Disease Detection and Classification Using Fuzzy Based Function Network,” Wirel Pers Commun, vol. 121, no. 3, pp. 1757–1779, 2021, doi: 10.1007/s11277-021-08734-3. URL:https://doi.org/10.1007/s11277-021-08734-3spa
dc.relation.referencesN. Fatima, S. A. Siddiqui, and A. Ahmad, “IoT-based Smart Greenhouse with Disease Prediction using Deep Learning,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 7, pp. 113–121, 2021, doi: 10.14569/IJACSA.2021.0120713.spa
dc.relation.referencesD. Gao, Q. Sun, B. Hu, and S. Zhang, “A framework for agricultural pest and disease monitoring based on internet-of-things and unmanned aerial vehicles,” Sensors (Switzerland), vol. 20, no. 5, 2020, doi: 10.3390/s20051487.spa
dc.relation.referencesP. Joshi, D. Das, V. Udutalapally, M. K. Pradhan, and S. Misra, “RiceBioS: Identification of Biotic Stress in Rice Crops Using Edge-as-a-Service,” IEEE Sens J, vol. 22, no. 5, pp. 4616–4624, 2022, doi: 10.1109/JSEN.2022.3143950.spa
dc.relation.referencesS. S. Lee, Y. N. Jeong, S. R. Son, and B. K. Lee, “A self-predictable crop yield platform (SCYP) based on crop diseases using deep learning,” Sustainability (Switzerland), vol. 11, no. 13, 2019, doi: 10.3390/su11133637.spa
dc.relation.referencesA. Mellit, M. Benghanem, O. Herrak, and A. Messalaoui, “Design of a novel remote monitoring system for smart greenhouses using the internet of things and deep convolutional neural networks,” Energies (Basel), vol. 14, no. 16, 2021, doi: 10.3390/en14165045.spa
dc.relation.referencesM. Mishra, P. Choudhury, and B. Pati, “Modified ride-NN optimizer for the IoT based plant disease detection,” J Ambient Intell Humaniz Comput, vol. 12, no. 1, pp. 691–703, 2021, doi: 10.1007/s12652-020-02051-6. URL:https://doi.org/10.1007/s12652-020-02051-6spa
dc.relation.referencesG. Nagasubramanian, R. K. Sakthivel, R. Patan, M. Sankayya, M. Daneshmand, and A. H. Gandomi, “Ensemble Classification and IoT-Based Pattern Recognition for Crop Disease Monitoring System,” IEEE Internet Things J, vol. 8, no. 16, pp. 12847–12854, 2021, doi: 10.1109/JIOT.2021.3072908.spa
dc.relation.referencesS. Aasha Nandhini, R. Hemalatha, S. Radha, and K. Indumathi, “Web Enabled Plant Disease Detection System for Agricultural Applications Using WMSN,” Wirel Pers Commun, vol. 102, no. 2, pp. 725–740, 2018, doi: 10.1007/s11277-017-5092-4. URL:https://doi.org/10.1007/s11277-017-5092-4spa
dc.relation.referencesA. Picon, M. Seitz, A. Alvarez-Gila, P. Mohnke, A. Ortiz-Barredo, and J. Echazarra, “Crop conditional Convolutional Neural Networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions,” Comput Electron Agric, vol. 167, no. September, p. 105093, 2019, doi: 10.1016/j.compag.2019.105093. URL:https://doi.org/10.1016/j.compag.2019.105093spa
dc.relation.referencesB. S. Rishiikeshwer, T. A. Shriram, J. S. Raju, M. Hari, B. Santhi, and G. R. Brindha, “Farmer-friendly mobile application for automated leaf disease detection of real-time augmented data set using convolution neural networks,” Journal of Computer Science, vol. 16, no. 2, pp. 158–166, 2020, doi: 10.3844/JCSSP.2020.158.166.spa
dc.relation.referencesS. Ramesh and B. Rajaram, “Iot based crop disease identification system using optimization techniques,” ARPN Journal of Engineering and Applied Sciences, vol. 13, no. 4, pp. 1392–1395, 2018.spa
dc.relation.referencesR. Rathinam, P. Kasinathan, U. Govindarajan, V. K. Ramachandaramurthy, U. Subramaniam, and S. Garrido, “Cybernetics approaches in intelligent systems for crops disease detection with the aid of IoT,” International Journal of Intelligent Systems, vol. 36, no. 11, pp. 6550–6580, 2021, doi: 10.1002/int.22560.spa
dc.relation.referencesK. K. Sarma, K. K. Das, V. Mishra, S. Bhuiya, and D. Kaplun, “Learning Aided System for Agriculture Monitoring Designed Using Image Processing and IoT-CNN,” IEEE Access, vol. 10, pp. 41525–41536, 2022, doi: 10.1109/ACCESS.2022.3167061.spa
dc.relation.referencesV. Udutalapally, S. P. Mohanty, V. Pallagani, and V. Khandelwal, “SCrop: A Novel Device for Sustainable Automatic Disease Prediction, Crop Selection, and Irrigation in Internet-of-Agro-Things for Smart Agriculture,” IEEE Sens J, vol. 21, no. 16, pp. 17525–17538, 2021, doi: 10.1109/JSEN.2020.3032438.spa
dc.relation.referencesZ. Zinonos, S. Gkelios, A. F. Khalifeh, D. G. Hadjimitsis, Y. S. Boutalis, and S. A. Chatzichristofis, “Grape Leaf Diseases Identification System Using Convolutional Neural Networks and LoRa Technology,” IEEE Access, vol. 10, pp. 122–133, 2022, doi: 10.1109/ACCESS.2021.3138050.spa
dc.relation.referencesI. Dasgupta, J. Saha, P. Venkatasubbu, and P. Ramasubramanian, “AI Crop Predictor and Weed Detector Using Wireless Technologies: A Smart Application for Farmers,” Arab J Sci Eng, vol. 45, no. 12, pp. 11115–11127, 2020, doi: 10.1007/s13369-020-04928-2. URL:https://doi.org/10.1007/s13369-020-04928-2spa
dc.relation.referencesA. Coletta, N. Bartolini, G. Maselli, A. Kehs, P. McCloskey, and D. P. Hughes, “Optimal Deployment in Crowdsensing for Plant Disease Diagnosis in Developing Countries,” IEEE Internet Things J, vol. 9, no. 9, pp. 6359–6373, 2022, doi: 10.1109/JIOT.2020.3002332.spa
dc.relation.referencesJ. G. M. Esgario, P. B. C. de Castro, L. M. Tassis, and R. A. Krohling, “An app to assist farmers in the identification of diseases and pests of coffee leaves using deep learning,” Information Processing in Agriculture, vol. 9, no. 1, pp. 38–47, 2022, doi: 10.1016/j.inpa.2021.01.004.spa
dc.relation.referencesR. Kamath, M. Balachandra, and S. Prabhu, “Raspberry Pi as Visual Sensor Nodes in Precision Agriculture: A Study,” IEEE Access, vol. 7, pp. 45110–45122, 2019, doi: 10.1109/ACCESS.2019.2908846.spa
dc.relation.referencesA. Albanese, M. Nardello, and D. Brunelli, “Automated Pest Detection with DNN on the Edge for Precision Agriculture,” IEEE J Emerg Sel Top Circuits Syst, vol. 11, no. 3, pp. 458–467, 2021, doi: 10.1109/JETCAS.2021.3101740.spa
dc.relation.referencesV. Attada and S. Katta, “A methodology for automatic detection and classification of pests using optimized SVM in greenhouse crops,” Int J Eng Adv Technol, vol. 8, no. 6, pp. 1485–1491, 2019, doi: 10.35940/ijeat.F8133.088619.spa
dc.relation.referencesM. E. Karar, F. Alsunaydi, S. Albusaymi, and S. Alotaibi, “A new mobile application of agricultural pests recognition using deep learning in cloud computing system,” Alexandria Engineering Journal, vol. 60, no. 5, pp. 4423–4432, 2021, doi: 10.1016/j.aej.2021.03.009. URL:https://doi.org/10.1016/j.aej.2021.03.009spa
dc.relation.referencesM. A. Lopez, J. M. Lombardo, M. López, D. Álvarez, S. Velasco, and S. Terrón, “Traceable Ecosystem and Strategic Framework for the Creation of an Integrated Pest Management System for Intensive Farming,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 3, p. 47, 2020, doi: 10.9781/ijimai.2020.08.004.spa
dc.relation.referencesB. Ramalingam et al., “Remote insects trap monitoring system using deep learning framework and iot,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–17, 2020, doi: 10.3390/s20185280.spa
dc.relation.referencesI. Salehin et al., “IFSG: Intelligence agriculture crop-pest detection system using IoT automation system,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 24, no. 2, pp. 1091–1099, 2021, doi: 10.11591/ijeecs.v24.i2.pp1091-1099.spa
dc.relation.referencesM. J. Schrader, P. Smytheman, E. H. Beers, and L. R. Khot, “An Open-Source Low-Cost Imaging System Plug-In for Pheromone Traps Aiding Remote Insect Pest Population Monitoring in Fruit Crops,” Machines, vol. 10, no. 1, 2022, doi: 10.3390/machines10010052.spa
dc.relation.referencesP. Thakare and V. Ravi Sankar, “Advanced pest detection strategy using hybrid optimization tuned deep convolutional neural network,” Journal of Engineering, Design and Technology, 2022, doi: 10.1108/JEDT-09-2021-0488.spa
dc.relation.referencesG. Gagliardi et al., “An internet of things solution for smart agriculture,” Agronomy, vol. 11, no. 11, Nov. 2021, doi: 10.3390/agronomy11112140.spa
dc.relation.referencesL. Paleari et al., “Estimating plant nitrogen content in tomato using a smartphone,” Field Crops Res, vol. 284, Aug. 2022, doi: 10.1016/j.fcr.2022.108564.spa
dc.relation.referencesK. R. Prilianti, S. Anam, T. H. P. Brotosudarmo, and A. Suryanto, “Real-time assessment of plant photosynthetic pigment contents with an artificial intelligence approach in a mobile application,” Journal of Agricultural Engineering, vol. 51, no. 4, pp. 220–228, 2020, doi: 10.4081/jae.2020.1082.spa
dc.relation.referencesJ. Santhosh, P. Balamurugan, G. Arulkumaran, M. Baskar, and R. Velumani, “Image Driven Multi Feature Plant Management with FDE Based Smart Agriculture with Improved Security in Wireless Sensor Networks,” Wirel Pers Commun, no. 0123456789, 2021, doi: 10.1007/s11277-021-08710-x. URL:https://doi.org/10.1007/s11277-021-08710-xspa
dc.relation.referencesL. K. S. Tolentino et al., “Yield evaluation of brassica rapa, Lactuca Sativa, and brassica Integrifolia using image processing in an IoT-based Aquaponics with temperature-controlled greenhouse,” Agrivita, vol. 42, no. 3, pp. 393–410, 2020, doi: 10.17503/agrivita.v42i3.2600.spa
dc.relation.referencesS. Park and J. Kim, “Design and implementation of a hydroponic strawberry monitoring and harvesting timing information supporting system based on nano ai-cloud and iot-edge,” Electronics (Switzerland), vol. 10, no. 12, 2021, doi: 10.3390/electronics10121400.spa
dc.relation.referencesA. Triantafyllou, P. Sarigiannidis, and S. Bibi, “Precision agriculture: A remote sensing monitoring system architecture,” Information (Switzerland), vol. 10, no. 11, Nov. 2019, doi: 10.3390/info10110348.spa
dc.relation.referencesÁ. L. Perales Gómez, P. E. López-de-Teruel, A. Ruiz, G. García-Mateos, G. Bernabé García, and F. J. García Clemente, “FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming,” Cluster Comput, vol. 25, no. 3, pp. 2163–2178, 2022, doi: 10.1007/s10586-021-03489-9.spa
dc.relation.referencesR. Chandra et al., “Democratizing Data-Driven Agriculture Using Affordable Hardware,” IEEE Micro, vol. 42, no. 1, pp. 69–77, 2022, doi: 10.1109/MM.2021.3134743.spa
dc.relation.referencesT. C. Hsu, H. Yang, Y. C. Chung, and C. H. Hsu, “A Creative IoT agriculture platform for cloud fog computing,” Sustainable Computing: Informatics and Systems, vol. 28, p. 100285, 2020, doi: 10.1016/j.suscom.2018.10.006. URL:https://doi.org/10.1016/j.suscom.2018.10.006spa
dc.relation.referencesJ. D. Wahl and J. X. Zhang, “Development and power characterization of an IoT network for agricultural imaging applications,” Journal of Advances in Information Technology, vol. 12, no. 3, pp. 214–219, 2021, doi: 10.12720/jait.12.3.214-219.spa
dc.relation.referencesA. Oliveira et al., “Iot sensing platform as a driver for digital farming in rural africa,” Sensors (Switzerland), vol. 20, no. 12, pp. 1–25, Jun. 2020, doi: 10.3390/s20123511.spa
dc.relation.referencesP. K. Sethy, S. K. Behera, N. Kannan, S. Narayanan, and C. Pandey, “Smart paddy field monitoring system using deep learning and IoT,” Concurr Eng Res Appl, vol. 29, no. 1, pp. 16–24, Mar. 2021, doi: 10.1177/1063293X21988944.spa
dc.relation.referencesC. C. Baseca, S. Sendra, J. Lloret, and J. Tomas, “A smart decision system for digital farming,” Agronomy, vol. 9, no. 5, May 2019, doi: 10.3390/agronomy9050216.spa
dc.relation.referencesE. A. Abioye et al., “IoT-based monitoring and data-driven modelling of drip irrigation system for mustard leaf cultivation experiment,” Information Processing in Agriculture, vol. 8, no. 2, pp. 270–283, Jun. 2021, doi: 10.1016/j.inpa.2020.05.004.spa
dc.relation.referencesS. AlZu’bi, B. Hawashin, M. Mujahed, Y. Jararweh, and B. B. Gupta, “An efficient employment of internet of multimedia things in smart and future agriculture,” Multimed Tools Appl, vol. 78, no. 20, pp. 29581–29605, Oct. 2019, doi: 10.1007/s11042-019-7367-0.spa
dc.relation.referencesS. R. Barkunan, V. Bhanumathi, and J. Sethuram, “Smart sensor for automatic drip irrigation system for paddy cultivation,” Computers and Electrical Engineering, vol. 73, pp. 180–193, Jan. 2019, doi: 10.1016/j.compeleceng.2018.11.013.spa
dc.relation.referencesA. Mateo-Aroca, G. García-Mateos, A. Ruiz-Canales, J. M. Molina-García-Pardo, and J. M. Molina-Martínez, “Remote image capture system to improve aerial supervision for precision irrigation in agriculture,” Water (Switzerland), vol. 11, no. 2, Feb. 2019, doi: 10.3390/w11020255.spa
dc.relation.referencesP. Ramya, T. R. Annapoorneswari, G. V. Bindu, N. V. Meghana, and U. Roshni, “Solar powered automated irrigation system with plant health indication using iot,” International Journal of Recent Technology and Engineering, vol. 8, no. 2 Special Issue 11, pp. 60–64, Sep. 2019, doi: 10.35940/ijrte.B1011.0982S1119.spa
dc.relation.referencesL. Wang et al., “A Smart Droplet Detection Approach with Vision Sensing Technique for Agricultural Aviation Application,” IEEE Sens J, vol. 21, no. 16, pp. 17508–17516, Aug. 2021, doi: 10.1109/JSEN.2021.3056957.spa
dc.relation.referencesD. Adami, M. O. Ojo, and S. Giordano, “Design, Development and Evaluation of an Intelligent Animal Repelling System for Crop Protection Based on Embedded Edge-AI,” IEEE Access, vol. 9, pp. 132125–132139, 2021, doi: 10.1109/ACCESS.2021.3114503.spa
dc.relation.referencesS. Angadi and R. Katagall, “Agrivigilance: A Security System For Intrusion Detection In Agriculture Using Raspberry Pi And Opencv,” INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, vol. 8, no. 11, 2019, [Online]. Available: www.ijstr.org. URL:www.ijstr.orgspa
dc.relation.referencesV. Nithin, S. Mishra, P. Devarubiny, and S. Muthulakshmi, “Iot enabled farming assist and security using machine learning,” ARPN Journal of Engineering and Applied Sciences, vol. 14, no. 9, pp. 1809–1819, 2019.spa
dc.relation.referencesA. V. Prabu, G. S. Kumar, S. Rajasoundaran, P. P. Malla, S. Routray, and A. Mukherjee, “Internet of things-based deeply proficient monitoring and protection system for crop field,” Expert Syst, vol. 39, no. 5, Jun. 2022, doi: 10.1111/exsy.12876.spa
dc.relation.referencesM. R. Ramli, P. T. Daely, D.-S. Kim, and J. M. Lee, “IoT-based adaptive network mechanism for reliable smart farm system,” Comput Electron Agric, vol. 170, 2020, doi: 10.1016/j.compag.2020.105287.spa
dc.relation.referencesS. K. Behera, P. K. Sethy, S. K. Sahoo, S. Panigrahi, and S. C. Rajpoot, “On-tree fruit monitoring system using IoT and image analysis,” Concurr Eng Res Appl, vol. 29, no. 1, pp. 6–15, Mar. 2021, doi: 10.1177/1063293X20988395.spa
dc.relation.referencesS. Kamal et al., “IOT Automation with Segmentation Techniques for Detection of Plant Seedlings in Agriculture,” Wirel Commun Mob Comput, vol. 2022, 2022, doi: 10.1155/2022/6466555.spa
dc.relation.referencesV. Mazzia, A. Khaliq, F. Salvetti, and M. Chiaberge, “Real-time apple detection system using embedded systems with hardware accelerators: An edge AI application,” IEEE Access, vol. 8, pp. 9102–9114, 2020, doi: 10.1109/ACCESS.2020.2964608.spa
dc.relation.referencesT. Misra et al., “Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes from Visual Images of Wheat Plants,” IEEE Access, vol. 9, pp. 76235–76247, 2021, doi: 10.1109/ACCESS.2021.3080836.spa
dc.relation.referencesL. Parra, J. Marin, S. Yousfi, G. Rincón, P. V. Mauri, and J. Lloret, “Edge detection for weed recognition in lawns,” Comput Electron Agric, vol. 176, no. August, 2020, doi: 10.1016/j.compag.2020.105684.spa
dc.relation.referencesS. K. Valicharla, “Weed Recognition in Agriculture : A Mask R-CNN Approach Weed Recognition in Agriculture : A Mask R-CNN Approach,” 2021.spa
dc.relation.referencesA. Wang, W. Zhang, and X. Wei, “A review on weed detection using ground-based machine vision and image processing techniques,” Comput Electron Agric, vol. 158, pp. 226–240, 2019, doi: 10.1016/j.compag.2019.02.005.spa
dc.relation.referencesS. Bargoti and J. Underwood, “Deep fruit detection in orchards,” Proc IEEE Int Conf Robot Autom, pp. 3626–3633, 2017, doi: 10.1109/ICRA.2017.7989417.spa
dc.relation.referencesA. Koirala, K. B. Walsh, Z. Wang, and C. McCarthy, “Deep learning for real-time fruit detection and orchard fruit load estimation: benchmarking of ‘MangoYOLO,’” Precis Agric, no. 0123456789, 2019, doi: 10.1007/s11119-019-09642-0. URL:https://doi.org/10.1007/s11119-019-09642-0spa
dc.relation.referencesE. Bellocchio, G. Costante, S. Cascianelli, M. L. Fravolini, and P. Valigi, “Combining Domain Adaptation and Spatial Consistency for Unseen Fruits Counting: A Quasi-Unsupervised Approach,” IEEE Robot Autom Lett, vol. 5, no. 2, pp. 1079–1086, 2020, doi: 10.1109/LRA.2020.2966398.spa
dc.relation.referencesI. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. McCool, “Deepfruits: A fruit detection system using deep neural networks,” Sensors (Switzerland), vol. 16, no. 8, 2016, doi: 10.3390/s16081222.spa
dc.relation.referencesS. Bargoti and J. P. Underwood, “Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards,” J Field Robot, vol. 34, no. 6, pp. 1039–1060, 2017, doi: 10.1002/rob.21699.spa
dc.relation.referencesU. O. Dorj, M. Lee, and S. seok Yun, “An yield estimation in citrus orchards via fruit detection and counting using image processing,” Comput Electron Agric, vol. 140, pp. 103–112, Aug. 2017, doi: 10.1016/j.compag.2017.05.019.spa
dc.relation.referencesJ. Lu, W. S. Lee, H. Gan, and X. Hu, “Immature citrus fruit detection based on local binary pattern feature and hierarchical contour analysis,” Biosyst Eng, vol. 171, pp. 78–90, 2018, doi: 10.1016/j.biosystemseng.2018.04.009. URL:https://doi.org/10.1016/j.biosystemseng.2018.04.009spa
dc.relation.referencesP. Sindhu and G. Indirani, “IOT with cloud based smart farming for citrus fruit disease classification using optimized convolutional neural networks,” International Journal on Emerging Technologies, vol. 11, no. 2, pp. 52–56, 2020.spa
dc.relation.referencesP. Marques et al., “UAV-Based Automatic Detection and Monitoring of Chestnut Trees,” Remote Sens (Basel), vol. 11, no. 7, p. 855, 2019, doi: 10.3390/rs11070855.spa
dc.relation.referencesA. Gupta, J. Byrne, D. Moloney, S. Watson, and H. Yin, “Automatic Tree Annotation in LiDAR Data,” no. Gistam, pp. 36–41, 2018, doi: 10.5220/0006668000360041.spa
dc.relation.referencesW. S. Qureshi, A. Payne, K. B. Walsh, R. Linker, O. Cohen, and M. N. Dailey, “Machine vision for counting fruit on mango tree canopies,” Precis Agric, vol. 18, no. 2, pp. 224–244, 2017, doi: 10.1007/s11119-016-9458-5.spa
dc.relation.referencesM. Zortea, M. M. G. Macedo, A. B. Mattos, B. C. Ruga, and B. H. Gemignani, “Automatic Citrus Tree Detection from UAV Images based on Convolutional Neural Networks,” Drones, vol. 2, no. 4, p. 39, 2018.spa
dc.relation.referencesA. Khan et al., “Remote Sensing: An Automated Methodology for Olive Tree Detection and Counting in Satellite Images,” IEEE Access, vol. 6, pp. 77816–77828, 2018, doi: 10.1109/ACCESS.2018.2884199.spa
dc.relation.referencesM. Balsi, S. Esposito, P. Fallavollita, and C. Nardinocchi, “Single-tree detection in high-density LiDAR data from UAV-based survey,” Eur J Remote Sens, vol. 51, no. 1, pp. 679–692, 2018, doi: 10.1080/22797254.2018.1474722.spa
dc.relation.referencesW. Li, H. Fu, L. Yu, and A. Cracknell, “Deep learning based oil palm tree detection and counting for high-resolution remote sensing images,” Remote Sens (Basel), vol. 9, no. 1, 2017, doi: 10.3390/rs9010022.spa
dc.relation.referencesN. A. Mubin, E. Nadarajoo, H. Z. M. Shafri, and A. Hamedianfar, “Young and mature oil palm tree detection and counting using convolutional neural network deep learning method,” Int J Remote Sens, vol. 40, no. 19, pp. 7500–7515, 2019, doi: 10.1080/01431161.2019.1569282. URL:https://doi.org/10.1080/01431161.2019.1569282spa
dc.relation.referencesH. Jiang, S. Chen, D. Li, C. Wang, and J. Yang, “Papaya Tree Detection with UAV Images Using a GPU-Accelerated Scale-Space Filtering Method,” Remote Sens (Basel), vol. 9, no. 7, p. 721, 2017, doi: 10.3390/rs9070721.spa
dc.relation.referencesA. Kelman, “Plant Disease,” 2017. https://www.britannica.com/science/plant-disease (accessed Jun. 26, 2022). URL:https://www.britannica.com/science/plant-diseasespa
dc.relation.referencesA. Kamilaris, F. Gao, and F. X. Prenafeta-bold, “Agri-IoT : A Semantic Framework for Internet of Things-enabled Smart Farming Applications,” no. October 2017, 2016, doi: 10.1109/WF-IoT.2016.7845467.spa
dc.relation.referencesG. Delnevo, R. Girau, C. Ceccarini, and C. Prandi, “A Deep Learning and Social IoT Approach for Plants Disease Prediction Toward a Sustainable Agriculture,” IEEE Internet Things J, vol. 9, no. 10, pp. 7243–7250, 2022, doi: 10.1109/JIOT.2021.3097379.spa
dc.relation.referencesA. Triantafyllou, P. Sarigiannidis, and S. Bibi, “Precision agriculture: A remote sensing monitoring system architecture,” Information (Switzerland), vol. 10, no. 11, 2019, doi: 10.3390/info10110348.spa
dc.relation.referencesT. C. Hsu, H. Yang, Y. C. Chung, and C. H. Hsu, “A Creative IoT agriculture platform for cloud fog computing,” Sustainable Computing: Informatics and Systems, vol. 28, p. 100285, 2020, doi: 10.1016/j.suscom.2018.10.006.spa
dc.relation.referencesS. Aasha Nandhini, R. Hemalatha, S. Radha, and K. Indumathi, “Web Enabled Plant Disease Detection System for Agricultural Applications Using WMSN,” Wirel Pers Commun, vol. 102, no. 2, pp. 725–740, 2018, doi: 10.1007/s11277-017-5092-4. URL:https://doi.org/10.1007/s11277-017-5092-4spa
dc.relation.referencesFAO, “New standards to curb the global spread of plant pests and diseases,” 2019. https://www.fao.org/news/story/en/item/1187738/icode/ (accessed Jun. 26, 2022). URL:https://www.fao.org/news/story/en/item/1187738/icode/spa
dc.relation.referencesV. K. Vishnoi, K. Kumar, and B. Kumar, Plant disease detection using computational intelligence and image processing, vol. 128, no. 1. Springer Berlin Heidelberg, 2021. doi: 10.1007/s41348-020-00368-0.spa
dc.relation.referencesS. Panno et al., “A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the mediterranean basin,” Agronomy, vol. 11, no. 11, pp. 1–45, 2021, doi: 10.3390/agronomy11112188.spa
dc.relation.referencesC. S. Hlaing and S. M. Maung Zaw, “Tomato Plant Diseases Classification Using Statistical Texture Feature and Color Feature,” in Proceedings - 17th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2018, Sep. 2018, pp. 439–444. doi: 10.1109/ICIS.2018.8466483.spa
dc.relation.referencesN. Ahmad, H. M. S. Asif, G. Saleem, M. U. Younus, S. Anwar, and M. R. Anjum, “Leaf Image-Based Plant Disease Identification Using Color and Texture Features,” Wirel Pers Commun, vol. 121, no. 2, pp. 1139–1168, Nov. 2021, doi: 10.1007/s11277-021-09054-2.spa
dc.relation.referencesAnjna, M. Sood, and P. K. Singh, “Hybrid System for Detection and Classification of Plant Disease Using Qualitative Texture Features Analysis,” in Procedia Computer Science, 2020, vol. 167, pp. 1056–1065. doi: 10.1016/j.procs.2020.03.404.spa
dc.relation.referencesJ. L. Raheja, S. Kumar, and A. Chaudhary, “Fabric defect detection based on GLCM and Gabor filter: A comparison,” Optik (Stuttg), vol. 124, no. 23, pp. 6469–6474, 2013, doi: 10.1016/j.ijleo.2013.05.004. URL:http://dx.doi.org/10.1016/j.ijleo.2013.05.004spa
dc.relation.referencesX. Liu and C. Aldrich, “Deep Learning Approaches to Image Texture Analysis in Material Processing,” Metals (Basel), vol. 12, no. 2, 2022, doi: 10.3390/met12020355.spa
dc.relation.referencesL. Tan, J. Lu, and H. Jiang, “Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods,” AgriEngineering, vol. 3, no. 3, pp. 542–558, Sep. 2021, doi: 10.3390/agriengineering3030035.spa
dc.relation.referencesM. Agarwal, S. K. Gupta, and K. K. Biswas, “Development of Efficient CNN model for Tomato crop disease identification,” Sustainable Computing: Informatics and Systems, vol. 28, Dec. 2020, doi: 10.1016/j.suscom.2020.100407.spa
dc.relation.referencesA. Hidayatuloh, M. Nursalman, and E. Nugraha, Identification of Tomato Plant Diseases by Leaf Image Using Squeezenet Model; Identification of Tomato Plant Diseases by Leaf Image Using Squeezenet Model. 2018.spa
dc.relation.referencesM. Kaur and R. Bhatia, "Development Of An Improved Tomato Leaf Disease Detection And Classification Method," 2019 IEEE Conference on Information and Communication Technology, Allahabad, India, 2019, pp. 1-5, doi: 10.1109/CICT48419.2019.9066230.spa
dc.relation.referencesM. Agarwal, A. Singh, S. Arjaria, A. Sinha, and S. Gupta, “ToLeD: Tomato Leaf Disease Detection using Convolution Neural Network,” in Procedia Computer Science, 2020, vol. 167, pp. 293–301. doi: 10.1016/j.procs.2020.03.225.spa
dc.relation.referencesM. M. Gunarathna and R. M. K. T. Rathnayaka, “Experimental determination of CNN hyper-parameters for tomato disease detection using leaf images,” in ICAC 2020 - 2nd International Conference on Advancements in Computing, Proceedings, Dec. 2020, pp. 464–469. doi: 10.1109/ICAC51239.2020.9357284.spa
dc.relation.referencesH. Hong, J. Lin, and F. Huang, “Tomato Disease Detection and Classification by Deep Learning,” in Proceedings - 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, ICBAIE 2020, Jun. 2020, pp. 25–29. doi: 10.1109/ICBAIE49996.2020.00012.spa
dc.relation.referencesD. Jiang, F. Li, Y. Yang and S. Yu, "A Tomato Leaf Diseases Classification Method Based on Deep Learning," 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 2020, pp. 1446-1450, doi: 10.1109/CCDC49329.2020.9164457.spa
dc.relation.referencesM. H. Saleem, J. Potgieter, and K. M. Arif, “Plant disease classification: A comparative evaluation of convolutional neural networks and deep learning optimizers,” Plants, vol. 9, no. 10, pp. 1–17, Oct. 2020, doi: 10.3390/plants9101319.spa
dc.relation.referencesH. Kibriya, R. Rafique, W. Ahmad, and S. M. Adnan, “Tomato Leaf Disease Detection Using Convolution Neural Network,” in Proceedings of 18th International Bhurban Conference on Applied Sciences and Technologies, IBCAST 2021, Jan. 2021, pp. 346–351. doi: 10.1109/IBCAST51254.2021.9393311.spa
dc.relation.referencesH. I. Peyal, S. M. Shahriar, A. Sultana, I. Jahan, and M. H. Mondol, “Detection of tomato leaf diseases using transfer learning architectures: A comparative analysis,” Jul. 2021. doi: 10.1109/ACMI53878.2021.9528199.spa
dc.relation.referencesR. Sujatha, J. M. Chatterjee, N. Z. Jhanjhi, and S. N. Brohi, “Performance of deep learning vs machine learning in plant leaf disease detection,” Microprocess Microsyst, vol. 80, Feb. 2021, doi: 10.1016/j.micpro.2020.103615.spa
dc.relation.referencesH. Younis, M. Z. Khan, M. U. G. Khan, and H. Mukhtar, “Robust Optimization of MobileNet for Plant Disease Classification with Fine Tuned Parameters,” in 2021 International Conference on Artificial Intelligence, ICAI 2021, Apr. 2021, pp. 146–151. doi: 10.1109/ICAI52203.2021.9445261.spa
dc.relation.referencesM. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 4510–4520, 2018, doi: 10.1109/CVPR.2018.00474.spa
dc.relation.referencesP. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS,” no. 2017, pp. 1–11, 2019, [Online]. Available: http://arxiv.org/abs/1912.06059. URL:http://arxiv.org/abs/1912.06059spa
dc.relation.referencesH. Alibrahim and S. A. Ludwig, “Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization,” in 2021 IEEE Congress on Evolutionary Computation, CEC 2021 - Proceedings, 2021, pp. 1551–1559. doi: 10.1109/CEC45853.2021.9504761.spa
dc.relation.referencesJ. González, “Still optimizing in the dark ? Bayesian optimization for model configuration and experimental design,” 2016.- University of Sheffield, Sheffield, UK February 18, 2016. Groningen, The Netherlands. URL: http://javiergonzalezh.github.io/presentations/talk_groningen2016.pdfspa
dc.relation.referencesE. Bochinski, T. Senst, and T. Sikora, “Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms,” Proceedings - International Conference on Image Processing, ICIP, vol. 2017-Septe, no. September, pp. 3924–3928, 2018, doi: 10.1109/ICIP.2017.8297018.spa
dc.relation.referencesL. Tani, D. Rand, C. Veelken, and M. Kadastik, “Evolutionary algorithms for hyperparameter optimization in machine learning for application in high energy physics,” European Physical Journal C, vol. 81, no. 2, pp. 1–9, 2021, doi: 10.1140/epjc/s10052-021-08950-y. URL:https://doi.org/10.1140/epjc/s10052-021-08950-yspa
dc.relation.referencesJ. Moosbauer, J. Herbinger, G. Casalicchio, M. Lindauer, and B. Bischl, “Explaining Hyperparameter Optimization via Partial Dependence Plots,” Adv Neural Inf Process Syst, vol. 3, no. NeurIPS, pp. 2280–2291, 2021.spa
dc.relation.referencesC. Molnar, “Interpretable Machine Learning A Guide for Making Black Box Models Explainable,” 2019. [Online]. Available: http://leanpub.com/interpretable-machine-learning. URL:http://leanpub.com/interpretable-machine-learningspa
dc.relation.referencesS. Sadowski and P. Spachos, “Wireless technologies for smart agricultural monitoring using internet of things devices with energy harvesting capabilities,” Comput Electron Agric, vol. 172, no. September 2019, p. 105338, 2020, doi: 10.1016/j.compag.2020.105338. URL:https://doi.org/10.1016/j.compag.2020.105338spa
dc.relation.referencesP. Savvidis and G. A. Papakostas, “Remote Crop Sensing with IoT and AI on the Edge,” in 2021 IEEE World AI IoT Congress, AIIoT 2021, May 2021, pp. 48–54. doi: 10.1109/AIIoT52608.2021.9454237.spa
dc.relation.referencesC.-C. Wei, P.-Y. Su, and S.-T. Chen, “Comparison of the LoRa Image Transmission Efficiency Based on Different Encoding Methods,” International Journal of Information and Electronics Engineering, vol. 10, no. 1, pp. 1–4, Mar. 2020, doi: 10.18178/IJIEE.2020.10.1.712. URL:http://www.ijiee.org/index.php?m=content&c=index&a=show&catid=89&id=823spa
dc.relation.referencesA. H. Jebril, A. Sali, A. Ismail, and M. F. A. Rasid, “Overcoming limitations of LoRa physical layer in image transmission,” Sensors (Switzerland), vol. 18, no. 10, Oct. 2018, doi: 10.3390/s18103257.spa
dc.relation.referencesSemtech Corporation, “LoRa and LoRaWAN: A Technical Overview,” 2019. Accessed: Oct. 14, 2022. [Online]. Available: https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/. URL:https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/spa
dc.relation.referencesF. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia, and T. Watteyne, “Understanding the limits of LoRaWAN,” Jul. 2016, doi: 10.1109/MCOM.2017.1600613. URL:http://arxiv.org/abs/1607.08011spa
dc.relation.referencesPycom, “Lopy4-Datasheet, version 1.1,” 2020. https://docs.pycom.io/gitbook/assets/specsheets/Pycom_002_Specsheets_LoPy4_v2.pdf (accessed Oct. 15, 2022). URL:https://docs.pycom.io/gitbook/assets/specsheets/Pycom_002_Specsheets_LoPy4_v2.pdfspa
dc.relation.referencessensirion company, “Datasheet_SHT1x_V5_C1,” 2011. https://www.mouser.it/datasheet/2/682/Sensirion_Humidity_Sensors_SHT1x_Datasheet-1539071.pdf (accessed Oct. 15, 2022). URL:https://www.mouser.it/datasheet/2/682/Sensirion_Humidity_Sensors_SHT1x_Datasheet-1539071.pdfspa
dc.relation.referencesSilicon Labs, “Si1145/46/47 P ROXIMITY/ UV/AMBIENT LIGHT SENSOR IC,” 2013. https://cdn-shop.adafruit.com/datasheets/Si1145-46-47.pdf (accessed Oct. 15, 2022). URL:https://cdn-shop.adafruit.com/datasheets/Si1145-46-47.pdfspa
dc.relation.references“Raspberry Pi 4,” 2020. https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ (accessed Jul. 05, 2022). URL:https://www.raspberrypi.com/products/raspberry-pi-4-model-b/spa
dc.relation.references“MG-811 ETC sensors,” 2020. https://datasheetspdf.com/datasheet/MG811.html (accessed Jun. 04, 2022). URL:https://datasheetspdf.com/datasheet/MG811.htmlspa
dc.relation.references“Rika sensors - RK500-03 EC / Salinity Sensor,” 2021. https://www.rikasensor.com/rk500-03-ec-salinity-sensor.html (accessed Jul. 07, 2022). URL:https://www.rikasensor.com/rk500-03-ec-salinity-sensor.htmlspa
dc.relation.references“THAOYU electronics - G1" Water Flow Sensor,” 2021. https://www.hotmcu.com/g1-water-flow-sensor-p-312.html (accessed Jun. 01, 2022). URL:https://www.hotmcu.com/g1-water-flow-sensor-p-312.htmlspa
dc.relation.references“DFROBOT sensors - camera DSJ Raspberry NVIDIA.” https://www.dfrobot.com/product-2089.html (accessed Dec. 04, 2022). URL:https://www.dfrobot.com/product-2089.htmlspa
dc.relation.references“DFROBOT sensors - Weather Station Kit with Anemometer/Wind Vane/Rain Bucket,” 2021. https://www.dfrobot.com/product-1308.html (accessed Dec. 03, 2022). URL:https://www.dfrobot.com/product-1308.htmlspa
dc.relation.referencesL. Dragino Technology Co., “Datasheet_DLOS8N_LoRaWAN_Gateway,” 2020. https://www.dragino.com/products/lora-lorawan-gateway/item/225-dlos8n.html (accessed Jul. 02, 2022). URL:https://www.dragino.com/products/lora-lorawan-gateway/item/225-dlos8n.htmlspa
dc.relation.references“The Things Network -TTN.” https://www.thethingsnetwork.org/ (accessed Feb. 01, 2022). URL:https://www.thethingsnetwork.org/spa
dc.relation.references“Ubidots - Industrial IoT.” https://ubidots.com/ (accessed Apr. 01, 2022). URL:https://ubidots.com/spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.lembTecnología agrícolaspa
dc.subject.lembAgricultural technologyeng
dc.subject.proposalAgricultura Inteligentespa
dc.subject.proposalClasificación de imágenesspa
dc.subject.proposalInteligencia Artificialspa
dc.subject.proposalInternet de las Cosasspa
dc.subject.proposalSmart agriculturespa
dc.subject.proposalImage classificationeng
dc.subject.proposalArtificial Intelligenceeng
dc.subject.proposalInternet of thingseng
dc.titleMétodo de clasificación de imágenes, empleando técnicas de inteligencia artificial, integrado a una plataforma IoT de agricultura inteligentespa
dc.title.translatedImage classification method, using artificial intelligence techniques, integrated into a smart farming IoT platformeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71756752.2023.pdf
Tamaño:
4.47 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: