Aplicación de modelo híbrido en sistemas de recomendación en ecommerce utilizando inteligencia artificial

dc.contributor.advisorGuzmán Luna, Jaime Alberto
dc.contributor.authorBolivar, Juan Esteban
dc.date.accessioned2025-07-21T20:22:57Z
dc.date.available2025-07-21T20:22:57Z
dc.date.issued2025-07-18
dc.descriptionIlustraciones, gráficasspa
dc.description.abstractEl comercio electrónico ha experimentado un crecimiento exponencial en los últimos años, impulsado en gran medida por la transformación digital acelerada tras la pandemia de COVID-19. Factores como los confinamientos y el aumento de la confianza en las plataformas digitales han incentivado a las empresas a optimizar sus estrategias tecnológicas para mantenerse competitivas. En este contexto, la implementación de sistemas de recomendación se ha convertido en una herramienta clave para mejorar la experiencia de compra, permitiendo a las plataformas ofrecer productos y servicios personalizados según las preferencias de los usuarios. Para lograr recomendaciones precisas y relevantes, es fundamental el uso de técnicas avanzadas de análisis de datos y algoritmos de inteligencia artificial. Los modelos híbridos de recomendación, que combinan enfoques basados en contenido, filtrado colaborativo y aprendizaje profundo, han demostrado ser altamente efectivos al mejorar la precisión de las sugerencias y la satisfacción del usuario. La integración de estos modelos permite aprovechar grandes volúmenes de datos y patrones de comportamiento, optimizando la personalización y aumentando la fidelización del cliente. Este estudio explora la aplicación de un modelo híbrido en sistemas de recomendación en e-commerce, analizando su impacto en la precisión de las sugerencias y la experiencia del usuario. Además, se investiga el uso de técnicas de inteligencia artificial, como redes neuronales y modelos de aprendizaje automático, para mejorar la eficiencia y efectividad de las recomendaciones. (Tomado de la fuente)spa
dc.description.abstractE-commerce has experienced exponential growth in recent years, largely driven by the accelerated digital transformation following the COVID-19 pandemic. Factors such as lockdowns and the increasing trust in digital platforms have prompted businesses to optimize their technological strategies to remain competitive. In this context, the implementation of recommendation systems has become a key tool to enhance the shopping experience, allowing platforms to offer personalized products and services based on user preferences. To achieve accurate and relevant recommendations, it is essential to use advanced data analytics techniques and artificial intelligence algorithms. Hybrid recommendation models, which combine content-based approaches, collaborative filtering, and deep learning, have proven to be highly effective in improving suggestion accuracy and user satisfaction. The integration of these models allows for the exploitation of large data volumes and behavior patterns, optimizing personalization and increasing customer loyalty. This study explores the application of a hybrid model in e-commerce recommendation systems, analyzing its impact on the accuracy of suggestions and user experience. Additionally, it investigates the use of artificial intelligence techniques, such as neural networks and machine learning models, to enhance the efficiency and effectiveness of recommendations.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.format.extent148 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88368
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAfoudi, Y., Lazaar, M., & Al Achhab, M. (2021). Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network. Simulation Modelling Practice and Theory, 113, 102375. https://doi.org/10.1016/j.simpat.2021.102375spa
dc.relation.referencesAmazon Web Services. (s.f.). Amazon SageMaker. https://aws.amazon.com/spa
dc.relation.referencesCámara Colombiana de Comercio Electrónico. (2023). Informe de comportamiento del e-commerce en Colombia. https://www.ccce.org.cospa
dc.relation.referencesCobos, C. (2010). CMIN - herramienta case basada en CRISP-DM para el soporte de proyectos de minería de datos. Ingeniería e Investigación.spa
dc.relation.referencesGómez-Uribe, C. A., & Hunt, N. (2015). The Netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems, 6(4), 1–19. https://doi.org/10.1145/2843948spa
dc.relation.referencesHalici, U. (2005). Artificial neural networks. In Handbook of Measuring System Designspa
dc.relation.referencesHansen, C., Hansen, C., Simonsen, J. G., Alstrup, S., & Lioma, C. (2020). Content-aware neural hashing for cold-start recommendation. arXiv preprint arXiv:2006.00617spa
dc.relation.referencesIBM. (s.f.). ¿Qué es el aprendizaje no supervisado? https://www.ibm.com/es-es/topics/unsupervised-learningspa
dc.relation.referencesIBM. (s.f.). ¿Qué es el aprendizaje supervisado? https://www.ibm.com/es-es/topics/supervised-learningspa
dc.relation.referencesIJIRMF. (s.f.). A survey: Collaborative filtering, content-based filtering, hybrid recommendation approachspa
dc.relation.referencesJannach, D., & Adomavicius, G. (2016). Recommendation systems: Challenges, insights and research opportunities. Information & Management, 57(3), 103–113. https://doi.org/10.1016/j.im.2019.01.007spa
dc.relation.referencesKoren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–37. https://doi.org/10.1109/MC.2009.263spa
dc.relation.referencesLaudon, K. C., & Guercio Traver, C. (2017). E-commerce 2017: Business, technology, society (13th ed.). Pearsonspa
dc.relation.referencesLika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold start problem in recommender systems. Expert Systems with Applications, 41(4), 2065–2073. https://doi.org/10.1016/j.eswa.2013.09.005spa
dc.relation.referencesLinden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76–80. https://doi.org/10.1109/MIC.2003.1167344spa
dc.relation.referencesMcKinsey & Company. (2022). The power of product recommendation and why your online business should implement it in 2022. https://exposebox.com/the-power-of-product-recommendation-2022spa
dc.relation.referencesRaval, T., & Patel, Y. (2017). A survey: Collaborative filtering, content-based filtering, hybrid recommendation approach. International Journal for Innovative Research in Multidisciplinary Field, 3, 193–197spa
dc.relation.referencesRicci, F., Rokach, L., & Shapira, B. (2015). Recommender systems handbook (2nd ed.). Springer. https://doi.org/10.1007/978-1-4899-7637-6spa
dc.relation.referencesRodríguez Muiños, C., Sánchez Lasheras, F., & Menéndez García, L. A. (2022). Sistemas de aprendizaje automático. Editorial Marcombospa
dc.relation.referencesShani, G., Brafman, R. I., & Heckerman, D. (2005). An MDP-based recommender system. Journal of Machine Learning Research, 6, 1265–1295spa
dc.relation.referencesSharma, S., & Shakya, H. K. (2024). Hybrid recommendation system for movies using artificial neural network. Expert Systems with Applications, 258, 125194. https://doi.org/10.1016/j.eswa.2024.125194spa
dc.relation.referencesShopify Staff. (2024, diciembre 13). Business to consumer (B2C) definition and examples (2025). Shopify. https://www.shopify.com/blog/what-is-business-to-consumer-b2c-definition-and-guidespa
dc.relation.referencesStatista. (2024). Retail e-commerce sales worldwide from 2014 to 2026. https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-salesspa
dc.relation.referencesThorat, P. B., Goudar, R. M., & Barve, S. (2015). Survey on collaborative filtering, content-based filtering and hybrid recommendation system. International Journal of Computer Applications, 110(4), 31–36. https://doi.org/10.5120/19326-1015spa
dc.relation.referencesTkáč, M., & Verner, R. (2016). Artificial neural networks in business: Two decades of research. Applied Soft Computing, 38, 788–804. https://doi.org/10.1016/j.asoc.2015.10.036spa
dc.relation.referencesTukey, J. W. (1977). Exploratory data analysis. Addison-Wesleyspa
dc.relation.referencesManning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.spa
dc.relation.referencesAggarwal, C. C. (2016). Recommender Systems: The Textbook. Springer. https://doi.org/10.1007/978-3-319-29659-3spa
dc.relation.referencesSinghal, A. (2001). Modern information retrieval: A brief overview. IEEE Data Engineering Bulletin, 24(4), 35–43.spa
dc.relation.referencesTan, P.-N., Steinbach, M., & Kumar, V. (2019). Introduction to Data Mining (2nd ed.). Pearson.spa
dc.relation.referencesZhang, Y., & Chen, X. (2020). Explainable Recommendation: A Survey and New Perspectives. Foundations and Trends® in Information Retrieval, 14(1), 1–101. https://doi.org/10.1561/1500000066spa
dc.relation.referencesHastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7.spa
dc.relation.referencesKoren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–37. https://doi.org/10.1109/MC.2009.263spa
dc.relation.referencesSarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285–295). ACM. https://doi.org/10.1145/371920.372071spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc380 - Comercio , comunicaciones, transportespa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.lembComercio electrónico
dc.subject.lembPromoción de ventas
dc.subject.lembInteligencia artificial - Procesamiento de datos
dc.subject.lembRedes neuronales
dc.subject.proposalData Analyticseng
dc.subject.proposalRecommendation Systemseng
dc.subject.proposalE-commerceeng
dc.subject.proposalDigital Platformseng
dc.subject.proposalArtificial Intelligenceeng
dc.subject.proposalPersonalizationeng
dc.subject.proposalDigital Transformationeng
dc.subject.proposalAnalítica de datosspa
dc.subject.proposalSistemas de recomendaciónspa
dc.subject.proposalComercio electrónicospa
dc.subject.proposalPlataformas digitalesspa
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalPersonalizaciónspa
dc.subject.proposalTransformación digitalspa
dc.subject.proposalModelos Híbridosspa
dc.titleAplicación de modelo híbrido en sistemas de recomendación en ecommerce utilizando inteligencia artificialspa
dc.title.translatedHybrid model application in ecommerce recommender systems using artificial intelligenceeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1035854135.2025.pdf
Tamaño:
3.46 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: