Aplicación de modelo híbrido en sistemas de recomendación en ecommerce utilizando inteligencia artificial
dc.contributor.advisor | Guzmán Luna, Jaime Alberto | |
dc.contributor.author | Bolivar, Juan Esteban | |
dc.date.accessioned | 2025-07-21T20:22:57Z | |
dc.date.available | 2025-07-21T20:22:57Z | |
dc.date.issued | 2025-07-18 | |
dc.description | Ilustraciones, gráficas | spa |
dc.description.abstract | El comercio electrónico ha experimentado un crecimiento exponencial en los últimos años, impulsado en gran medida por la transformación digital acelerada tras la pandemia de COVID-19. Factores como los confinamientos y el aumento de la confianza en las plataformas digitales han incentivado a las empresas a optimizar sus estrategias tecnológicas para mantenerse competitivas. En este contexto, la implementación de sistemas de recomendación se ha convertido en una herramienta clave para mejorar la experiencia de compra, permitiendo a las plataformas ofrecer productos y servicios personalizados según las preferencias de los usuarios. Para lograr recomendaciones precisas y relevantes, es fundamental el uso de técnicas avanzadas de análisis de datos y algoritmos de inteligencia artificial. Los modelos híbridos de recomendación, que combinan enfoques basados en contenido, filtrado colaborativo y aprendizaje profundo, han demostrado ser altamente efectivos al mejorar la precisión de las sugerencias y la satisfacción del usuario. La integración de estos modelos permite aprovechar grandes volúmenes de datos y patrones de comportamiento, optimizando la personalización y aumentando la fidelización del cliente. Este estudio explora la aplicación de un modelo híbrido en sistemas de recomendación en e-commerce, analizando su impacto en la precisión de las sugerencias y la experiencia del usuario. Además, se investiga el uso de técnicas de inteligencia artificial, como redes neuronales y modelos de aprendizaje automático, para mejorar la eficiencia y efectividad de las recomendaciones. (Tomado de la fuente) | spa |
dc.description.abstract | E-commerce has experienced exponential growth in recent years, largely driven by the accelerated digital transformation following the COVID-19 pandemic. Factors such as lockdowns and the increasing trust in digital platforms have prompted businesses to optimize their technological strategies to remain competitive. In this context, the implementation of recommendation systems has become a key tool to enhance the shopping experience, allowing platforms to offer personalized products and services based on user preferences. To achieve accurate and relevant recommendations, it is essential to use advanced data analytics techniques and artificial intelligence algorithms. Hybrid recommendation models, which combine content-based approaches, collaborative filtering, and deep learning, have proven to be highly effective in improving suggestion accuracy and user satisfaction. The integration of these models allows for the exploitation of large data volumes and behavior patterns, optimizing personalization and increasing customer loyalty. This study explores the application of a hybrid model in e-commerce recommendation systems, analyzing its impact on the accuracy of suggestions and user experience. Additionally, it investigates the use of artificial intelligence techniques, such as neural networks and machine learning models, to enhance the efficiency and effectiveness of recommendations. | eng |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Analítica | spa |
dc.format.extent | 148 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88368 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Afoudi, Y., Lazaar, M., & Al Achhab, M. (2021). Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network. Simulation Modelling Practice and Theory, 113, 102375. https://doi.org/10.1016/j.simpat.2021.102375 | spa |
dc.relation.references | Amazon Web Services. (s.f.). Amazon SageMaker. https://aws.amazon.com/ | spa |
dc.relation.references | Cámara Colombiana de Comercio Electrónico. (2023). Informe de comportamiento del e-commerce en Colombia. https://www.ccce.org.co | spa |
dc.relation.references | Cobos, C. (2010). CMIN - herramienta case basada en CRISP-DM para el soporte de proyectos de minería de datos. Ingeniería e Investigación. | spa |
dc.relation.references | Gómez-Uribe, C. A., & Hunt, N. (2015). The Netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems, 6(4), 1–19. https://doi.org/10.1145/2843948 | spa |
dc.relation.references | Halici, U. (2005). Artificial neural networks. In Handbook of Measuring System Design | spa |
dc.relation.references | Hansen, C., Hansen, C., Simonsen, J. G., Alstrup, S., & Lioma, C. (2020). Content-aware neural hashing for cold-start recommendation. arXiv preprint arXiv:2006.00617 | spa |
dc.relation.references | IBM. (s.f.). ¿Qué es el aprendizaje no supervisado? https://www.ibm.com/es-es/topics/unsupervised-learning | spa |
dc.relation.references | IBM. (s.f.). ¿Qué es el aprendizaje supervisado? https://www.ibm.com/es-es/topics/supervised-learning | spa |
dc.relation.references | IJIRMF. (s.f.). A survey: Collaborative filtering, content-based filtering, hybrid recommendation approach | spa |
dc.relation.references | Jannach, D., & Adomavicius, G. (2016). Recommendation systems: Challenges, insights and research opportunities. Information & Management, 57(3), 103–113. https://doi.org/10.1016/j.im.2019.01.007 | spa |
dc.relation.references | Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–37. https://doi.org/10.1109/MC.2009.263 | spa |
dc.relation.references | Laudon, K. C., & Guercio Traver, C. (2017). E-commerce 2017: Business, technology, society (13th ed.). Pearson | spa |
dc.relation.references | Lika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold start problem in recommender systems. Expert Systems with Applications, 41(4), 2065–2073. https://doi.org/10.1016/j.eswa.2013.09.005 | spa |
dc.relation.references | Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76–80. https://doi.org/10.1109/MIC.2003.1167344 | spa |
dc.relation.references | McKinsey & Company. (2022). The power of product recommendation and why your online business should implement it in 2022. https://exposebox.com/the-power-of-product-recommendation-2022 | spa |
dc.relation.references | Raval, T., & Patel, Y. (2017). A survey: Collaborative filtering, content-based filtering, hybrid recommendation approach. International Journal for Innovative Research in Multidisciplinary Field, 3, 193–197 | spa |
dc.relation.references | Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender systems handbook (2nd ed.). Springer. https://doi.org/10.1007/978-1-4899-7637-6 | spa |
dc.relation.references | Rodríguez Muiños, C., Sánchez Lasheras, F., & Menéndez García, L. A. (2022). Sistemas de aprendizaje automático. Editorial Marcombo | spa |
dc.relation.references | Shani, G., Brafman, R. I., & Heckerman, D. (2005). An MDP-based recommender system. Journal of Machine Learning Research, 6, 1265–1295 | spa |
dc.relation.references | Sharma, S., & Shakya, H. K. (2024). Hybrid recommendation system for movies using artificial neural network. Expert Systems with Applications, 258, 125194. https://doi.org/10.1016/j.eswa.2024.125194 | spa |
dc.relation.references | Shopify Staff. (2024, diciembre 13). Business to consumer (B2C) definition and examples (2025). Shopify. https://www.shopify.com/blog/what-is-business-to-consumer-b2c-definition-and-guide | spa |
dc.relation.references | Statista. (2024). Retail e-commerce sales worldwide from 2014 to 2026. https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales | spa |
dc.relation.references | Thorat, P. B., Goudar, R. M., & Barve, S. (2015). Survey on collaborative filtering, content-based filtering and hybrid recommendation system. International Journal of Computer Applications, 110(4), 31–36. https://doi.org/10.5120/19326-1015 | spa |
dc.relation.references | Tkáč, M., & Verner, R. (2016). Artificial neural networks in business: Two decades of research. Applied Soft Computing, 38, 788–804. https://doi.org/10.1016/j.asoc.2015.10.036 | spa |
dc.relation.references | Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley | spa |
dc.relation.references | Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press. | spa |
dc.relation.references | Aggarwal, C. C. (2016). Recommender Systems: The Textbook. Springer. https://doi.org/10.1007/978-3-319-29659-3 | spa |
dc.relation.references | Singhal, A. (2001). Modern information retrieval: A brief overview. IEEE Data Engineering Bulletin, 24(4), 35–43. | spa |
dc.relation.references | Tan, P.-N., Steinbach, M., & Kumar, V. (2019). Introduction to Data Mining (2nd ed.). Pearson. | spa |
dc.relation.references | Zhang, Y., & Chen, X. (2020). Explainable Recommendation: A Survey and New Perspectives. Foundations and Trends® in Information Retrieval, 14(1), 1–101. https://doi.org/10.1561/1500000066 | spa |
dc.relation.references | Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7. | spa |
dc.relation.references | Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–37. https://doi.org/10.1109/MC.2009.263 | spa |
dc.relation.references | Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285–295). ACM. https://doi.org/10.1145/371920.372071 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 380 - Comercio , comunicaciones, transporte | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | spa |
dc.subject.lemb | Comercio electrónico | |
dc.subject.lemb | Promoción de ventas | |
dc.subject.lemb | Inteligencia artificial - Procesamiento de datos | |
dc.subject.lemb | Redes neuronales | |
dc.subject.proposal | Data Analytics | eng |
dc.subject.proposal | Recommendation Systems | eng |
dc.subject.proposal | E-commerce | eng |
dc.subject.proposal | Digital Platforms | eng |
dc.subject.proposal | Artificial Intelligence | eng |
dc.subject.proposal | Personalization | eng |
dc.subject.proposal | Digital Transformation | eng |
dc.subject.proposal | Analítica de datos | spa |
dc.subject.proposal | Sistemas de recomendación | spa |
dc.subject.proposal | Comercio electrónico | spa |
dc.subject.proposal | Plataformas digitales | spa |
dc.subject.proposal | Inteligencia artificial | spa |
dc.subject.proposal | Personalización | spa |
dc.subject.proposal | Transformación digital | spa |
dc.subject.proposal | Modelos Híbridos | spa |
dc.title | Aplicación de modelo híbrido en sistemas de recomendación en ecommerce utilizando inteligencia artificial | spa |
dc.title.translated | Hybrid model application in ecommerce recommender systems using artificial intelligence | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1035854135.2025.pdf
- Tamaño:
- 3.46 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Analítica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: