Inclusión dinámica de las preferencias del decisor en un algoritmo genético multiobjetivo mediante un SID

dc.contributor.advisorJaramillo Álvarez, Gloria Patricia
dc.contributor.authorDíaz Guerra, Jaime Andrés
dc.contributor.researchgroupCiencias de la Decisionspa
dc.date.accessioned2024-05-08T19:39:43Z
dc.date.available2024-05-08T19:39:43Z
dc.date.issued2024-05-07
dc.descriptionilustraciones, gráficosspa
dc.description.abstractEl presente trabajo propone una metodología que permite que un decisor incluya las preferencias que experimenta sobre un problema, utilizando un Sistema de Inferencia Difusa en un algoritmo genético de optimización multiobjetivo. Esta metodología se logra a través del diseño de un método denominado Algoritmo Genético Multiobjetivo con Sistema de Inferencia de Preferencias Difusas (AGMOSIPD). Este algoritmo es una técnica de incorporación de preferencias a priori que le ofrece al decisor una etapa de aprendizaje inicial donde, a través de la obtención de un conjunto de soluciones a través de simulación Monte Carlo, podrá construir su estructura de preferencias mediante el diseño de un Sistema de Inferencia Difusa (SID). Posteriormente, el SID se incorpora en un algoritmo genético a través de una restricción para dirigir los individuos hacia la zona de la Frontera de Pareto más preferida por el decisor y ofrecer un conjunto reducido de alternativas. Este trabajo se ejecuta en 60 casos de prueba que involucran 6 problemas y 2 algoritmos genéticos, se presentan los resultados gráficos, se verifica la obtención de soluciones eficientes y se comparan las soluciones obtenidas mediante AGMOSIPD con las soluciones obtenidas a través de la optimización de los problemas de prueba en un algoritmo genético sin preferencias. AGMOSIPD obtiene soluciones eficientes en la mayoría de los casos probados y presenta desafíos y oportunidades de mejora en otras circunstancias. (Tomado de la fuente)spa
dc.description.abstractThis work proposes a methodology that includes the decision maker preferences about a problem using a Fuzzy Inference System in a multiobjective genetic optimization algorithm. This methodology is achieved through the design of a method called Multiobjective Genetic Algorithm with Fuzzy Preference Inference System (AGMOSIPD). This algorithm is an a priori preference incorporation technique that offers an initial learning stage where, by obtaining a set of solutions through Monte Carlo simulation, the decision maker can build a preference structure through the design of a Fuzzy Inference System (FIS). Subsequently, the FIS is incorporated into a genetic algorithm through a constraint to direct the individuals towards the Pareto Frontier zone most preferred by the decision maker and offer a reduced set of alternatives. This work is run on 60 test cases involving 6 problems and 2 genetic algorithms, the graphical results are presented, the obtaining of efficient solutions is verified, and the solutions obtained through AGMOSIPD are compared with the solutions obtained through the optimization of test problems in a genetic algorithm without preferences. AGMOSIPD obtains efficient solutions in most of the tested cases and presents challenges and opportunities for improvement in other circumstances.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.researchareaOptimización Multiobjetivospa
dc.format.extent141 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86053
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemasspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAguilar Arroyo, E. A. (2023). Un nuevo sistema inmune artificial para problemas de optimización multi-objetivo [Tesis de maestría, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional]. https://repositorio.cinvestav.mx/bitstream/handle/cinvestav/4776/SSIT0018189.pdf?sequence=1spa
dc.relation.referencesBechikh, S., Kessentini, M., Said, L. B., & Ghédira, K. (2015). Preference Incorporation in Evolutionary Multiobjective Optimization. En Advances in Computers (Vol. 98, pp. 141-207). Elsevier. https://doi.org/10.1016/bs.adcom.2015.03.001spa
dc.relation.referencesBlank, J., & Deb, K. (2020). Pymoo: Multi-Objective Optimization in Python. IEEE Access, 8, 89497-89509. https://doi.org/10.1109/ACCESS.2020.2990567spa
dc.relation.referencesBonissone, S. R. (2001). Evolutionary algorithms for multi-objective optimization: Fuzzy preference aggregation and multisexual EAs (B. Bosacchi, D. B. Fogel, & J. C. Bezdek, Eds.; pp. 157-164). https://doi.org/10.1117/12.448334spa
dc.relation.referencesBranke, J., Kaußler, T., & Schmeck, H. (2001). Guidance in evolutionary multi-objective optimization. Advances in Engineering Software, 32(6), 499-507. https://doi.org/10.1016/S0965-9978(00)00110-1spa
dc.relation.referencesChoon, O. H., & Tilahun, S. L. (2011). Integration fuzzy preference in genetic algorithm to solve multiobjective optimization problems. Far East Math. Sci, 55, 165-179.spa
dc.relation.referencesCoello, C. A. C. (2019). Introduccion a la Computación Evolutiva (Notas de Curso) [Notas de Curso]. https://gc.scalahed.com/recursos/files/r161r/w25199w/s1_introduccionalacomputacionevolutiva.pdfspa
dc.relation.referencesCoello, C. A. C., Lamont, G. B., & Veldhuizen, D. A. V. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems Second Edition (2.a ed.). Springer. http://tinyurl.com/4b2cp7efspa
dc.relation.referencesCortez, V. F., Cruz, D. V., & Margolis, P. E. L. (2019). Optimización de Portafolios de Inversión con Algoritmos Genéticos. Revista de Investigación en Ciencias Contables y Administrativas, 4(2), Article 2.spa
dc.relation.referencesCuartas Torres, B. A. C. (2009). Metodología para la optimización de múltiples objetivos basada en ag y uso de preferencias [Tesis de maestría]. https://repositorio.unal.edu.co/handle/unal/70080spa
dc.relation.referencesCvetković, D., & Coello, C. A. C. (2005). Human Preferences and their Applications in Evolutionary Multi—Objective Optimization. En Y. Jin (Ed.), Knowledge Incorporation in Evolutionary Computation (Vol. 167, pp. 479-502). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-44511-1_22spa
dc.relation.referencesDeb, K., & Chaudhuri, S. (2005). I-EMO: An Interactive Evolutionary Multi-objective Optimization Tool. En S. K. Pal, S. Bandyopadhyay, & S. Biswas (Eds.), Pattern Recognition and Machine Intelligence (Vol. 3776, pp. 690-695). Springer Berlin Heidelberg. https://doi.org/10.1007/11590316_111spa
dc.relation.referencesDeb, K., & Jain, H. (2014). An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577-601. https://doi.org/10.1109/TEVC.2013.2281535spa
dc.relation.referencesDeb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017spa
dc.relation.referencesDuarte, O. G. (1999). Sistemas de lógica difusa: Fundamentos. Ingeniería e Investigación, 42, 22-30. https://doi.org/10.15446/ing.investig.n42.21065spa
dc.relation.referencesDuarte, O., Sarmiento, C., Barrera, M., Márquez, M., Culma, J. E., & Ramirez, J. J. (2022). Modelos matemáticos para la gestión curricular (1.a ed.). Universidad Nacional de Colombia, Facultad de Ingeniería. https://repositorio.unal.edu.co/handle/unal/83381spa
dc.relation.referencesFonseca, C., & Fleming, P. (1999). Genetic Algorithms for Multiobjective Optimization: Formulation Discussion and Generalization. the fifth Intl conference on Genetic Algorithms, 93.spa
dc.relation.referencesIshibuchi, H., Imada, R., Setoguchi, Y., & Nojima, Y. (2016). Performance comparison of NSGA-II and NSGA-III on various many-objective test problems. 2016 IEEE Congress on Evolutionary Computation (CEC), 3045-3052. https://doi.org/10.1109/CEC.2016.7744174spa
dc.relation.referencesJamwal, P. K., Abdikenov, B., & Hussain, S. (2019). Evolutionary Optimization Using Equitable Fuzzy Sorting Genetic Algorithm (EFSGA). IEEE Access, 7, 8111-8126. https://doi.org/10.1109/ACCESS.2018.2890274spa
dc.relation.referencesJin, Y., & Sendhoff, B. (2002). Incorporation of fuzzy preferences into evolutionary multiobjective optimization. En 4th Asia-Pacific Conference on Simulated Evolution and Learning (Vol. 1, pp. 26-30).spa
dc.relation.referencesKaci, S. (2011). Working with Preferences: Less Is More. Springer Science & Business Media.spa
dc.relation.referencesKahneman, D. (2012). Pensar rápido, pensar despacio. Debate. http://tinyurl.com/4rf8zpjkspa
dc.relation.referencesKim, J.-H., Han, J.-H., Kim, Y.-H., Choi, S.-H., & Kim, E.-S. (2012). Preference-Based Solution Selection Algorithm for Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation, 16(1), 20-34. https://doi.org/10.1109/TEVC.2010.2098412spa
dc.relation.referencesKingsley, D. C. (2006). Preference Uncertainty, Preference Refinement and Paired Comparison Choice Experiments. University of Colorado, Boulder.spa
dc.relation.referencesLai, G., Liao, M., & Li, K. (2021). Empirical Studies on the Role of the Decision Maker in Interactive Evolutionary Multi-Objective Optimization. 2021 IEEE Congress on Evolutionary Computation (CEC), 185-192. https://doi.org/10.1109/CEC45853.2021.9504980spa
dc.relation.referencesLeyva-Lopez, J. C., & Aguilera-Contreras, M. A. (2005). A Multiobjective Evolutionary Algorithm for Deriving Final Ranking from a Fuzzy Outranking Relation. En C. A. Coello Coello, A. Hernández Aguirre, & E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimization (Vol. 3410, pp. 235-249). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_17spa
dc.relation.referencesLi, B., Li, J., Tang, K., & Yao, X. (2015). Many-Objective Evolutionary Algorithms: A Survey. ACM Computing Surveys, 48(1), 1-35. https://doi.org/10.1145/2792984spa
dc.relation.referencesLi, J., Li, Y., & Wang, Y. (2021). Fuzzy Inference NSGA-III Algorithm-Based Multi-Objective Optimization for Switched Reluctance Generator. IEEE Transactions on Energy Conversion, 36(4), 3578-3581. https://doi.org/10.1109/TEC.2021.3099961spa
dc.relation.referencesLi, K., Chen, R., Min, G., & Yao, X. (2018). Integration of Preferences in Decomposition Multiobjective Optimization. IEEE Transactions on Cybernetics, 48(12), 3359-3370. https://doi.org/10.1109/TCYB.2018.2859363spa
dc.relation.referencesLi, K., Chen, R., Savic, D., & Yao, X. (2019). Interactive Decomposition Multiobjective Optimization Via Progressively Learned Value Functions. IEEE Transactions on Fuzzy Systems, 27(5), 849-860. https://doi.org/10.1109/TFUZZ.2018.2880700spa
dc.relation.referencesLi, K., Liao, M., Deb, K., Min, G., & Yao, X. (2020). Does Preference Always Help? A Holistic Study on Preference-Based Evolutionary Multiobjective Optimization Using Reference Points. IEEE Transactions on Evolutionary Computation, 24(6), 1078-1096. https://doi.org/10.1109/TEVC.2020.2987559spa
dc.relation.referencesLichtenstein, S., & Slovic, P. (Eds.). (2006). The Construction of Preference (1.a ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511618031spa
dc.relation.referencesLuo, B., Lin, L., & Zhong, S. (2018). PGA/MOEAD: A preference-guided evolutionary algorithm for multi-objective decision-making problems with interval-valued fuzzy preferences. International Journal of Systems Science, 49(3), 595-616. https://doi.org/10.1080/00207721.2017.1412537spa
dc.relation.referencesPedrycz, W., Ekel, P., & Parreiras, R. (2011). Fuzzy Multicriteria Decision-Making: Models, Methods and Applications. John Wiley & Sons.spa
dc.relation.referencesRachmawati, L., & Srinivasan, D. (2006). Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey. 2006 IEEE International Conference on Evolutionary Computation, 962-968. https://doi.org/10.1109/CEC.2006.1688414spa
dc.relation.referencesRamakrishnan, S., & Hasan, Y. A. (2013). Fuzzy preference-based multi-objective optimization method. Artificial Intelligence Review, 39(2), 165-181. https://doi.org/10.1007/s10462-011-9264-4spa
dc.relation.referencesREAL ACADEMIA ESPAÑOLA. (2023). Diccionario de la lengua española (23.a ed.). https://dle.rae.esspa
dc.relation.referencesRosenthal, R. E. (1984). Principles of multiobjective optimization. Naval Postgraduate School.spa
dc.relation.referencesSantana, L. V. S., & Coello, C. A. C. (2006). Una introducción a la Computación Evolutiva y alguna de sus aplicaciones en Economía y Finanzas. Revista de Métodos Cuantitativos para la Economía y la Empresa, 2, páginas 3 a 26-páginas 3 a 26. https://doi.org/10.46661/revmetodoscuanteconempresa.2057spa
dc.relation.referencesShen, X., Guo, Y., Chen, Q., & Hu, W. (2010). A multi-objective optimization evolutionary algorithm incorporating preference information based on fuzzy logic. Computational Optimization and Applications, 46(1), 159-188. https://doi.org/10.1007/s10589-008-9189-2spa
dc.relation.referencesShen, X., Li, T., & Zhang, M. (2009). A Fuzzy Multi-objective Optimization Evolutionary Algorithm Incorporating Preference Information. 2009 Second International Symposium on Knowledge Acquisition and Modeling, 143-146. https://doi.org/10.1109/KAM.2009.12spa
dc.relation.referencesSmith, R., Mesa, O., Dyner, I., Jaramillo, P., Poveda, G., & Valencia, D. (2000). Decisiones con Múltiples Objetivos e Incertidumbre (2.a ed.). Universidad Nacional de Colombia.spa
dc.relation.referencesTaylor, K. P. (2022). Preference Learning for Multi-objective Optimisation Problems [Tesis de doctorado].spa
dc.relation.referencesThiele, L., Miettinen, K., Korhonen, P. J., & Molina, J. (2009). A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization. Evolutionary Computation, 17(3), 411-436. https://doi.org/10.1162/evco.2009.17.3.411spa
dc.relation.referencesTomczyk, M. K., & Kadziński, M. (2020). On the elicitation of indirect preferences in interactive evolutionary multiple objective optimization. Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 569-577. https://doi.org/10.1145/3377930.3389826spa
dc.relation.referencesTversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of thinking under uncertainty. Science, 185(4157), 1124-1131. https://doi.org/10.1126/science.185.4157.1124spa
dc.relation.referencesXin, B., Chen, L., Chen, J., Ishibuchi, H., Hirota, K., & Liu, B. (2018). Interactive Multiobjective Optimization: A Review of the State-of-the-Artspa
dc.relation.referencesXiong, J., Tan, X., Yang, K., & Chen, Y. (2013). Fuzzy Group Decision Making for Multiobjective Problems: Tradeoff between Consensus and Robustness. Journal of Applied Mathematics, 2013, 1-9. https://doi.org/10.1155/2013/657978spa
dc.relation.referencesYoon, K. P., & Kim, W. K. (2017). The behavioral TOPSIS. Expert Systems with Applications, 89, 266-272. https://doi.org/10.1016/j.eswa.2017.07.045spa
dc.relation.referencesZitzler, E., Deb, K., & Thiele, L. (2000). Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2), 173-195. https://doi.org/10.1162/106365600568202spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.lembAlgoritmos difusos
dc.subject.lembAlgoritmos genéticos
dc.subject.lembInferencia (lógica)
dc.subject.lembLógica difusa
dc.subject.lembSistemas difusos
dc.subject.proposalAlgoritmos Genéticosspa
dc.subject.proposalLógica Difusaspa
dc.subject.proposalPreferenciasspa
dc.subject.proposalSistema de Inferencia Difusaspa
dc.subject.proposalGenetic Algorithmseng
dc.subject.proposalFuzzy Logiceng
dc.subject.proposalMultiobjective Optimizationeng
dc.subject.proposalOptimización Multiobjetivospa
dc.subject.proposalPreferenceseng
dc.subject.proposalFuzzy Inference Systemeng
dc.titleInclusión dinámica de las preferencias del decisor en un algoritmo genético multiobjetivo mediante un SIDspa
dc.title.translatedDynamic inclusion of decision-maker preferences in a multi-objective genetic algorithm using a FISeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71526848.2024.pdf
Tamaño:
8.24 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: