Método de autoaprendizaje basado en machine learning aplicado a la dieta de un individuo con colitis ulcerativa. Caso de estudio: paciente Juan Pablo Aguirre Martínez

dc.contributor.advisorEspinosa Bedoya, Albeiro
dc.contributor.authorAguirre Martínez, Juan Pablo
dc.contributor.cvlacJuan Pablo Aguirre Martínezspa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Juan-Pablo-Aguirre-Martinezspa
dc.contributor.researchgroupCalidad de Softwarespa
dc.date.accessioned2025-06-10T14:11:36Z
dc.date.available2025-06-10T14:11:36Z
dc.date.issued2025-06-09
dc.descriptionIlustraciones, gráficos, tablasspa
dc.description.abstractLa Colitis Ulcerativa (CU), es una Enfermedad Inflamatoria Intestinal (EII), crónica que afecta a aproximadamente 1 de cada 1000 personas en el mundo. Esta condición autoinmune provoca inflamación y úlceras en el colon, desencadenando síntomas como diarrea, sangrado, dolor y fatiga, reduciendo significativamente la calidad de vida. La severidad puede oscilar entre leve a grave, e incluso puede ser potencialmente mortal. Si bien no existe una cura, la nutrición personalizada es clave en el manejo de los síntomas. Este trabajo propone un método basado en técnicas de autoaprendizaje y Machine Learning para ajustar la alimentación de individuos con CU, tomando como caso de estudio al paciente Juan Pablo Aguirre Martínez. La justificación de este radica en la falta de literatura previa sobre la aplicación de sistemas de Machine Learning a la dieta de personas con CU. La metodología incluye la construcción de un conjunto de datos, la revisión y evaluación de técnicas de Machine Learning. Precisamente, se consideró la capacidad del modelo para procesar datos temporales y aprender de manera continua, lo que llevó a la elección del modelo LSTM. Se espera que el método propuesto contribuya al desarrollo de una herramienta innovadora que mejore la calidad de vida de personas con CU y fomente la exploración de nuevas soluciones en el ámbito de la medicina. (Tomado de la fuente)spa
dc.description.abstractUlcerative Colitis (UC) is a chronic Inflammatory Bowel Disease (IBD) affecting approximately 1 in 1000 people worldwide. This autoimmune condition causes inflammation and ulcers in the colon, triggering symptoms such as diarrhea, bleeding, pain, and fatigue, significantly reducing the patient’s quality of life. The severity of the disease can range from mild to critical, and in extreme cases, it may even become life-threatening. Although there is no cure, personalized nutrition plays a key role in symptom management. This study proposes a method based on self-learning techniques and Machine Learning to adjust the diet of individuals with UC, using patient Juan Pablo Aguirre Martínez as a case study. The justification for this research lies in the lack of prior literature on the application of Machine Learning systems to the diet of individuals with UC. The methodology includes the construction of a dataset, as well as the review and evaluation of Machine Learning techniques. Specifically, the model's ability to process temporal data and continuously learn was considered, leading to the selection of the LSTM model. The proposed method aims to develop an innovative tool that enhances the quality of life for individuals with UC while fostering the exploration of novel solutions in medicine.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería – Analíticaspa
dc.description.researchareaAprendizaje Automáticospa
dc.format.extent72 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88216
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. https://doi.org/10.5281/zenodo.4724125spa
dc.relation.referencesAkiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation Hyperparameter Optimization Framework. https://arxiv.org/abs/1907.10902spa
dc.relation.referencesAlpaydin, Ethem. (2010). Introduction to Machine Learning (Adaptive Computation and Machine Learning) (T. Dietterich, C. Bishop, D. Heckerman, M. Jordan, & M. Kearns, Eds.; Second Edition). MIT Press, The. https://www.amazon.com/Introduction-Machine-Learning-Adaptive-Computation/dp/026201243Xspa
dc.relation.referencesArji, G., Safdari, R., Rezaeizadeh, H., Abbassian, A., Mokhtaran, M., & Hossein Ayati, M. (2019). A systematic literature review and classification of knowledge discovery in traditional medicine. Computer Methods and Programs in Biomedicine, 168, 39–57. https://doi.org/10.1016/j.cmpb.2018.10.017spa
dc.relation.referencesBai, Y., Yang, E., Han, B., Yang, Y., Li, J., Mao, Y., Niu, G., & Liu, T. (2021). Understanding and Improving Early Stopping for Learning with Noisy Labels. https://arxiv.org/abs/2106.15853spa
dc.relation.referencesBurke, A., Lichtenstein, G. R., & Rombeau, J. L. (1997). 10 Nutrition and ulcerative colitis. Baillière’s Clinical Gastroenterology, 11(1), 153–174. https://doi.org/10.1016/S0950-3528(97)90059-2spa
dc.relation.referencesCaron, B., Jairath, V., D’Amico, F., Al Awadhi, S., Dignass, A., Hart, A. L., Kobayashi, T., Kotze, P. G., Magro, F., Siegmund, B., Paridaens, K., Danese, S., & Peyrin-Biroulet, L. (2023). International Consensus on Definition of Mild-to-Moderate Ulcerative Colitis Disease Activity in Adult Patients. Medicina (Lithuania), 59(1), 183. https://doi.org/10.3390/MEDICINA59010183/S1spa
dc.relation.referencesChawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal Of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953spa
dc.relation.referencesChen, H., Xiao, H., Liu, T., & Peng, H. (2015). SmartTracing: self-learning-based Neuron reconstruction. Brain Informatics, 2(3), 135–144. https://doi.org/10.1007/S40708-015-0018-Yspa
dc.relation.referencesChen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. https://doi.org/10.1145/2939672.2939785spa
dc.relation.referencesChollet, F., & others. (2015). Keras. https://keras.io/spa
dc.relation.referencesConnor, C. W. (2019). Artificial Intelligence and Machine Learning in Anesthesiology. Anesthesiology, 131(6), 1346–1359. https://doi.org/10.1097/ALN.0000000000002694spa
dc.relation.referencesCunha, C. A. S., & Duarte, R. P. (2022). Multi-Device Nutrition Control. Sensors 2022, Vol. 22, Page 2617, 22(7), 2617. https://doi.org/10.3390/S22072617spa
dc.relation.referencesCunningham, P., & Delany, S. J. (2020). k-Nearest Neighbour Classifiers: 2nd Edition (with Python examples). https://doi.org/10.1145/3459665spa
dc.relation.referencesDanese, S., & Fiocchi, C. (2011). Ulcerative Colitis. New England Journal of Medicine, 365(18), 1713–1725. https://doi.org/10.1056/NEJMRA1102942spa
dc.relation.referencesDe Castro, M. M., Pascoal, L. B., Steigleder, K. M., De Lourdes Setsuko Ayrizono, M., Milanski, M., Leal, R. F., Siqueira, B. P., & Corona, L. P. (2021). Role of diet and nutrition in inflammatory bowel disease. World Journal of Experimental Medicine, 11(1), 1–16. https://doi.org/10.5493/wjem.v11.i1.1spa
dc.relation.referencesDopido, I., Li, J., Marpu, P. R., Plaza, A., Bioucas Dias, J. M., & Benediktsson, J. A. (2013). Semisupervised self-learning for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 51(7), 4032–4044. https://doi.org/10.1109/TGRS.2012.2228275spa
dc.relation.referencesFeldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H., & Pernice, W. H. P. (2019). All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019 569:7755, 569(7755), 208–214. https://doi.org/10.1038/s41586-019-1157-8spa
dc.relation.referencesFeuerstein, J. D., & Cheifetz, A. S. (2014). Ulcerative Colitis. Mayo Clinic Proceedings, 89(11), 1553–1563. https://doi.org/10.1016/j.mayocp.2014.07.002spa
dc.relation.referencesFogel, D. B., Hays, T. J., Hahn, S. L., & Quon, J. (2004). A self-learning evolutionary chess program. Proceedings of the IEEE, 92(12), 1947–1954. https://doi.org/10.1109/JPROC.2004.837633spa
dc.relation.referencesGeeksforGeeks. (2024a, junio 10). Deep Learning | Introduction to Long Short-Term Memory (LSTM). https://www.geeksforgeeks.org/deep-learning-introduction-to-long-short-term-memory/spa
dc.relation.referencesGeeksforGeeks. (2024b, julio 19). Performing Feature Selection with GridSearchCV in Sklearn. https://www.geeksforgeeks.org/performing-feature-selection-with-gridsearchcv-in-sklearn/spa
dc.relation.referencesGéron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow (1a ed.). O’Reilly Media, Inc. https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646spa
dc.relation.referencesHochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735spa
dc.relation.referencesJolliffe, I. T. (1990). PRINCIPAL COMPONENT ANALYSIS: A BEGINNER’S GUIDE — I. Introduction and application. Weather, 45(10), 375–382. https://doi.org/10.1002/j.1477-8696.1990.tb05558.xspa
dc.relation.referencesJowett, S. L., Seal, C. J., Pearce, M. S., Phillips, E., Gregory, W., Barton, J. R., & Welfare, M. R. (2004). Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study. Gut, 53(10), 1479–1484. https://doi.org/10.1136/GUT.2003.024828spa
dc.relation.referencesKaplan, G. G. (2015). The global burden of IBD: from 2015 to 2025. Nature Reviews Gastroenterology & Hepatology 2015 12:12, 12(12), 720–727. https://doi.org/10.1038/nrgastro.2015.150spa
dc.relation.referencesKeshteli, A. H., Madsen, K. L., & Dieleman, L. A. (2019). Diet in the Pathogenesis and Management of Ulcerative Colitis; A Review of Randomized Controlled Dietary Interventions. Nutrients 2019, Vol. 11, Page 1498, 11(7), 1498. https://doi.org/10.3390/NU11071498spa
dc.relation.referencesKhan, A., Deshpande, S., & Tripathy, A. K. (2019). Optimizing Nutrition using Machine Learning Algorithms-a Comparative Analysis. 2019 International Conference on Nascent Technologies in Engineering, ICNTE 2019 - Proceedings, 1–4. https://doi.org/10.1109/ICNTE44896.2019.8946091spa
dc.relation.referencesKhor, B., Gardet, A., & Xavier, R. J. (2011). Genetics and pathogenesis of inflammatory bowel disease. Nature 2011 474:7351, 474(7351), 307–317. https://doi.org/10.1038/nature10209spa
dc.relation.referencesKingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. https://arxiv.org/abs/1412.6980spa
dc.relation.referencesKirk, D., Kok, E., Tufano, M., Tekinerdogan, B., Feskens, E. J. M., & Camps, G. (2022). Machine Learning in Nutrition Research. Advances in Nutrition, 13(6), 2573–2589. https://doi.org/10.1093/ADVANCES/NMAC103spa
dc.relation.referencesKitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. 2. https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineeringspa
dc.relation.referencesLee, C., Kim, S., Lim, C., Kim, J., Kim, Y., & Jung, M. (2021). Diet Planning with Machine Learning: Teacher-forced REINFORCE for Composition Compliance with Nutrition Enhancement. Proceedings of the Association for Computing Machinery SIGKDD International Conference on Knowledge Discovery and Data Mining, 3150–3160. https://doi.org/10.1145/3447548.3467201spa
dc.relation.referencesLee, Y. Y., Erdogan, A., & Rao, S. S. C. (2014). How to Assess Regional and Whole Gut Transit Time With Wireless Motility Capsule. Journal of Neurogastroenterology and Motility, 20(2), 265–270. https://doi.org/10.5056/jnm.2014.20.2.265spa
dc.relation.referencesLemaitre, G., Nogueira, F., & Aridas, C. K. (2016). Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. https://arxiv.org/abs/1609.06570spa
dc.relation.referencesLewis, S. J., & Heaton, K. W. (1997). Stool Form Scale as a Useful Guide to Intestinal Transit Time. Scandinavian Journal of Gastroenterology, 32(9), 920–924. https://doi.org/10.3109/00365529709011203spa
dc.relation.referencesLi, X., Lu, P., Hu, L., Wang, X. G., & Lu, L. (2022). A novel self-learning semi-supervised deep learning network to detect fake news on social media. Multimedia Tools and Applications, 81(14), 19341–19349. https://doi.org/10.1007/S11042-021-11065-Xspa
dc.relation.referencesLiashchynskyi, P., & Liashchynskyi, P. (2019). Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS. https://arxiv.org/abs/1912.06059spa
dc.relation.referencesLiu, S., & Dobriban, E. (2019). Ridge Regression: Structure, Cross-Validation, and Sketching. https://arxiv.org/abs/1910.02373spa
dc.relation.referencesLouppe, G. (2014). Understanding Random Forests: From Theory to Practice. https://arxiv.org/abs/1407.7502spa
dc.relation.referencesMagro, F., Gionchetti, P., Eliakim, R., Ardizzone, S., Armuzzi, A., Barreiro-de Acosta, M., Burisch, J., Gecse, K. B., Hart, A. L., Hindryckx, P., Langner, C., Limdi, J. K., Pellino, G., Zagórowicz, E., Raine, T., Harbord, M., & Rieder, F. (2017). Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-anal Pouch Disorders. Journal of Crohn’s and Colitis, 11(6), 649–670. https://doi.org/10.1093/ecco-jcc/jjx008spa
dc.relation.referencesMogaveera, D., Mathur, V., & Waghela, S. (2021). E-Health Monitoring System with Diet and Fitness Recommendation using Machine Learning. Proceedings of the 6th International Conference on Inventive Computation Technologies, ICICT 2021, 694–700. https://doi.org/10.1109/ICICT50816.2021.9358605spa
dc.relation.referencesMuthukrishnan, R., & Rohini, R. (2016). LASSO: A feature selection technique in predictive modeling for machine learning. 2016 IEEE International Conference on Advances in Computer Applications (ICACA), 18–20. https://doi.org/10.1109/ICACA.2016.7887916spa
dc.relation.referencesNandhra, G. K., Chaichanavichkij, P., Birch, M., & Scott, S. M. (2023). Gastrointestinal Transit Times in Health as Determined Using Ingestible Capsule Systems: A Systematic Review. Journal of Clinical Medicine, 12(16), 5272. https://doi.org/10.3390/jcm12165272spa
dc.relation.referencesPage, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. https://doi.org/10.1016/j.recesp.2021.06.016spa
dc.relation.referencesPanagoulias, D. P., Sotiropoulos, D. N., & Tsihrintzis, G. A. (2021). Nutritional biomarkers and machine learning for personalized nutrition applications and health optimization. Intelligent Decision Technologies, 15(4), 645–653. https://doi.org/10.3233/IDT-210233spa
dc.relation.referencesPant, V., Bhasin, S., & Jain, S. (2017). Self-Learning system for personalized E-Learning. 2017 International Conference on Emerging Trends in Computing and Communication Technologies, ICETCCT 2017, 2018-January, 1–6. https://doi.org/10.1109/ICETCCT.2017.8280344spa
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2012). Scikit-learn: Machine Learning in Python. https://arxiv.org/abs/1201.0490spa
dc.relation.referencesPeng, C.-Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An Introduction to Logistic Regression Analysis and Reporting. The Journal of Educational Research, 96(1), 3–14. https://doi.org/10.1080/00220670209598786spa
dc.relation.referencesQi, X., Luo, Y., Wu, G., Boriboonsomsin, K., & Barth, M. (2019). Deep reinforcement learning enabled self-learning control for energy efficient driving. Transportation Research Part C: Emerging Technologies, 99, 67–81. https://doi.org/10.1016/J.TRC.2018.12.018spa
dc.relation.referencesReis, R., Peixoto, H., Machado, J., & Abelha, A. (2017). Machine Learning in Nutritional Follow-up Research. Open Computer Science, 7(1), 41–45. https://doi.org/10.1515/COMP-2017-0008/MACHINEREADABLECITATION/RISspa
dc.relation.referencesRezvani, S., Pourpanah, F., Lim, C. P., & Wu, Q. M. J. (2024). Methods for class-imbalanced learning with support vector machines: a review and an empirical evaluation. Soft Computing, 28(20), 11873–11894. https://doi.org/10.1007/s00500-024-09931-5spa
dc.relation.referencesSameen, M. I., Pradhan, B., & Lee, S. (2019). Self-Learning Random Forests Model for Mapping Groundwater Yield in Data-Scarce Areas. Natural Resources Research, 28(3), 757–775. https://doi.org/10.1007/s11053-018-9416-1spa
dc.relation.referencesStaudemeyer, R. C., & Morris, E. R. (2019). Understanding LSTM -- a tutorial into Long Short-Term Memory Recurrent Neural Networks. https://arxiv.org/abs/1909.09586spa
dc.relation.referencesTriantafyllidis, A. K., & Tsanas, A. (2019). Applications of Machine Learning in real-life digital health interventions: Review of the literature. Journal of Medical Internet Research, 21(4), e12286. https://doi.org/10.2196/12286spa
dc.relation.referencesVasireddy, P. (2020). An Autonomous Diet Recommendation Bot Using Intelligent Automation. Proceedings of the International Conference on Intelligent Computing and Control Systems, ICICCS 2020, 449–454. https://doi.org/10.1109/ICICCS48265.2020.9121120spa
dc.relation.referencesVikramkumar, B, V., & Trilochan. (2014). Bayes and Naive Bayes Classifier. https://arxiv.org/abs/1404.0933spa
dc.relation.referencesWickramasinghe, M. P. N. M., Perera, D. M., & Kahandawaarachchi, K. A. D. C. P. (2017). Dietary prediction for patients with Chronic Kidney Disease (CKD) by considering blood potassium level using machine learning algorithms. 2017 IEEE Life Sciences Conference, LSC 2017, 2018-January, 300–303. https://doi.org/10.1109/LSC.2017.8268202spa
dc.relation.referencesWorld IBD Day. (2022). About IBD (Inflammatory Bowel Diseases) organizations | World IBD Day. https://worldibdday.org/about-us#world-organisationsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembColitis ulcerativa - Estudio de casos
dc.subject.lembEnfermedades del colon - Estudio de casos
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.lembHábitos alimenticios - Estudio de casos
dc.subject.lembProcesamiento de datos
dc.subject.proposalColitis Ulcerativaspa
dc.subject.proposalMétodo de autoaprendizajespa
dc.subject.proposalAprendizaje no supervisadospa
dc.subject.proposalAprendizaje supervisadospa
dc.subject.proposalAlimentaciónspa
dc.subject.proposalNutriciónspa
dc.subject.proposalUlcerative Colitiseng
dc.subject.proposalMachine Learningeng
dc.subject.proposalSelf-Learning Methodeng
dc.subject.proposalUnsupervised Learningeng
dc.subject.proposalSupervised Learningeng
dc.subject.proposalDieteng
dc.subject.proposalNutritioneng
dc.titleMétodo de autoaprendizaje basado en machine learning aplicado a la dieta de un individuo con colitis ulcerativa. Caso de estudio: paciente Juan Pablo Aguirre Martínezspa
dc.title.translatedSelf-learning method based on machine learning applied to the diet of an individual with ulcerative colitis. Case study: patient Juan Pablo Aguirre Martínezeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.contentOtherspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleMétodo de autoaprendizaje basado en Machine Learning aplicado a la dieta de un individuo con Colitis Ulcerativa.spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152467946.2025.pdf
Tamaño:
1.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: