La atmósfera nocturna en un área urbana tropical de terreno complejo. Caso de estudio: el Valle de Aburrá (Colombia)

dc.contributor.advisorJiménez Mejía, José Fernando (Thesis advisor)
dc.contributor.authorRamírez Cardona, Álvaro
dc.date.accessioned2022-08-24T21:50:28Z
dc.date.available2022-08-24T21:50:28Z
dc.date.issued2022-08-24
dc.descriptionIlustraciones, mapasspa
dc.description.abstractEsta investigación caracterizó la estructura térmica y dinámica de la capa límite nocturna para el año 2017 en el Valle de Aburrá–Colombia, un área urbana tropical con topografía compleja. Se utilizaron registros provenientes de un radiómetro de microondas, un radar perfilador de vientos, un ceilómetro, estaciones meteorológicas y el modelo WRF-ARW acoplado al modelo de parametrización urbana SLUCM. Este último fue ejecutado con seis esquemas de parametrización distintos de la capa límite atmosférica, para 33 noches distribuidas en el periodo de estudio. Un análisis exploratorio fue ejecutado para identificar procesos espacio-temporales usando variables de estado como los vientos, el número de Richardson aproximado, la temperatura potencial virtual y la intensidad de retrodispersión. Mediante un análisis de sensibilidad de los registros se encontró que el espesor de la capa límite nocturna corresponde a un número de Richardson crítico de 0,5. Además se evaluó el modelo para las horas de la noche y se encontró un desempeño aceptable del esquema de parametrización MYNN. También se identificaron patrones de circulación asociados a un jet de bajo nivel, inversiones térmicas, vientos catabáticos y acoplamiento de los vientos alisios con los vientos orográficos. Se observó que los trimestres junio-julio-agosto y septiembre-octubre-noviembre son más estables dinámicamente, mientras que los trimestres de diciembre-enero-febrero y marzo-abril-mayo lo son más desde el punto de vista estático. Finalmente, se concluye que los espesores de la capa límite nocturna en el Valle de Aburrá son relativamente bajos, con condiciones de velocidades significantes al principio de la noche, pero al final de la noche con velocidades muy cercanas a cero y con una estabilidad atmosférica cada vez fortaleciéndose más por el enfriamiento radiativo. (texto tomado de la fuente)spa
dc.description.abstractThis research characterized the thermal structure and dynamics of the nocturnal boundary layer for the year 2017 in the Aburrá Valley-Colombia, a tropical urban area with complex topography. Records from a microwave radiometer, a wind profiler radar, a ceilometer, meteorological stations, and the WRF-ARW model coupled to the SLUCM urban parameterization model were used. This last one was run with six different atmospheric boundary layer parameterization schemes, for 33 nights distributed in the study period. An exploratory analysis was performed to detect spatio-temporal processes using state variables such as winds, bulk Richardson number, virtual potential temperature and backscatter. Through a sensitivity analysis of the records, it was found that the thickness of the nocturnal boundary layer corresponds to a critical Richardson number of 0,5. In addition, the model was evaluated during night hours and an acceptable performance of the MYNN parameterization scheme was found. Circulation patterns associated with a low-level jet, thermal inversions, katabatic winds and coupling of trade winds with orographic winds were also identified. It was observed that the quarters of june-july-august and september-october-november are more dynamically stable, and whereas those of the december-january-february and march-april-may are more statically stable. Finally, it is concluded that the thicknesses of the nocturnal boundary layer in the Aburrá Valley are relatively low, with significant velocities at the beginning of the night, but at the end of the night with velocities very close to zero and with atmospheric stability becoming increasingly stronger due to radiative cooling.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.researchareaMeteorología urbana y de montañasspa
dc.format.extent89 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82085
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAcevedo, O. C., Mahrt, L., Puhales, F. S., Costa, F. D., Medeiros, L. E., & Degrazia, G. A. (2016). Contrasting structures between the decoupled and coupled states of the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, 142(695), 693–702. https://doi.org/10.1002/qj.2693spa
dc.relation.referencesAcevedo, O. C., Moraes, O. L. L., Degrazia, G. A., & Medeiros, L. E. (2006). Intermittency and the exchange of scalars in the nocturnal surface layer. Boundary-Layer Meteorology, 119(1), 41–55. https://doi.org/10.1007/s10546-005-9019-3spa
dc.relation.referencesAdler, B., Babia, K., Kalthoff, N., Lohou, F., Lothon, M., Dione, C., Pedruzo-Bagazgoitia, X., & Andersen, H. (2019). Nocturnal low-level clouds in the atmospheric boundary layer over southern West Africa: An observation-based analysis of conditions and processes. Atmospheric Chemistry and Physics, 19(1), 663–681. https://doi.org/10.5194/acp-19-663-2019spa
dc.relation.referencesAliabadi, A., Staebler, R., de Grandpré, J., Zadra, A., & Vaillancourt, P. (2016). Comparison of Estimated Atmospheric Boundary Layer Mixing Height in the Arctic and Southern Great Plains under Statically Stable Conditions : Comparison of Estimated Atmospheric Boundary Layer Mixing Height in the Arctic and Southern Great Plains under St. February 2016. https://doi.org/10.1080/07055900.2015.1119100spa
dc.relation.referencesArduini, G., Arduini, G., Stable, W., Processes, B., & Valleys, A. (2017). Wintertime Stable Boundary-Layer Processes in Alpine Valleys To cite this version : HAL Id : tel-01643685 Processus de la Couche Limite Atmosphérique Stable Hivernale en Vallée Alpine.spa
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá. (2017). Condiciones especiales del Valle de Aburrá. Factores que incrementan la contaminación en el valle. https://www.metropol.gov.co/ambientales/calidad-del-aire/generalidades/condiciones-especialesspa
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá. (2020). Informe Anual de Calidad del Aire 2020 Contrato Ciencia y Tecnologıa 871 de 2020. 94. https://www.metropol.gov.co/ambiental/calidad-del-aire/informes_red_calidaddeaire/Informe-Anual-Aire-2020.pdfspa
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá. (2013). Simulación de Procesos Dispersivos en el Valle de Aburrá. 243, 1–74. http://www.metropol.gov.co/CalidadAire/isdocConvenio243/Simulaciónspa
dc.relation.referencesAristizabal, E., & Yokota, S. (2008). Evolución geomorfológica del Valle de Aburrá y sus implicaciones en la ocurrencia de movimientos en masa. Boletín de Las Ciecias de La Tierra, 24, 5–18. http://www.revistas.unal.edu.co/index.php/rbct/article/viewArticle/9268spa
dc.relation.referencesBaklanov, A., Grimmond, C., Mahura, A., & Athanassiadou, M. (2009). Meteorological and air quality models for urban areas.spa
dc.relation.referencesBaklanov, A., Joffre, S. M., Piringer, M., Deserti, M., Middleton, D. R., Tombrou, M., Karppinen, A., Emeis, S., Prior, V., Rotach, M., & Kuchin, A. (2006). Towards estimating the mixing height in urban areas Recent experimental and modelling results - COST 715 Action.spa
dc.relation.referencesBalsley, B. B., Frehlich, R. G., Jensen, M. L., & Meillier, Y. (2006). High-Resolution In Situ Profiling through the Stable Boundary Layer: Examination of the SBL Top in Terms of Minimum Shear, Maximum Stratification, and Turbulence Decrease. Journal of the Atmospheric Sciences, 63(4), 1291–1307. https://doi.org/10.1175/jas3671.1spa
dc.relation.referencesBalsley, B. B., Tjernström, M., & Svensson, G. (2008). TURBULENCE IN THE NOCTURNAL BOUNDARY LAYER : HIGHLY- STRUCTURED , STRONGLY VARIABLE , AND UBIQUITOUS. January.spa
dc.relation.referencesBanks, R. F., Tiana-Alsina, J., Rocadenbosch, F., & Baldasano, J. M. (2015). Performance Evaluation of the Boundary-Layer Height from Lidar and the Weather Research and Forecasting Model at an Urban Coastal Site in the North-East Iberian Peninsula. Boundary-Layer Meteorology, 157(2), 265–292. https://doi.org/10.1007/s10546-015-0056-2spa
dc.relation.referencesBanta, R. M. (2008). Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophysica, 56(1), 58–87. https://doi.org/10.2478/s11600-007-0049-8spa
dc.relation.referencesBanta, R. M., Berri, G., Blumen, W., Carruthers, D. J., Dalu, G. A., Durran, D. R., Egger, J., Garratt, J. R., Hanna, S. R., Hunt, J. C. R., Meroney, R. N., Miller, W., Neff, W. D., Nicolini, M., Paegle, J., Pielke, R. A., Smith, R. B., Strimaitis, D. G., Vukicevic, T., & Whiteman, C. D. (1990). Atmospheric Processes over Complex Terrain. In W. Blumen (Ed.), Atmospheric Processes over Complex Terrain. American Meteorological Society. https://doi.org/10.1007/978-1-935704-25-6spa
dc.relation.referencesBanta, R. M., Darby, L. S., Fast, J. D., Pinto, J. O., Whiteman, C. D., Shaw, W. J., & Orr, B. W. (2004a). Nocturnal Low-Level Jet in a Mountain Basin Complex. Part I: Evolution and Effects on Local Flows. Journal of Applied Meteorology, 43(10), 1348–1365. https://doi.org/10.1175/JAM2142.1spa
dc.relation.referencesBanta, R. M., Darby, L. S., Fast, J. D., Pinto, J. O., Whiteman, C. D., Shaw, W. J., & Orr, B. W. (2004b). Nocturnal Low-Level Jet in a Mountain Basin Complex. Part I: Evolution and Effects on Local Flows. Journal of Applied Meteorology, 43(10), 1348–1365. https://doi.org/10.1175/JAM2142.1spa
dc.relation.referencesBanta, R. M., Pichugina, Y. L., & Newsom, R. K. (2003). Relationship between Low-Level Jet Properties and Turbulence Kinetic Energy in the Nocturnal Stable Boundary Layer. Journal of the Atmospheric Sciences, 60(20), 2549–2555. https://doi.org/10.1175/1520-0469(2003)060<2549:rbljpa>2.0.co;2spa
dc.relation.referencesBarlow, J. F. (2014). Progress in observing and modelling the urban boundary layer. Urban Climate, 10(P2), 216–240. https://doi.org/10.1016/j.uclim.2014.03.011spa
dc.relation.referencesBasu, S., Holtslag, A. A. M., Caporaso, L., Riccio, A., & Steeneveld, G. J. (2014). Observational Support for the Stability Dependence of the Bulk Richardson Number Across the Stable Boundary Layer. Boundary-Layer Meteorology, 150(3), 515–523. https://doi.org/10.1007/s10546-013-9878-yspa
dc.relation.referencesBattisti, A., Acevedo, O. C., Costa, F. D., Puhales, F. S., Anabor, V., & Degrazia, G. A. (2017). Evaluation of Nocturnal Temperature Forecasts Provided by the Weather Research and Forecast Model for Different Stability Regimes and Terrain Characteristics. Boundary-Layer Meteorology, 162(3), 523–546. https://doi.org/10.1007/s10546-016-0209-yspa
dc.relation.referencesBedoya, J., & Martinez, E. (2008). Calidad del Aire en el Valle de Aburrá. Antioquia Colombia. Revista Dina, 158, 7–15. http://www.scielo.org.co/pdf/dyna/v76n158/a01v76n158.pdfspa
dc.relation.referencesBeu, C. M. L., Marques, M. T. A., Nakaema, W. M., Sakagami, Y., Santos, P. A. A., Moreira, A. C. de C. A., & Landulfo, E. (2016). Estimation of turbulence production by nocturnal low level jets in Sao Paulo (Brazil). Remote Sensing Technologies and Applications in Urban Environments, 10008, 1000804. https://doi.org/10.1117/12.2242013spa
dc.relation.referencesClements, C. B., Whiteman, C. D., & Horel, J. D. (2003). Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah. Journal of Applied Meteorology, 42(6), 752–768. https://doi.org/10.1175/1520-0450(2003)042<0752:csaeia>2.0.co;2spa
dc.relation.referencesConangla, L., & Cuxart, J. (2006). On the turbulence in the upper part of the low-level jet: An experimental and numerical study. Boundary-Layer Meteorology, 118(2), 379–400. https://doi.org/10.1007/s10546-005-0608-yspa
dc.relation.referencesCorrea, M., Zuluaga, C., Palacio, C., Pérez, J., & Jiménez, J. (2008). Acoplamiento de la atmósfera libre con el campo de vientos locales en una región tropical de topografía compleja. Cao de estudio: Valle de Aburrá, Antioquia, Colombia. DYNA (Colombia), 76(158), 17–27. http://www.scopus.com/inward/record.url?eid=2-s2.0-75249103588&partnerID=40&md5=e60a6899153e19cf150c93bce39d8f02spa
dc.relation.referencesCourtney, R. (n.d.). Atmospheric Stability. http://faculty.kutztown.edu/courtney/blackboard/physical/17stability/stability.htmlspa
dc.relation.referencesCuxart, J. (2008). Nocturnal basin low-level jets: An integrated study. Acta Geophysica, 56(1), 100–113. https://doi.org/10.2478/s11600-007-0042-2spa
dc.relation.referencesCuxart, J., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Soler, M. R., Infante, C., Buenestado, P., Espinalt, A., Joergensen, H. E., Rees, J. M., Redondo, J. M., Cantalapiedra, I. R., & Conangla, L. (2000). Stable atmospheric boundary-layer experiment in spain (sables 98): a report. Sables 98, 337–370.spa
dc.relation.referencesDai, C., Wang, Q., Kalogiros, J. A., Lenschow, D. H., Gao, Z., & Zhou, M. (2014). Determining Boundary-Layer Height from Aircraft Measurements. Boundary-Layer Meteorology, 152(3), 277–302. https://doi.org/10.1007/s10546-014-9929-zspa
dc.relation.referencesDarby, L. S., Allwine, K. J., & Banta, R. M. (2006). Nocturnal Low-Level Jet in a Mountain Basin Complex. Part II: Transport and Diffusion of Tracer under Stable Conditions. Journal of Applied Meteorology and Climatology, 45(5), 740–753. https://doi.org/10.1175/jam2367.1spa
dc.relation.referencesDoran, J. C., Fast, J. D., & Horel, J. (2002). the Vtmx 2000 Campaign. Bulletin of the American Meteorological Society, 83(4), 537–551. https://doi.org/10.1175/1520-0477(2002)083<0537:tvc>2.3.co;2spa
dc.relation.referencesDuarte, H. F., Leclerc, M. Y., Zhang, G., Durden, D., Kurzeja, R., Parker, M., & Werth, D. (2015). Impact of Nocturnal Low-Level Jets on Near-Surface Turbulence Kinetic Energy. Boundary-Layer Meteorology, 156(3), 349–370. https://doi.org/10.1007/s10546-015-0030-zspa
dc.relation.referencesDuine, G. J., Hedde, T., Roubin, P., Durand, P., Lothon, M., Lohou, F., Augustin, P., & Fourmentin, M. (2017). Characterization of valley flows within two confluent valleys under stable conditions: observations from the KASCADE field experiment. Quarterly Journal of the Royal Meteorological Society, 143(705), 1886–1902. https://doi.org/10.1002/qj.3049spa
dc.relation.referencesFernando, H. J. S., & Weil, J. C. (2010). Whither the stable boundary layer? Bulletin of the American Meteorological Society, 91(11). https://doi.org/10.1175/2010BAMS2770.1spa
dc.relation.referencesFlórez, L. (2016). Simulación de diferentes escenarios de cobertura urbana en el balance de energía superficial de una ciudad tropical de montaña. Caso de estudio: Medellín (Colombia). https://doi.org/10.13140/RG.2.2.19932.18562spa
dc.relation.referencesFochesatto, G. J. (2015). Methodology for determining multilayered temperature inversions. Atmospheric Measurement Techniques, 8(5), 2051–2060. https://doi.org/10.5194/amt-8-2051-2015spa
dc.relation.referencesGalperin, B., Sukoriansky, S., & Anderson, P. S. (2007). On the critical Richardson number in stably stratified turbulence. Atmospheric Science Letters, 8(3), 65–69. https://doi.org/10.1002/asl.153spa
dc.relation.referencesGarratt, J. (1992). The Atmospheric Boundary Layer.spa
dc.relation.referencesGrachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., & Persson, P. O. G. (2013). The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer. Boundary-Layer Meteorology, 147(1), 51–82. https://doi.org/10.1007/s10546-012-9771-0spa
dc.relation.referencesGrachev, A. A., Fairall, C. W., Persson, P. O. G., Andreas, E. L., & Guest, P. S. (2005). Stable boundary-layer scaling regimes: The SHEBA data. Boundary-Layer Meteorology, 116(2), 201–235. https://doi.org/10.1007/s10546-004-2729-0spa
dc.relation.referencesGrachev, A. A., Leo, L. S., Sabatino, S. Di, Fernando, H. J. S., Pardyjak, E. R., & Fairall, C. W. (2016). Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum. Boundary-Layer Meteorology, 159(3), 469–494. https://doi.org/10.1007/s10546-015-0034-8spa
dc.relation.referencesGrubišić, V., Doyle, J. D., Kuettner, J., Mobbs, S., Smith, R. B., Whiteman, C. D., Dirks, R., Czyzyk, S., Cohn, S. A., Vosper, S., Weissmann, M., Haimov, S., De Wekker, S. F. J., Pan, L. L., & Chow, F. K. (2008). THE TERRAIN-INDUCED ROTOR EXPERIMENT. Bulletin of the American Meteorological Society, 89(10), 1513–1534. https://doi.org/10.1175/2008BAMS2487.1spa
dc.relation.referencesHaeffelin, M., Angelini, F., Morille, Y., Martucci, G., Frey, S., Gobbi, G. P., Lolli, S., O’Dowd, C. D., Sauvage, L., Xueref-Rémy, I., Wastine, B., & Feist, D. G. (2012). Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe. Boundary-Layer Meteorology, 143(1), 49–75. https://doi.org/10.1007/s10546-011-9643-zspa
dc.relation.referencesHariprasad, K. B. R. R., Srinivas, C. V., Singh, A. B., Vijaya Bhaskara Rao, S., Baskaran, R., & Venkatraman, B. (2014). Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site. Atmospheric Research, 145–146, 27–44.spa
dc.relation.referencesHenao, J. J., Rendón, A. M., & Salazar, J. F. (2020). Trade-off between urban heat island mitigation and air quality in urban valleys. Urban Climate, 31(October 2019), 100542. https://doi.org/10.1016/j.uclim.2019.100542spa
dc.relation.referencesHerrera‐Mejía, L., & Hoyos, C. D. (2019). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote‐sensing and radiosonde observations and the WRF model: the Aburrá Valley case‐study. Quarterly Journal of the Royal Meteorological Society, 145(723), 2641–2665. https://doi.org/10.1002/qj.3583spa
dc.relation.referencesHerrera Mejía, L. (2015). Caracterización de la Capa Límite Atmosférica en el valle de Aburrá a partir de la información de sensores remotos y radiosondeos. In Universidad Nacional de Colombia. http://www.bdigital.unal.edu.co/51042/1/1128283242.2015.pdfspa
dc.relation.referencesHolzworth, G. (1964). Estimates of Mean Maximum Mixing Depths in the Contiguous United States. Monthly Weather Review, 92(5), 235–242. https://doi.org/10.1175/1520-0493(1964)092<0235:eommmd>2.3.co;2spa
dc.relation.referencesHong, S.-Y., & Pan, H.-L. (1996). Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Monthly Weather Review, 124(10), 2322–2339. https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2spa
dc.relation.referencesHu, X. M., Klein, P. M., Xue, M., Lundquist, J. K., Zhang, F., & Qi, Y. (2013). Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma city. Journal of Applied Meteorology and Climatology, 52(8), 1779–1802. https://doi.org/10.1175/JAMC-D-12-0256.1spa
dc.relation.referencesIsaza, A. (2018). Evaluación de la variabilidad temporal de la estructura termodinámica de la atmósfera y su influencia en las concentraciones de material particulado dentro del Valle de Aburrá.spa
dc.relation.referencesJaramillo, L., Poveda, G., & Mejía, J. F. (2017). Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM. International Journal of Climatology, 37(May 2018), 380–397. https://doi.org/10.1002/joc.5009spa
dc.relation.referencesJeričević, A., & Grisogono, B. (2006). The critical bulk Richardson number in urban areas: Verification and application in a numerical weather prediction model. Tellus, Series A: Dynamic Meteorology and Oceanography, 58(1), 19–27. https://doi.org/10.1111/j.1600-0870.2006.00153.xspa
dc.relation.referencesJiménez‐Sánchez, G., Markowski, P. M., Jewtoukoff, V., Young, G. S., & Stensrud, D. J. (2019). The Orinoco Low‐Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model. Journal of Geophysical Research: Atmospheres, 124(20), 10696–10711. https://doi.org/10.1029/2019JD030934spa
dc.relation.referencesJiménez, J. F. (2016). Altura de la Capa de Mezcla en un área urbana, montañosa y tropical.Caso de estudio: Valle de Aburrá (Colombia). http://hdl.handle.net/10495/5738spa
dc.relation.referencesJiménez, M. A., Cuxart, J., & Martínez-Villagrasa, D. (2019). Influence of a valley exit jet on the nocturnal atmospheric boundary layer at the foothills of the Pyrenees. Quarterly Journal of the Royal Meteorological Society, 145(718), 356–375. https://doi.org/10.1002/qj.3437spa
dc.relation.referencesKaimal, J., & Finnigan, J. (1994). Atmospheric Boundary Layer Flows: Their Structure and Measurement. In Notes. OXFORD UNIVERSITY PRESS.spa
dc.relation.referencesKlein, P. M., Hu, X. M., Shapiro, A., & Xue, M. (2016). Linkages Between Boundary-Layer Structure and the Development of Nocturnal Low-Level Jets in Central Oklahoma. Boundary-Layer Meteorology, 158(3), 383–408. https://doi.org/10.1007/s10546-015-0097-6spa
dc.relation.referencesKusaka, H., Kondo, H., Kikegawa, Y., & Kimura, F. (2001). A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And Slab Models. Boundary-Layer Meteorology, 101(3), 329–358. https://doi.org/10.1023/A:1019207923078spa
dc.relation.referencesLareau, N. P., Crosman, E., Whiteman, C. D., Horel, J. D., Hoch, S. W., Brown, W. O. J., & Horst, T. W. (2013). The persistent cold-air pool study. Bulletin of the American Meteorological Society, 94(1), 51–63. https://doi.org/10.1175/BAMS-D-11-00255.1spa
dc.relation.referencesLazcano, M. F. (2006). Estudio de las alturas características de la capa límite atmosférica en situaciones estables a partir de sondeos con globo cautivo y de observaciones micrometeorológicas en torre. 5a Asamblea Hispano-Portuguesa de Geodesia y Geofísica, 14–17.spa
dc.relation.referencesLeon, G. E., Zea, J. A., & Eslava, J. A. (2000). Circulación general del tropico y la zona de confluencia intertropical en Colombia. Meteorología Colombiana, 1, 31–38. http://ciencias.bogota.unal.edu.co/fileadmin/content/geociencias/revista_meteorologia_colombiana/numero01/01_05.pdfspa
dc.relation.referencesMa, Y., Yang, Y., Hu, X. M., & Gan, R. (2015). Characteristics and mechanisms of the sudden warming events in the nocturnal atmospheric boundary layer: A case study using WRF. Journal of Meteorological Research, 29(5), 747–763. https://doi.org/10.1007/s13351-015-4101-3spa
dc.relation.referencesMahrt, L. (1998). Stratified atmospheric boundary layers and breakdown of models. Theoretical and Computational Fluid Dynamics, 11(3–4), 263–279. https://doi.org/10.1007/s001620050093spa
dc.relation.referencesMahrt, L. (1999). Stratified Atmospheric Boundary Layers. Boundary Layer Meteorology. http://www.springerlink.com/index/V22623618852Q404.pdf%5Cnpapers2://publication/uuid/DFF73E3E-4AED-4A33-91B3-AD495B9B6812spa
dc.relation.referencesMahrt, L. (2003). Stably Stratified Boundary Layers. In Encyclopedia of Atmospheric Sciences (pp. 298–305).spa
dc.relation.referencesMahrt, L. (2014). Stably Stratified Atmospheric Boundary Layers. Annual Review of Fluid Mechanics, 46(1), 23–45. https://doi.org/10.1146/annurev-fluid-010313-141354spa
dc.relation.referencesMahrt, L. (2017a). Directional Shear in the Nocturnal Atmospheric Surface Layer. Boundary-Layer Meteorology, 165(1), 1–7. https://doi.org/10.1007/s10546-017-0270-1spa
dc.relation.referencesMahrt, L. (2017b). Heat Flux in the Strong-Wind Nocturnal Boundary Layer. Boundary-Layer Meteorology, 163(2), 161–177. https://doi.org/10.1007/s10546-016-0219-9spa
dc.relation.referencesMahrt, L., Heald, R. C., Lenschow, D. H., Stankov, B. B., & Troen, I. (1979). An observational study of the structure of the nocturnal boundary layer. Boundary-Layer Meteorology, 17(2), 247–264. https://doi.org/10.1007/BF00117983spa
dc.relation.referencesMahrt, L., Richardson, S., Stauffer, D., & Seaman, N. (2014). Nocturnal wind-directional shear in complex terrain. Quarterly Journal of the Royal Meteorological Society, 140(685), 2393–2400. https://doi.org/10.1002/qj.2369spa
dc.relation.referencesMahrt, L., Sun, J., Blumen, W., Delany, T., & Oncley, S. (1998). Nocturnal boundary-layer regimes l. mahrt. 255–278.spa
dc.relation.referencesMahrt, L., Sun, J., & Stauffer, D. (2015). Dependence of Turbulent Velocities on Wind Speed and Stratification. Boundary-Layer Meteorology, 155(1), 55–71. https://doi.org/10.1007/s10546-014-9992-5spa
dc.relation.referencesMathieu, N., Strachan, I. B., Leclerc, M. Y., Karipot, A., & Pattey, E. (2005). Role of low-level jets and boundary-layer properties on the NBL budget technique. Agricultural and Forest Meteorology, 135(1–4), 35–43. https://doi.org/10.1016/j.agrformet.2005.10.001spa
dc.relation.referencesMesa, O., Poveda, G., & Carvajal, L. F. (1997). Introducción al clima de Colombia. In Universidad Nacional de Colombia, sede Medellín.spa
dc.relation.referencesMontoya-Duque, E. (2018). Caracterización de la Concentración de Contaminantes del Aire a partir del Estudio de la Dinámica Atmosférica en el Valle de Aburrá.spa
dc.relation.referencesMunkel, C., & Roininen, R. (2010). Investigation of Boundary Layer structures with ceilometer. AMS Annual Meeting, 3–7. http://www.vaisala.com/Vaisala Documents/Scientific papers/Investigation_of_boundary_layer_structures_with_ceilometer_using_a_novel_robust_algorithm.pdfspa
dc.relation.referencesNCEP. (2022). NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. https://doi.org/https://doi.org/10.5065/D65Q4T4Zspa
dc.relation.referencesNieuwstadt, F. T. M. (1984). The Turbulent Structure of the Stable, Nocturnal Boundary Layer. In Journal of the Atmospheric Sciences (Vol. 41, Issue 14, pp. 2202–2216). https://doi.org/10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2spa
dc.relation.referencesNisperuza Toledo, D. J. (2015). Propiedades Ópticas de los Aerosoles Atmosféricos en la Región Andina Colombiana Mediante Análisis de Mediciones Remotas: LIDAR, Fotométricas y Satelitales Daniel. http://www.bdigital.unal.edu.co/48465/spa
dc.relation.referencesOchoa, A., & Jiménez, J. F. (2008). Ciclo diurno de PM 10 en el Valle de Aburrá. Universidad Nacional de Colombia, Sede Medellín. https://repositorio.unal.edu.co/bitstream/handle/unal/7666/Ciclo_diurno_de_PM10_en_el_Valle_de_Aburrá.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesParker, M. J., & Raman, S. (1993). A case study of the nocturnal boundary layer over a complex terrain. Boundary-Layer Meteorology, 66(3), 303–324. https://doi.org/10.1007/BF00705480spa
dc.relation.referencesPlocoste, T. (2015). ÉTUDE DE LA DISPERSION NOCTURNE DE POLLUANTS ATMOSPHÉRIQUES ISSUS D’UNE DÉCHARGE D’ORDURES MÉNAGÈRES MISE EN ÉVIDENCE D’UN ÎLOT DE CHALEUR URBAIN (Issue April 2013). https://doi.org/10.13140/2.1.4639.7765spa
dc.relation.referencesPoulos, B. Y. G. S., Blumen, W., Fritts, D. C., Lundquist, J. K., Sun, J., Burns, S. P., Nappo, C., Banta, R., Newsom, R. O. B., Cuxart, J., Terradellas, E., Balsley, B. E. N., & Jensen, M. (2002). CASES-99 : A Comprehensive Nocturnal Boundary Layer. December 2001.spa
dc.relation.referencesPoveda, G., & Bedoya, M. (2015). Mountain Tropical Rainfall: Evidence of Phase-Locking between the Diurnal, Annual and Interannual Cycles in the Andes of Colombia. December, 1.spa
dc.relation.referencesPoveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., & Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1), 228–240. https://doi.org/10.1175/MWR-2853.1spa
dc.relation.referencesRama Krishna, T. V. B. P. S., Sharan, M., Gopalakrishnan, S. G., & Aditi. (2003). Mean structure of the nocturnal boundary layer under strong and weak wind conditions: EPRI case study. Journal of Applied Meteorology, 42(7), 952–969. https://doi.org/10.1175/1520-0450(2003)042<0952:MSOTNB>2.0.CO;2spa
dc.relation.referencesRendón, A. M., Salazar, J. F., Palacio, C. A., & Wirth, V. (2015). Temperature inversion breakup with impacts on air quality in urban valleys influenced by topographic shading. Journal of Applied Meteorology and Climatology, 54(2), 302–321. https://doi.org/10.1175/JAMC-D-14-0111.1spa
dc.relation.referencesRichardson, H., Basu, S., & Holtslag, A. A. M. (2013). Improving Stable Boundary-Layer Height Estimation Using a Stability-Dependent Critical Bulk Richardson Number. Boundary-Layer Meteorology, 148(1), 93–109. https://doi.org/10.1007/s10546-013-9812-3spa
dc.relation.referencesRoldán, N., Hoyos, C. D., & Herrera, L. (2017). Direct and Indirect Effects of Precipitation on Particulate Matter Concentration in the Aburrá Valley. AGU Fall Meeting Abstracts. https://ui.adsabs.harvard.edu/abs/2017AGUFM.A44D..07R/spa
dc.relation.referencesSaeed, U., Rocadenbosch, F., & Crewell, S. (2016). Adaptive Estimation of the Stable Boundary Layer Height Using Combined Lidar and Microwave Radiometer Observations. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 6895–6906. https://doi.org/10.1109/TGRS.2016.2586298spa
dc.relation.referencesSales, M. J. (2016). Modelización de la capa límite planetaria bajo condiciones de forzamiento atmosférico mesoescalar. 126.spa
dc.relation.referencesSchepanski, K., Knippertz, P., Fiedler, S., Timouk, F., & Demarty, J. (2015). The sensitivity of nocturnal low-level jets and near-surface winds over the Sahel to model resolution, initial conditions and boundary-layer set-up. Quarterly Journal of the Royal Meteorological Society, 141(689), 1442–1456. https://doi.org/10.1002/qj.2453spa
dc.relation.referencesSeaman, N. L., Gaudet, B. J., Stauffer, D. R., Mahrt, L., Richardson, S. J., Zielonka, J. R., & Wyngaard, J. C. (2012). Numerical Prediction of Submesoscale Flow in the Nocturnal Stable Boundary Layer over Complex Terrain. 956–977. https://doi.org/10.1175/MWR-D-11-00061.1spa
dc.relation.referencesSeibert, P., Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., & Tercier, P. (2000). Review and intercomparison of operational methods for the determination of the mixing height. Atmospheric Environment, 34(7), 1001–1027. https://doi.org/10.1016/S1352-2310(99)00349-0spa
dc.relation.referencesSerafin, S., Adler, B., Cuxart, J., De Wekker, S., Gohm, A., Grisogono, B., Kalthoff, N., Kirshbaum, D., Rotach, M., Schmidli, J., Stiperski, I., Večenaj, Ž., & Zardi, D. (2018). Exchange Precesses in the Atmospheric Boundary Layer Over Mountainous Terrain. Atmosphere, 9(3), 102. https://doi.org/10.3390/atmos9030102spa
dc.relation.referencesSerna, L. M., Arias, P. A., & Vieira, S. C. (2018). Las corrientes superficiales de chorro del Chocó y el Caribe durante los eventos de El Niño y El Niño Modoki. 42(165), 410-421Serna, L. M., Arias, P. A., Vieira, S. C.spa
dc.relation.referencesShin, H. H., & Hong, S. Y. (2011). Intercomparison of Planetary Boundary-Layer Parametrizations in the WRF Model for a Single Day from CASES-99. Boundary-Layer Meteorology, 139(2), 261–281. https://doi.org/10.1007/s10546-010-9583-zspa
dc.relation.referencesSkamarock, C., Klemp, B., Dudhia, J., Gill, O., Barker, D. E., Duda, G. K., Huang, X., Wang, W., & Powers, G. N. (2008). A Description of the Advanced Research WRF Version 3. https://doi.org/10.5065/D68S4MVHspa
dc.relation.referencesSteeneveld, G.-J. (2011). Stable Boundary Layer Issues. Proceedings of Workshop Diurnal Cycles and the Stable Boundary Layer, January 2012, 25–36. https://doi.org/10.1007/978-94-009-3027-8_12spa
dc.relation.referencesStrang, E. J., & Fernando, H. J. S. (2001). Entrainment and mixing in stratified shear flows. Journal of Fluid Mechanics, 428, 349–386. https://doi.org/10.1017/S0022112000002706spa
dc.relation.referencesStull, R. B. (1988). An Introduction to Boundary Layer Meteorology. Book, 13, 666. https://doi.org/10.1007/978-94-009-3027-8spa
dc.relation.referencesSun, J., Lenschow, D. H., Burns, S. P., Banta, R. M., Newsom, R. K., Coulter, R., Frasier, S., Ince, T., Nappo, C., Balsley, B. B., Jensen, M., Mahrt, L., Miller, D., & Skelly, B. (2004). Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Boundary-Layer Meteorology, 110(2), 255–279. https://doi.org/10.1023/A:1026097926169spa
dc.relation.referencesSvensson, G., Holtslag, A. A. M., Kumar, V., Mauritsen, T., Steeneveld, G. J., Angevine, W. M., Bazile, E., Beljaars, A., de BruiJBN, E. I. F., Cheng, A., Conangla, L., Cuxart, J., Ek, M., Falk, M. J., Freedman, F., Kitagawa, H., Larson, V. E., Lock, A., Mailhot, J., … Zampieri, M. (2011). Evaluation of the diurnal cycle in the Atmospheric Boundary Layer over land as Represented by a Variety of Single-Column models: The second GABLS EXperiment. Boundary-Layerspa
dc.relation.referencesThomas, C., Stauffer, D., Zeeman, M., Richardson, S., Seaman, N., & Mahrt, L. (2012). Non-stationary Generation of Weak Turbulence for Very Stable and Weak-Wind Conditions. Boundary-Layer Meteorology, 147(2), 179–199. https://doi.org/10.1007/s10546-012-9782-xspa
dc.relation.referencesTjernström, M., Balsley, B. B., Svensson, G., & Nappo, C. J. (2009). The effects of critical layers on residual layer turbulence. Journal of the Atmospheric Sciences, 66(2), 468–480. https://doi.org/10.1175/2008JAS2729.1spa
dc.relation.referencesTombrou, M., Founda, D., & Boucouvala, D. (1998). Nocturnal boundary layer height prediction from surface routine meteorological data. Meteorology and Atmospheric Physics, 68(3–4), 177–186. https://doi.org/10.1007/BF01030209spa
dc.relation.referencesVelásquez García, M. P. (2019). Caracterización meteorológica de la atmósfera en presencia de nubes bajas sobre zona plana del Valle en el Aburra. https://www.metropol.gov.co/ambiental/calidad-del-aire/Biblioteca-aire/InvestigacionSIATA/Tesis-Caracterizacion-Atmósfera.pdfspa
dc.relation.referencesVelasteguí, A. X. H., Limáico Nieto, C. T., Cahueñas, N. P. P., & Parra, M. I. F. (2018). Evaluación de la Estabilidad Atmosférica Bajo Condiciones Físicas y Meteorólogicas del Altiplano Ecuatoriano. Revista Brasileira de Meteorologia, 33(2), 336–343. https://doi.org/10.1590/0102-7786332015spa
dc.relation.referencesViana, S. (2011a). Estudio de los procesos físicos que tienen lugar en la capa límite atmosférica nocturna a partir de campañas experimentales de campo [Universidad Complutense de Madrid]. http://eprints.ucm.es/16375/1/T32889.pdfspa
dc.relation.referencesSalmond, J. A., & McKendry, I. G. (2005). A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality. Progress in Physical Geography, 29(2), 171–188. https://doi.org/10.1191/0309133305pp442raspa
dc.relation.referencesViana, S. (2011). Estudio de los procesos físicos que tienen lugar en la capa límite atmosférica nocturna a partir de campañas experimentales de campo [Universidad Complutense de Madrid]. http://eprints.ucm.es/16375/1/T32889.pdfspa
dc.relation.referencesWallace, J. M., & Hobbs, P. V. (2006). Atmospheric Science: An Introductory Survey. Elsevier Science.spa
dc.relation.referencesWang, W., Mao, F., Gong, W., Pan, Z., & Du, L. (2016). Evaluating the governing factors of variability in nocturnal boundary layer height based on elastic lidar in Wuhan. International Journal of Environmental Research and Public Health, 13(11), 1–12. https://doi.org/10.3390/ijerph13111071spa
dc.relation.referencesWhiteman, C. D., Lehner, M., Hoch, S. W., Adler, B., Kalthoff, N., & Haiden, T. (2018). Katabatically Driven Cold Air Intrusions into a Basin Atmosphere. Journal of Applied Meteorology and Climatology, 57(2), 435–455. https://doi.org/10.1175/JAMC-D-17-0131.1spa
dc.relation.referencesWyngaard, J. C. (1990). Scalar fluxes in the planetary boundary layer - Theory, modeling, and measurement. Boundary-Layer Meteorology, 50(1–4), 49–75. https://doi.org/10.1007/BF00120518spa
dc.relation.referencesXing-Sheng, L., Gaynor, J. E., & Kaimal, J. C. (1983). A study of multiple stable layers in the nocturnal lower atmosphere. Boundary-Layer Meteorology, 26(2), 157–168. https://doi.org/10.1007/BF00121540spa
dc.relation.referencesYagüe, C., Viana, S., Maqueda, G., Lazcano, M., Morales, G., & Rees, J. M. (2007). A Study on the Nocturnal Atmospheric Boundary Layer : SABLES2006. Física de La Tierra, 19, 37–53. http://revistas.ucm.es/index.php/FITE/article/view/FITE0707110037A/11535spa
dc.relation.referencesYepes, J., Poveda, G., Mejía, J. F., Moreno, L., & Rueda, C. (2019). Choco-jex: A research experiment focused on the Chocó low-level jet over the far eastern Pacific and western Colombia. Bulletin of the American Meteorological Society, 100(5), 779–796. https://doi.org/10.1175/BAMS-D-18-0045.1spa
dc.relation.referencesYoshino, M. M. (1984). Thermal belt and cold air drainage on the mountain slope and cold air lake in the basin at quiet, clear night. GeoJournal, 8(3), 235–250. https://doi.org/10.1007/BF00446473spa
dc.relation.referencesYuval, Levi, Y., Dayan, U., Levy, I., & Broday, D. M. (2020). On the association between characteristics of the atmospheric boundary layer and air pollution concentrations. Atmospheric Research, 231(September 2019), 104675. https://doi.org/10.1016/j.atmosres.2019.104675spa
dc.relation.referencesZapata Henao, M. (2015). Análisis del impacto de la interacción suelo-atmósfera en las condiciones meteorológicas del Valle de Aburra utilizando el modelo WRF. http://www.bdigital.unal.edu.co/54503/spa
dc.relation.referencesZardi, D., & Whiteman, C. D. (2013). Mountain Weather Research and Forecasting. https://doi.org/10.1007/978-94-007-4098-3spa
dc.relation.referencesZhang, H., Zhang, X., Li, Q., Cai, X., Fan, S., Song, Y., Hu, F., Che, H., Quan, J., Kang, L., & Zhu, T. (2020). Research Progress on Estimation of the Atmospheric Boundary Layer Height. Journal of Meteorological Research, 34(3), 482–498. https://doi.org/10.1007/s13351-020-9910-3spa
dc.relation.referencesZhang, Y., Gao, Z., Li, D., Li, Y., Zhang, N., Zhao, X., & Chen, J. (2014). On the computation of planetary boundary-layer height using the bulk Richardson number method. Geoscientific Model Development, 7(6), 2599–2611. https://doi.org/10.5194/gmd-7-2599-2014spa
dc.relation.referencesZilitinkevich, S., & Baklanov, A. (2002). Calculation of the height of the stable boundary layer in practical applications. Boundary-Layer Meteorology, 105(3), 389–409. https://doi.org/10.1023/A:1020376832738spa
dc.relation.referencesZilitinkevich, S., Esau, I., & Baklanov, A. (2007). Further comments on the equilibrium height of neutral and stable planetary boundary layers. Quarterly Journal of the Royal Meteorological Society, 133(622), 265–271. https://doi.org/10.1002/qj.27spa
dc.relation.referencesZou, J., Sun, J., Liu, G., Yuan, R., & Zhang, H. (2018). Vertical Variation of the Effects of Atmospheric Stability on Turbulence Statistics Within the Roughness Sublayer Over Real Urban Canopy. Journal of Geophysical Research: Atmospheres, 123(4), 2017–2036. https://doi.org/10.1002/2017JD027041spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.lembCalidad del aire
dc.subject.lembMeteorología dinámica
dc.subject.lembEstado atmosférico - Efectos de la actividad solar
dc.subject.proposalMeteorología urbana y de montañasspa
dc.subject.proposalPatrones de circulaciónspa
dc.subject.proposalCapa límite nocturnaspa
dc.subject.proposalEstabilidad atmosféricaspa
dc.subject.proposalTerreno complejospa
dc.subject.proposalArea urbana tropicalspa
dc.subject.proposalNúmero de Richardson aproximadospa
dc.subject.proposalUrban and mountain meteorologyeng
dc.subject.proposalUrban and mountain meteorologyeng
dc.subject.proposalCirculation patternseng
dc.subject.proposalNocturnal boundary layereng
dc.subject.proposalAtmospheric stabilityeng
dc.subject.proposalComplex terraineng
dc.subject.proposalTropical urban areaeng
dc.subject.proposalBulk Richardson numbereng
dc.titleLa atmósfera nocturna en un área urbana tropical de terreno complejo. Caso de estudio: el Valle de Aburrá (Colombia)spa
dc.title.translatedThe nocturnal atmosphere in a tropical urban area of complex terrain. Case study: Aburrá Valley (Colombia)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152442900.2022.pdf
Tamaño:
9.32 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Medio Ambiente y Desarrollo

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: