Método de autoaprendizaje basado en machine learning aplicado a la dieta de un individuo con colitis ulcerativa. Caso de estudio: paciente Juan Pablo Aguirre Martínez
dc.contributor.advisor | Espinosa Bedoya, Albeiro | |
dc.contributor.author | Aguirre Martínez, Juan Pablo | |
dc.contributor.cvlac | Juan Pablo Aguirre Martínez | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Juan-Pablo-Aguirre-Martinez | spa |
dc.contributor.researchgroup | Calidad de Software | spa |
dc.date.accessioned | 2025-06-10T14:11:36Z | |
dc.date.available | 2025-06-10T14:11:36Z | |
dc.date.issued | 2025-06-09 | |
dc.description | Ilustraciones, gráficos, tablas | spa |
dc.description.abstract | La Colitis Ulcerativa (CU), es una Enfermedad Inflamatoria Intestinal (EII), crónica que afecta a aproximadamente 1 de cada 1000 personas en el mundo. Esta condición autoinmune provoca inflamación y úlceras en el colon, desencadenando síntomas como diarrea, sangrado, dolor y fatiga, reduciendo significativamente la calidad de vida. La severidad puede oscilar entre leve a grave, e incluso puede ser potencialmente mortal. Si bien no existe una cura, la nutrición personalizada es clave en el manejo de los síntomas. Este trabajo propone un método basado en técnicas de autoaprendizaje y Machine Learning para ajustar la alimentación de individuos con CU, tomando como caso de estudio al paciente Juan Pablo Aguirre Martínez. La justificación de este radica en la falta de literatura previa sobre la aplicación de sistemas de Machine Learning a la dieta de personas con CU. La metodología incluye la construcción de un conjunto de datos, la revisión y evaluación de técnicas de Machine Learning. Precisamente, se consideró la capacidad del modelo para procesar datos temporales y aprender de manera continua, lo que llevó a la elección del modelo LSTM. Se espera que el método propuesto contribuya al desarrollo de una herramienta innovadora que mejore la calidad de vida de personas con CU y fomente la exploración de nuevas soluciones en el ámbito de la medicina. (Tomado de la fuente) | spa |
dc.description.abstract | Ulcerative Colitis (UC) is a chronic Inflammatory Bowel Disease (IBD) affecting approximately 1 in 1000 people worldwide. This autoimmune condition causes inflammation and ulcers in the colon, triggering symptoms such as diarrhea, bleeding, pain, and fatigue, significantly reducing the patient’s quality of life. The severity of the disease can range from mild to critical, and in extreme cases, it may even become life-threatening. Although there is no cure, personalized nutrition plays a key role in symptom management. This study proposes a method based on self-learning techniques and Machine Learning to adjust the diet of individuals with UC, using patient Juan Pablo Aguirre Martínez as a case study. The justification for this research lies in the lack of prior literature on the application of Machine Learning systems to the diet of individuals with UC. The methodology includes the construction of a dataset, as well as the review and evaluation of Machine Learning techniques. Specifically, the model's ability to process temporal data and continuously learn was considered, leading to the selection of the LSTM model. The proposed method aims to develop an innovative tool that enhances the quality of life for individuals with UC while fostering the exploration of novel solutions in medicine. | eng |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ingeniería – Analítica | spa |
dc.description.researcharea | Aprendizaje Automático | spa |
dc.format.extent | 72 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88216 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. https://doi.org/10.5281/zenodo.4724125 | spa |
dc.relation.references | Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation Hyperparameter Optimization Framework. https://arxiv.org/abs/1907.10902 | spa |
dc.relation.references | Alpaydin, Ethem. (2010). Introduction to Machine Learning (Adaptive Computation and Machine Learning) (T. Dietterich, C. Bishop, D. Heckerman, M. Jordan, & M. Kearns, Eds.; Second Edition). MIT Press, The. https://www.amazon.com/Introduction-Machine-Learning-Adaptive-Computation/dp/026201243X | spa |
dc.relation.references | Arji, G., Safdari, R., Rezaeizadeh, H., Abbassian, A., Mokhtaran, M., & Hossein Ayati, M. (2019). A systematic literature review and classification of knowledge discovery in traditional medicine. Computer Methods and Programs in Biomedicine, 168, 39–57. https://doi.org/10.1016/j.cmpb.2018.10.017 | spa |
dc.relation.references | Bai, Y., Yang, E., Han, B., Yang, Y., Li, J., Mao, Y., Niu, G., & Liu, T. (2021). Understanding and Improving Early Stopping for Learning with Noisy Labels. https://arxiv.org/abs/2106.15853 | spa |
dc.relation.references | Burke, A., Lichtenstein, G. R., & Rombeau, J. L. (1997). 10 Nutrition and ulcerative colitis. Baillière’s Clinical Gastroenterology, 11(1), 153–174. https://doi.org/10.1016/S0950-3528(97)90059-2 | spa |
dc.relation.references | Caron, B., Jairath, V., D’Amico, F., Al Awadhi, S., Dignass, A., Hart, A. L., Kobayashi, T., Kotze, P. G., Magro, F., Siegmund, B., Paridaens, K., Danese, S., & Peyrin-Biroulet, L. (2023). International Consensus on Definition of Mild-to-Moderate Ulcerative Colitis Disease Activity in Adult Patients. Medicina (Lithuania), 59(1), 183. https://doi.org/10.3390/MEDICINA59010183/S1 | spa |
dc.relation.references | Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal Of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953 | spa |
dc.relation.references | Chen, H., Xiao, H., Liu, T., & Peng, H. (2015). SmartTracing: self-learning-based Neuron reconstruction. Brain Informatics, 2(3), 135–144. https://doi.org/10.1007/S40708-015-0018-Y | spa |
dc.relation.references | Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. https://doi.org/10.1145/2939672.2939785 | spa |
dc.relation.references | Chollet, F., & others. (2015). Keras. https://keras.io/ | spa |
dc.relation.references | Connor, C. W. (2019). Artificial Intelligence and Machine Learning in Anesthesiology. Anesthesiology, 131(6), 1346–1359. https://doi.org/10.1097/ALN.0000000000002694 | spa |
dc.relation.references | Cunha, C. A. S., & Duarte, R. P. (2022). Multi-Device Nutrition Control. Sensors 2022, Vol. 22, Page 2617, 22(7), 2617. https://doi.org/10.3390/S22072617 | spa |
dc.relation.references | Cunningham, P., & Delany, S. J. (2020). k-Nearest Neighbour Classifiers: 2nd Edition (with Python examples). https://doi.org/10.1145/3459665 | spa |
dc.relation.references | Danese, S., & Fiocchi, C. (2011). Ulcerative Colitis. New England Journal of Medicine, 365(18), 1713–1725. https://doi.org/10.1056/NEJMRA1102942 | spa |
dc.relation.references | De Castro, M. M., Pascoal, L. B., Steigleder, K. M., De Lourdes Setsuko Ayrizono, M., Milanski, M., Leal, R. F., Siqueira, B. P., & Corona, L. P. (2021). Role of diet and nutrition in inflammatory bowel disease. World Journal of Experimental Medicine, 11(1), 1–16. https://doi.org/10.5493/wjem.v11.i1.1 | spa |
dc.relation.references | Dopido, I., Li, J., Marpu, P. R., Plaza, A., Bioucas Dias, J. M., & Benediktsson, J. A. (2013). Semisupervised self-learning for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 51(7), 4032–4044. https://doi.org/10.1109/TGRS.2012.2228275 | spa |
dc.relation.references | Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H., & Pernice, W. H. P. (2019). All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019 569:7755, 569(7755), 208–214. https://doi.org/10.1038/s41586-019-1157-8 | spa |
dc.relation.references | Feuerstein, J. D., & Cheifetz, A. S. (2014). Ulcerative Colitis. Mayo Clinic Proceedings, 89(11), 1553–1563. https://doi.org/10.1016/j.mayocp.2014.07.002 | spa |
dc.relation.references | Fogel, D. B., Hays, T. J., Hahn, S. L., & Quon, J. (2004). A self-learning evolutionary chess program. Proceedings of the IEEE, 92(12), 1947–1954. https://doi.org/10.1109/JPROC.2004.837633 | spa |
dc.relation.references | GeeksforGeeks. (2024a, junio 10). Deep Learning | Introduction to Long Short-Term Memory (LSTM). https://www.geeksforgeeks.org/deep-learning-introduction-to-long-short-term-memory/ | spa |
dc.relation.references | GeeksforGeeks. (2024b, julio 19). Performing Feature Selection with GridSearchCV in Sklearn. https://www.geeksforgeeks.org/performing-feature-selection-with-gridsearchcv-in-sklearn/ | spa |
dc.relation.references | Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow (1a ed.). O’Reilly Media, Inc. https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646 | spa |
dc.relation.references | Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 | spa |
dc.relation.references | Jolliffe, I. T. (1990). PRINCIPAL COMPONENT ANALYSIS: A BEGINNER’S GUIDE — I. Introduction and application. Weather, 45(10), 375–382. https://doi.org/10.1002/j.1477-8696.1990.tb05558.x | spa |
dc.relation.references | Jowett, S. L., Seal, C. J., Pearce, M. S., Phillips, E., Gregory, W., Barton, J. R., & Welfare, M. R. (2004). Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study. Gut, 53(10), 1479–1484. https://doi.org/10.1136/GUT.2003.024828 | spa |
dc.relation.references | Kaplan, G. G. (2015). The global burden of IBD: from 2015 to 2025. Nature Reviews Gastroenterology & Hepatology 2015 12:12, 12(12), 720–727. https://doi.org/10.1038/nrgastro.2015.150 | spa |
dc.relation.references | Keshteli, A. H., Madsen, K. L., & Dieleman, L. A. (2019). Diet in the Pathogenesis and Management of Ulcerative Colitis; A Review of Randomized Controlled Dietary Interventions. Nutrients 2019, Vol. 11, Page 1498, 11(7), 1498. https://doi.org/10.3390/NU11071498 | spa |
dc.relation.references | Khan, A., Deshpande, S., & Tripathy, A. K. (2019). Optimizing Nutrition using Machine Learning Algorithms-a Comparative Analysis. 2019 International Conference on Nascent Technologies in Engineering, ICNTE 2019 - Proceedings, 1–4. https://doi.org/10.1109/ICNTE44896.2019.8946091 | spa |
dc.relation.references | Khor, B., Gardet, A., & Xavier, R. J. (2011). Genetics and pathogenesis of inflammatory bowel disease. Nature 2011 474:7351, 474(7351), 307–317. https://doi.org/10.1038/nature10209 | spa |
dc.relation.references | Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. https://arxiv.org/abs/1412.6980 | spa |
dc.relation.references | Kirk, D., Kok, E., Tufano, M., Tekinerdogan, B., Feskens, E. J. M., & Camps, G. (2022). Machine Learning in Nutrition Research. Advances in Nutrition, 13(6), 2573–2589. https://doi.org/10.1093/ADVANCES/NMAC103 | spa |
dc.relation.references | Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. 2. https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering | spa |
dc.relation.references | Lee, C., Kim, S., Lim, C., Kim, J., Kim, Y., & Jung, M. (2021). Diet Planning with Machine Learning: Teacher-forced REINFORCE for Composition Compliance with Nutrition Enhancement. Proceedings of the Association for Computing Machinery SIGKDD International Conference on Knowledge Discovery and Data Mining, 3150–3160. https://doi.org/10.1145/3447548.3467201 | spa |
dc.relation.references | Lee, Y. Y., Erdogan, A., & Rao, S. S. C. (2014). How to Assess Regional and Whole Gut Transit Time With Wireless Motility Capsule. Journal of Neurogastroenterology and Motility, 20(2), 265–270. https://doi.org/10.5056/jnm.2014.20.2.265 | spa |
dc.relation.references | Lemaitre, G., Nogueira, F., & Aridas, C. K. (2016). Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. https://arxiv.org/abs/1609.06570 | spa |
dc.relation.references | Lewis, S. J., & Heaton, K. W. (1997). Stool Form Scale as a Useful Guide to Intestinal Transit Time. Scandinavian Journal of Gastroenterology, 32(9), 920–924. https://doi.org/10.3109/00365529709011203 | spa |
dc.relation.references | Li, X., Lu, P., Hu, L., Wang, X. G., & Lu, L. (2022). A novel self-learning semi-supervised deep learning network to detect fake news on social media. Multimedia Tools and Applications, 81(14), 19341–19349. https://doi.org/10.1007/S11042-021-11065-X | spa |
dc.relation.references | Liashchynskyi, P., & Liashchynskyi, P. (2019). Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS. https://arxiv.org/abs/1912.06059 | spa |
dc.relation.references | Liu, S., & Dobriban, E. (2019). Ridge Regression: Structure, Cross-Validation, and Sketching. https://arxiv.org/abs/1910.02373 | spa |
dc.relation.references | Louppe, G. (2014). Understanding Random Forests: From Theory to Practice. https://arxiv.org/abs/1407.7502 | spa |
dc.relation.references | Magro, F., Gionchetti, P., Eliakim, R., Ardizzone, S., Armuzzi, A., Barreiro-de Acosta, M., Burisch, J., Gecse, K. B., Hart, A. L., Hindryckx, P., Langner, C., Limdi, J. K., Pellino, G., Zagórowicz, E., Raine, T., Harbord, M., & Rieder, F. (2017). Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-anal Pouch Disorders. Journal of Crohn’s and Colitis, 11(6), 649–670. https://doi.org/10.1093/ecco-jcc/jjx008 | spa |
dc.relation.references | Mogaveera, D., Mathur, V., & Waghela, S. (2021). E-Health Monitoring System with Diet and Fitness Recommendation using Machine Learning. Proceedings of the 6th International Conference on Inventive Computation Technologies, ICICT 2021, 694–700. https://doi.org/10.1109/ICICT50816.2021.9358605 | spa |
dc.relation.references | Muthukrishnan, R., & Rohini, R. (2016). LASSO: A feature selection technique in predictive modeling for machine learning. 2016 IEEE International Conference on Advances in Computer Applications (ICACA), 18–20. https://doi.org/10.1109/ICACA.2016.7887916 | spa |
dc.relation.references | Nandhra, G. K., Chaichanavichkij, P., Birch, M., & Scott, S. M. (2023). Gastrointestinal Transit Times in Health as Determined Using Ingestible Capsule Systems: A Systematic Review. Journal of Clinical Medicine, 12(16), 5272. https://doi.org/10.3390/jcm12165272 | spa |
dc.relation.references | Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. https://doi.org/10.1016/j.recesp.2021.06.016 | spa |
dc.relation.references | Panagoulias, D. P., Sotiropoulos, D. N., & Tsihrintzis, G. A. (2021). Nutritional biomarkers and machine learning for personalized nutrition applications and health optimization. Intelligent Decision Technologies, 15(4), 645–653. https://doi.org/10.3233/IDT-210233 | spa |
dc.relation.references | Pant, V., Bhasin, S., & Jain, S. (2017). Self-Learning system for personalized E-Learning. 2017 International Conference on Emerging Trends in Computing and Communication Technologies, ICETCCT 2017, 2018-January, 1–6. https://doi.org/10.1109/ICETCCT.2017.8280344 | spa |
dc.relation.references | Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2012). Scikit-learn: Machine Learning in Python. https://arxiv.org/abs/1201.0490 | spa |
dc.relation.references | Peng, C.-Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An Introduction to Logistic Regression Analysis and Reporting. The Journal of Educational Research, 96(1), 3–14. https://doi.org/10.1080/00220670209598786 | spa |
dc.relation.references | Qi, X., Luo, Y., Wu, G., Boriboonsomsin, K., & Barth, M. (2019). Deep reinforcement learning enabled self-learning control for energy efficient driving. Transportation Research Part C: Emerging Technologies, 99, 67–81. https://doi.org/10.1016/J.TRC.2018.12.018 | spa |
dc.relation.references | Reis, R., Peixoto, H., Machado, J., & Abelha, A. (2017). Machine Learning in Nutritional Follow-up Research. Open Computer Science, 7(1), 41–45. https://doi.org/10.1515/COMP-2017-0008/MACHINEREADABLECITATION/RIS | spa |
dc.relation.references | Rezvani, S., Pourpanah, F., Lim, C. P., & Wu, Q. M. J. (2024). Methods for class-imbalanced learning with support vector machines: a review and an empirical evaluation. Soft Computing, 28(20), 11873–11894. https://doi.org/10.1007/s00500-024-09931-5 | spa |
dc.relation.references | Sameen, M. I., Pradhan, B., & Lee, S. (2019). Self-Learning Random Forests Model for Mapping Groundwater Yield in Data-Scarce Areas. Natural Resources Research, 28(3), 757–775. https://doi.org/10.1007/s11053-018-9416-1 | spa |
dc.relation.references | Staudemeyer, R. C., & Morris, E. R. (2019). Understanding LSTM -- a tutorial into Long Short-Term Memory Recurrent Neural Networks. https://arxiv.org/abs/1909.09586 | spa |
dc.relation.references | Triantafyllidis, A. K., & Tsanas, A. (2019). Applications of Machine Learning in real-life digital health interventions: Review of the literature. Journal of Medical Internet Research, 21(4), e12286. https://doi.org/10.2196/12286 | spa |
dc.relation.references | Vasireddy, P. (2020). An Autonomous Diet Recommendation Bot Using Intelligent Automation. Proceedings of the International Conference on Intelligent Computing and Control Systems, ICICCS 2020, 449–454. https://doi.org/10.1109/ICICCS48265.2020.9121120 | spa |
dc.relation.references | Vikramkumar, B, V., & Trilochan. (2014). Bayes and Naive Bayes Classifier. https://arxiv.org/abs/1404.0933 | spa |
dc.relation.references | Wickramasinghe, M. P. N. M., Perera, D. M., & Kahandawaarachchi, K. A. D. C. P. (2017). Dietary prediction for patients with Chronic Kidney Disease (CKD) by considering blood potassium level using machine learning algorithms. 2017 IEEE Life Sciences Conference, LSC 2017, 2018-January, 300–303. https://doi.org/10.1109/LSC.2017.8268202 | spa |
dc.relation.references | World IBD Day. (2022). About IBD (Inflammatory Bowel Diseases) organizations | World IBD Day. https://worldibdday.org/about-us#world-organisations | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.lemb | Colitis ulcerativa - Estudio de casos | |
dc.subject.lemb | Enfermedades del colon - Estudio de casos | |
dc.subject.lemb | Aprendizaje automático (Inteligencia artificial) | |
dc.subject.lemb | Hábitos alimenticios - Estudio de casos | |
dc.subject.lemb | Procesamiento de datos | |
dc.subject.proposal | Colitis Ulcerativa | spa |
dc.subject.proposal | Método de autoaprendizaje | spa |
dc.subject.proposal | Aprendizaje no supervisado | spa |
dc.subject.proposal | Aprendizaje supervisado | spa |
dc.subject.proposal | Alimentación | spa |
dc.subject.proposal | Nutrición | spa |
dc.subject.proposal | Ulcerative Colitis | eng |
dc.subject.proposal | Machine Learning | eng |
dc.subject.proposal | Self-Learning Method | eng |
dc.subject.proposal | Unsupervised Learning | eng |
dc.subject.proposal | Supervised Learning | eng |
dc.subject.proposal | Diet | eng |
dc.subject.proposal | Nutrition | eng |
dc.title | Método de autoaprendizaje basado en machine learning aplicado a la dieta de un individuo con colitis ulcerativa. Caso de estudio: paciente Juan Pablo Aguirre Martínez | spa |
dc.title.translated | Self-learning method based on machine learning applied to the diet of an individual with ulcerative colitis. Case study: patient Juan Pablo Aguirre Martínez | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.content | Other | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Método de autoaprendizaje basado en Machine Learning aplicado a la dieta de un individuo con Colitis Ulcerativa. | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1152467946.2025.pdf
- Tamaño:
- 1.12 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Analítica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: