Implementación de un intercambiador de calor con material de cambio de fase (PCM-HX) en un sistema de refrigeración de moldes de inyección de termoplásticos

dc.contributor.advisorRincón Prat, Sonia LucÍa
dc.contributor.authorPerilla Arango, Daniel Alejandro
dc.contributor.researchgroupBiomasa y Optimización Térmica de Procesos Biotspa
dc.date.accessioned2022-08-16T19:42:38Z
dc.date.available2022-08-16T19:42:38Z
dc.date.issued2022-03-18
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractEl interés de lograr cada vez más eficiencia energética en los procesos y reducir la huella de carbono y el calentamiento global, son los principales pilares para buscar sistemas cada vez más eficientes. El uso de sistemas de almacenamiento térmico PCM permite aprovechar, estabilizar y almacenar energía térmica para su posterior uso, lo cual permite mejorar significativamente un proceso si se realiza un correcto diseño. En el presente trabajo se estudió un sistema de refrigeración de moldes de inyección de termoplásticos, al conocer las oscilaciones de temperatura del líquido refrigerante se diseña analíticamente un intercambiador de cambio de fase PCM-HX con geometría de aletas tipo persiana y tubos planos que ayuda a reducir las oscilaciones de temperatura presentes en el sistema. Se encontró una mejora en la estabilidad de las temperaturas del líquido refrigerante al integrar el PCM-HX, reduciendo las oscilaciones hasta un 50%, adicionalmente evidenció que el chiller opera en ciclos más largos de encendido y apagado, lo que significa una reducción del consumo energético del 11%. Los resultados encontrados permiten explorar nuevas alternativas de implementación de acumuladores de energía térmica, con lo cual se pueden tener una disminución importante en el consumo eléctrico y sistemas de refrigeración más estables contribuyendo en la reducción de la huella de carbono. (Texto tomado de la fuente)spa
dc.description.abstractThe interest in achieving more energy efficiency in processes and decreasing the carbon footprint and global warming are the main pillars for seeking increasingly efficient systems. The use of PCM thermal storage systems allows the use, stabilization and storage of thermal energy for later use, which allows a process to be significantly improved if a correct design is carried out. In the present work, a cooling system for thermoplastic injection molds was studied. Knowing the temperature oscillations of the cooling liquid, a phase change exchanger (PCM-HX) with louvered fin and flat tubes geometry is analytically designed to help reduce the temperature oscillations present in the system. An improvement was found in the stability of coolant temperatures by integrating the PCM-HX, reducing oscillations up to 50%, additionally it was shown that the chiller operates in longer cycles on and off, which means a reduction in power consumption up to 11%. The results found allow us to explore new alternatives for the implementation of thermal energy storages, which can lead to a significant decrease in electricity consumption and more stable refrigeration systems, contributing to the reduction of the carbon footprint.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Mecánicaspa
dc.description.researchareaAlmacenamiento térmicospa
dc.format.extentxv, 62 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81921
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesIEA (2021, Octubre 1). World energy outlook 2021 – analysis. IEA. Paris, Retrieved March 13, 2022, from https://www.iea.org/reports/world-energy-outlook-2021spa
dc.relation.referencesLi, S.-F., Liu, Z., & Wang, X.-J. (2019). A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials. Applied Energy, 255, 113667spa
dc.relation.referencesGil, A., Medrano, M., Martorell, I., Lázaro, A., Dolado, P., Zalba, B., & Cabeza, L. F. (2010). State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renewable and Sustainable Energy Reviews, 14(1), 31–55.spa
dc.relation.referencesGómez, T., & Ribó, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90, 131–141.spa
dc.relation.referencesJurasz, J., Canales, F. A., Kies, A., Guezgouz, M., & Beluco, A. (2020). A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Solar Energy, 195, 703–724.spa
dc.relation.referencesKumar, L., Hasanuzzaman, M., & Rahim, N. A. (2019). Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. Energy Conversion and Management, 195, 885–908.spa
dc.relation.referencesMiró, L., Gasia, J., & Cabeza, L. F. (2016). Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review. Applied Energy, 179, 284–301.spa
dc.relation.referencesPitié, F., Zhao, C. Y., Baeyens, J., Degrève, J., & Zhang, H. L. (2013). Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles. Applied Energy, 109, 505–513.spa
dc.relation.referencesDutil, Y., Rousse, D. R., Salah, N. B., Lassue, S., & Zalewski, L. (2011). A review on phase-change materials: Mathematical modeling and simulations. Renewable and Sustainable Energy Reviews, 15(1), 112–130.spa
dc.relation.referencesElias, C. N., & Stathopoulos, V. N. (2019). A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage. Energy Procedia, 161, 385–394.spa
dc.relation.referencesSharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318–345.spa
dc.relation.referencesOró, E., de Gracia, A., Castell, A., Farid, M. M., & Cabeza, L. F. (2012). Review on phase change materials (PCMs) for cold thermal energy storage applications. Applied Energy, 99, 513–533.spa
dc.relation.referencesAbhat, A. (1983). Low temperature latent heat thermal energy storage: heat storage materials. Solar energy, 30(4) (pp. 314), 313-332.spa
dc.relation.referencesFeng, P. H., Zhao, B. C., & Wang, R. Z. (2020). Thermophysical heat storage for cooling, heating, and power generation: A review. Applied Thermal Engineering, 166, 114728.spa
dc.relation.referencesPop, O. G., Tutunaru, L. F., Bode, F., Abrudan, A. C., & Balan, M. C. (2018). Energy efficiency of PCM integrated in fresh air cooling systems in different climatic conditions. Applied energy, 212, 976-996.spa
dc.relation.referencesVenegas, T., Ugarte, G., Vasco, D. A., Rouault, F., & Pérez, R. (2019). Feasibility study of the application of a cooling energy storage system in a chiller plant of an office building located in Santiago, Chile. International Journal of Refrigeration, 102, 142–150.spa
dc.relation.referencesZhang, T., Liu, X., Zhang, L., Jiang, J., Zhou, M., & Jiang, Y. (2013). Performance analysis of the air-conditioning system in Xi’an Xianyang International Airport. Energy and buildings, 59, 11-20.spa
dc.relation.referencesSaid, M. A., & Hassan, H. (2018). Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit. Applied Energy, 230, 1380-1402.spa
dc.relation.referencesAllouche, Y., Varga, S., Bouden, C., & Oliveira, A. C. (2017). Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage. Applied energy, 190, 600-611.spa
dc.relation.referencesDu, J., Nie, B., Zhang, Y., Du, Z., & Ding, Y. (2020). Cooling performance of a thermal energy storage-based portable box for cold chain applications. Journal of Energy Storage, 28, 101238.spa
dc.relation.referencesPark, H. S., & Dang, X. P. (2017). Development of a smart plastic injection mold with conformal cooling channels. Procedia Manufacturing, 10, 48-59.spa
dc.relation.referencesCamarda, M. F. (2017). Eficiencia energética y competitividad industrial: análisis del sistema de incentivos en torno al programa provincial energía eficiente (propee). Administración Pública y Sociedad (APyS), (3), 62-81.spa
dc.relation.referencesLiu, H., Zhang, X., Quan, L., & Zhang, H. (2020). Research on energy consumption of injection molding machine driven by five different types of electro-hydraulic power units. Journal of Cleaner Production, 242, 118355.spa
dc.relation.referencesSpiering, T., Kohlitz(2015). Energy efficiency benchmarking for injection moulding processes. Robotics and Computer-Integrated Manufacturing, 36, 45–59.spa
dc.relation.referencesRashid, O (2020). Mold cooling in thermoplastics injection molding: Effectiveness and energy efficiency. Journal of Cleaner Production, 264, 121375.spa
dc.relation.referencesLe, C. V., Bansal, P. K., & Tedford, J. D. (2004). Three-zone system simulation model of a multiple-chiller plant. Applied Thermal Engineering, 24(14–15), 1995–2015.spa
dc.relation.referencesIncropera, F. P.,Dewitt D. P., Bergman T. L.,Lavine A. S., (2007). 11. Fundamentals of heat and mass transfer 6th edition, John Wiley & Sons. Danvers, Massachusettsspa
dc.relation.referencesCabeza, L. F. (2015). Advances in thermal energy storage systems: Methods and applications. In Introduction to thermal energy storage (TES) systems (pp. 7). Woodhead Publishing.spa
dc.relation.referencesNaranjo, A., & Sanz, J. R. (2001). Extrusion processing data. Hanser Verlag.spa
dc.relation.referencesYang, C. C., Ger, J., & Li, C. F. (2008). Formic acid: a rare but deadly source of carbon monoxide poisoning. Clinical Toxicology, 46(4), 287-289.spa
dc.relation.referencesMedrano, M., Yilmaz, M. O., Nogués, M., Martorell, I., Roca, J., & Cabeza, L. F. (2009). Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Applied energy, 86(10), 2047-2055.spa
dc.relation.referencesMehling, H., & Cabeza, L. F. (2008). Heat and cold storage with PCM. An up to date introduction into basics and applications. Springer-Verlag Berlin Heidelberg; Berlin (Germany).spa
dc.relation.referencesKays, W. M., & London, A. L. (1984). Compact heat exchangers. MEDTECHspa
dc.relation.referencesLongeon, M., Soupart, A., Fourmigué, J. F., Bruch, A., & Marty, P. (2013). Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied energy, 112, 175-184.spa
dc.relation.referencesHirata, T., Makino, Y., Kaneko, Y. (1991). Analysis of close-contact melting for octadecane and ice inside isothermally heated horizontal rectangular capsule. International Journal of Heat and Mass Transfer, 1991, vol. 34, no 12, p. 3097-3106.spa
dc.relation.referencesBareiss, M., & Beer, H. (1984). An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube. International Journal of Heat and Mass Transfer, 27(5), 739-746.spa
dc.relation.referencesYilmaz, S., Sheth, F., Martorell, I., Paksoy, H. O., & Cabeza, L. F. (2010). Salt-water solutions as PCM for cooling applications. In Proceedings of EuroSun.spa
dc.relation.referencesÇengel Yunus A., & Ghajar, A. J. (2020). Heat and mass transfer: Fundamentals & applications. McGraw-Hill Education.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembELECTRONICA-APARATOS E INSTRUMENTOS-REFRIGERACIONspa
dc.subject.lembElectronic apparatus and appliances - Coolingeng
dc.subject.lembCONTROL DE LA TEMPERATURA EN APARATOS E INSTRUMENTOS ELECTRONICOSspa
dc.subject.lembElectronic apparatus and appliances -- Temperature controleng
dc.subject.proposalMaterial de cambio de fasespa
dc.subject.proposalEficiencia energéticaspa
dc.subject.proposalAlmacenamiento térmico de fríospa
dc.subject.proposalPCMeng
dc.subject.proposalPhase change materialeng
dc.subject.proposalEnergy efficiencyeng
dc.subject.proposalCool thermal storageeng
dc.titleImplementación de un intercambiador de calor con material de cambio de fase (PCM-HX) en un sistema de refrigeración de moldes de inyección de termoplásticosspa
dc.title.translatedImplementation of a phase change material heat exchanger (PCM-HX) in a thermoplastic injection mold cooling systemeng
dc.title.translatedImplementierung eines Phasenwechselmaterial-Wärmetauschers (PCM-HX) in einem thermoplastischen Spritzguss-Kühlsystemdeu
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1097395953.2022.pdf
Tamaño:
3.42 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: