Metodología para la medición de la hidratación del cemento adicionado con ceniza volante a partir de impedancia eléctrica

dc.contributor.advisorLizarazo Marriaga, Juan Manuel
dc.contributor.authorPeñaranda Sanjuan, Simón Dario
dc.contributor.researchgroupAnálisis, Diseño y Materiales Giesspa
dc.date.accessioned2023-01-24T13:39:54Z
dc.date.available2023-01-24T13:39:54Z
dc.date.issued2022-12-26
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractEl presente trabajo de investigación se centra en el estudio del uso y comportamiento de los electrodos impresos en 3D SPEs para su implementación en la evaluación de las propiedades de materiales cementantes, siendo el principal objetivo del trabajo identificar las diferentes fases y procesos producto de la hidratación de las pastas de cemento cuando estas contienen adiciones de ceniza volante dentro de su composición. Esto a causa de que durante las últimas décadas se ha venido evidenciando un alto potencial con el uso de las técnicas de ensayos de espectroscopia de impedancia electroquímica (EIS), los cuales surgen de la necesidad del estudio y predicción del comportamiento en estado fresco y la durabilidad del concreto, lo cual ha generado que de igual forma durante estos años se hayan desarrollado diferentes metodologías que permitan su medición principalmente mediante pruebas de laboratorio algo complejas. Por esta razón, en el presente documento se realiza el estudio de los electrodos SPEs base polipropileno, los cuales como se podrá observar en los capítulos 4 y 5 presentaron un adecuado comportamiento que permitió realizar las mediciones de resistividad eléctrica a lo largo de su fase inicial de hidratación, logrando identificar a partir de los datos obtenidos durante las primeras 24 horas de medición los puntos críticos de la curva que definen las 4 fases principales producto de los procesos de hidratación de la mezcla; logrando así encontrar esos momentos claves donde se producen los cambios físicos y químicos dentro de una muestra, al igual que la afectación y cambios que se generaron al proceso cuando la muestra fue adiciona con ceniza volante. Adicionalmente, se realizan mediciones de la resistividad real de las muestras hasta el día 42, donde se identifica que las referencias de electrodos utilizados durante el ejercicio (los cuales están diseñados para realizar mediciones en medios acuosos) pueden llegar a presentar novedades de funcionamiento pasadas 72 horas, ya que se logran identificar variaciones en comparación con los ensayos realizados mediante el método tradicional de las barras de carbono. Adicionalmente, en el presente trabajo se desarrollaron mediciones de la liberación del calor acumulado durante la fase de hidratación de las pastas de cemento, para lo cual fue necesaria la adecuación de una cámara semi adiabática construida según las indicaciones de norma BS EN 196-9:210. “Methods of testing cement. Heat of hydration. Semi-adiabatic method” (HidrocemUN), la cual fue calibrada y verificada de acuerdo con un calorímetro adiabático de la referencia comercial I-CAL 8000, llegando a obtener buenos resultados en las muestras desarrolladas. Finalmente, a partir de los resultados alcanzados se logra definir una metodología la cual permite a partir de las mediciones de resistividad eléctrica mediante el uso de electrodos SPEs base polipropileno, la definición de modelos lineales con los que se logran identificar los tiempos de fraguado inicial y final, al igual que los tiempos donde se inicia la perdida de manejabilidad de la muestra. Logrando adicionalmente identificar las diferentes fases de la hidratación de las pastas de cemento en función de los procesos fisicoquímicos desarrollados en cada una de estas, al igual que la correlación que existe entre dichas mediciones con la evolución del calor de hidratación acumulado de las muestras a partir de modelos bilineales (Texto tomado de la fuente)spa
dc.description.abstractThis research works focuses on the study of the use and behavior of 3D SPEs printed electrodes for their implementation in the evaluation of the properties of cementitious materials, the main objective of the work being to identify the different phases and processes resulting from hydration. Of cement pastes when they contain additions of fly ash within their composition. This is due to the fact that during the last decades a high potential has been shown with the use of electrochemical impedance spectroscopy (EIS) testing techniques, which arise from the need to study and predict the behavior in the fresh state and the durability of the concrete, which has generated that in the same way during these years different methodologies have been developed that allow its measurement mainly through somewhat complex laboratory tests. For this reason, in this document the study of polypropylene-based SPE electrodes is carried out, which, as can be seen in chapters 4 and 5, presented an adequate behavior that allowed electrical resistivity measurements to be carried out throughout its initial phase of hydration, managing to identify from the data obtained during the first 24 hours of measurement the critical points of the curve was define the 4 main phases resulting from the hydration processes of the mixture; this managing to find those key moments where physical and chemical changes occur within a sample, as well as the affectation and changes that were generated to the process when the sample was added with fly ash. Additionally, measurements of the real resistivity of the samples are carried out until day 42, where it is identified that the electrode references used during the exercise (which are designed to carry out measurements in aqueous media) may present past operating novelties 72 hours since variations can be identified in comparison with the tests carried out using the traditional method of carbon bars. Additionally, in the present work, measurements of the release of heat accumulated during the hydration phase of the cement pastes were developed, for which it was necessary to adapt a semi-adiabatic chamber built according to the indications of the BS EN 196-9 standard: 210. “Methods of testing cement. Heat of hydration. Semi-adiabatic method” (HidroCemUN), which was calibrated and verified according to an adiabatic calorimeter of the commercial reference I-CAL 8000, obtaining good results in the developed samples. Finally, based on the results achieved, it is possible to define a methodology which allows, from electrical resistivity measurements through the use of polypropylene-based SPE electrodes, the definition of linear models with which it is possible to identify the initial setting times and end, as well as the times where the loss of manageability of the sample begins. Achieving additionally to identify the different phases of the hydration of the cement pastes based on the physicochemical processes developed in each of these, as well as the correlation that exists between said measurements with the evolution of the accumulated heat of hydration of the samples from of bi linear models.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Estructurasspa
dc.description.researchareaSistemas Estructurales y Materiales para la Construcciónspa
dc.format.extentxxiii, 167spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83081
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesZhu, Y., Zhang, H., Zhang, Z., & Yao, Y. (2017). Electrochemical impedance spectroscopy (EIS) of hydration process and drying shrinkage for cement paste with W/C of 0.25 affected by high range water reducer. Construction and Building Materials, 131, 536–541. https://doi.org/10.1016/j.conbuildmat.2016.08.099spa
dc.relation.referencesYousuf, F., & Xiaosheng, W. (2020). Investigation of the early-age microstructural development of hydrating cement pastes through electrical resistivity measurements. Case Studies in Construction Materials, 13. https://doi.org/10.1016/j.cscm.2020.e00391spa
dc.relation.referencesYousuf, F., Wei, X., & Zhou, J. (2020). Monitoring the setting and hardening behaviour of cement paste by electrical resistivity measurement. Construction and Building Materials, 252. https://doi.org/10.1016/j.conbuildmat.2020.118941spa
dc.relation.referencesYousuf, F., Wei, X., & Tao, J. (2017). Evaluation of the influence of a superplasticizer on the hydration of varying composition cements by the electrical resistivity measurement method. 144, 25–34. https://doi.org/10.1016/j.conbuildmat.2017.03.138spa
dc.relation.referencesYim, H. J., Lee, H., & Kim, J. H. (2017). Evaluation of mortar setting time by using electrical resistivity measurements. Construction and Building Materials, 146, 679–686. https://doi.org/10.1016/j.conbuildmat.2017.04.088spa
dc.relation.referencesWolter, J. M., Schmeide, K., Huittinen, N., & Stumpf, T. (2019). Retention by calcium silicate hydrate (C-S-H) gel and secondary alteration phases in carbonate solutions with high ionic strength: A site-selective TRLFS study. Scientific Reports, 9(1), 1–32. https://doi.org/10.1038/s41598-019-50402-xspa
dc.relation.referencesWhiting, D. A., & Nagi, M. A. (2003). Electrical Resistivity of Concrete - A Literature Review. Portland Cement Association, 57.spa
dc.relation.referencesWenner, F. (1916). A method of measuring earth resistivity. Bulletin of the Bureau of Standards, 12(4), 469. https://doi.org/10.6028/bulletin.282spa
dc.relation.referencesWang, X., & Lee, H. (2012). Heat of hydration models of cementitious materials. 24(2).spa
dc.relation.referencesTang, S. W., Li, Z. J., Shao, H. Y., & Chen, E. (2014). Characterization of early-age hydration process of cement pastes based on impedance measurement. Construction and Building Materials, 68, 491–500. https://doi.org/10.1016/j.conbuildmat.2014.07.009spa
dc.relation.referencesTang, S. W., Cai, X. H., He, Z., Zhou, W., Shao, H. Y., Li, Z. J., Wu, T., & Chen, E. (2017). The review of early hydration of cement-based materials by electrical methods. En Construction and Building Materials (Vol. 146, pp. 15–29). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2017.04.073spa
dc.relation.referencesSwaddiwudhipong, S., Chen, D., & Zhang, M. H. (2002). Simulation of the exothermic hydration process of Portland cement. Advances in Cement Research, 14(2), 61–69. https://doi.org/10.1680/adcr.2002.14.2.61spa
dc.relation.referencesSuryanto, B., McCarter, W. J., Starrs, G., & Ludford-Jones, G. v. (2016). Electrochemical immittance spectroscopy applied to a hybrid PVA/steel fiber engineered cementitious composite. Materials and Design, 105, 179–189. https://doi.org/10.1016/j.matdes.2016.05.037spa
dc.relation.referencesSuryanto, B., McCarter, W. J., Starrs, G., & Chrisp, T. M. (2017). Characterization of Fly-ash using Electrochemical Impedance Spectroscopy. Procedia Engineering, 171, 705–714. https://doi.org/10.1016/j.proeng.2017.01.414spa
dc.relation.referencesShen, P., Lu, L., He, Y., Wang, F., & Hu, S. (2016). Hydration monitoring and strength prediction of cement-based materials based on the dielectric properties. Construction and Building Materials, 126, 179–189. https://doi.org/10.1016/j.conbuildmat.2016.09.030spa
dc.relation.referencesSanchez de Guzmán, D. (2001). Tecnología del concreto y del mortero. (p. 334). BHANDAR EDITORES LTDA.spa
dc.relation.referencesSadique, M., & Coakley, E. (2016). The influence of physico-chemical properties of fly ash and CKD on strength generation of high-volume fly ash concrete. Advances in Cement Research, 28(9), 595–605. https://doi.org/10.1680/jadcr.15.00103spa
dc.relation.referencesRamirez Arrienta, S. S. (2017). Caracterización Hidráulica de Mezclas asfálticas Abiertas Mediante la Técnica de Espectroscopía de Impedancia Electroquímica (EIS). 163.spa
dc.relation.referencesRamezanianpour, A. A. (2013). Cement replacement materials. New York: Springer.spa
dc.relation.referencesPeña, L. N. (2011). Desarrollo de un sistema semi - adiabático para medir calor de hidratación de pastas de cemento y morteros. Universidad Nacional de Colombia - Sede Bogotá, 77.spa
dc.relation.referencesMendoza, J., Durán, R., & Genescá, J. (2010). Espectroscopía de impedancia electroquímica en corrosión. Universidad Autonoma de Mexico, 17(2), 255–258. https://doi.org/10.3989/collectbot.1989.v17.143spa
dc.relation.referencesMehta, P., & Monteiro, P. (2006). Concrete: Microstructure, Properties and materials. New York: The McGraw Hill Companies.spa
dc.relation.referencesLura, P., Winnefeld, F., & Klemm, S. (2010). Simultaneous measurements of heat of hydration and chemical shrinkage on hardening cement pastes. c, 925–932. https://doi.org/10.1007/s10973-009-0586-2spa
dc.relation.referencesLong, G. C., Xie, Y. J., & Jiang, Z. W. (2005). Efficiency of fly ash in cementitious materials. Advances in Cement Research, 17(3), 113–119. https://doi.org/10.1680/adcr.2005.17.3.113spa
dc.relation.referencesLizarazo-marriaga, J. (2010). CONCRETO HIDRAULICO APLICADO A LA CONSTRUCCIÓN CIVIL.spa
dc.relation.referencesLizarazo, J., Ramírez, S., & Fonseca, L. (2016). Influence of the Aggregate–Cement Ratio on the Electrical and Transport Properties of Cement Mortars. Arabian Journal for Science and Engineering, 41(12), 4901–4909. https://doi.org/10.1007/s13369-016-2213-4spa
dc.relation.referencesLizarazo, J., Ramìrez, S., & Fonseca, L. (2016). Influence of the Aggregate – Cement Ratio on the Electrical and Transport Properties of Cement Mortars. 4901–4909. https://doi.org/10.1007/s13369-016-2213-4spa
dc.relation.referencesLizarazo, J., Higuera, C., & Claisse, P. (2014). Measuring the effect of the ITZ on the transport related properties of mortar using electrochemical impedance. Construction and Building Materials, 52, 9–16. https://doi.org/10.1016/j.conbuildmat.2013.10.077spa
dc.relation.referencesLizarazo, J. (2018). CONCRETO HIDRAULICO APLICADO A LA CONSTRUCCIÓN CIVIL (U. N. de COLOMBIA, Ed.; UNIVERSIDA).spa
dc.relation.referencesLiu, L., Yang, P., Zhang, B., Huan, C., Guo, L., Yang, Q., & Song, K. I. I. L. (2021). Study on hydration reaction and structure evolution of cemented paste backfill in early-age based on resistivity and hydration heat. Construction and Building Materials, 272. https://doi.org/10.1016/j.conbuildmat.2020.121827spa
dc.relation.referencesLi, Z., Wei, X., & Li, W. (2003b). Preliminary interpretation of portland cement hydration process using resistivity measurements. ACI Materials Journal, 100(3), 253–257. https://doi.org/10.14359/12627spa
dc.relation.referencesLi, Z., Wei, X., & Li, W. (2003a). Preliminary Interpretation of Portland Cement Hydration Process Using Resistivity Measurements. 100, 253–257.spa
dc.relation.referencesLeón, N., Eugenia, L., & Robles, R. (2012). Evaluación de factores que afectan la aparición de etringita secundaria como simulación del envejecimiento de mezclas de concreto y su papel dentro de procesos de expansión y. 1–8.spa
dc.relation.referencesKurdowski, W. (2014). Cement and concrete chemistry. En Cement and Concrete Chemistry (Springer, Vol. 9789400779). Springer. https://doi.org/10.1007/978-94-007-7945-7spa
dc.relation.referencesHusain, A., Kupwade-Patil, K., Al-Aibani, A. F., & Abdulsalam, M. F. (2017). In situ electrochemical impedance characterization of cement paste with volcanic ash to examine early stage of hydration. Construction and Building Materials, 133, 107–117. https://doi.org/10.1016/j.conbuildmat.2016.12.054spa
dc.relation.referencesHu, X., Shi, C., Liu, X., Zhang, J., & de Schutter, G. (2019). A review on microstructural characterization of cement-based materials by AC impedance spectroscopy. Cement and Concrete Composites, 100, 1–14. https://doi.org/10.1016/j.cemconcomp.2019.03.018spa
dc.relation.referencesHiguera Flórez, H. C. (2016). Simulación multifísica y multifase del ensayo de migración del ión cloruro en el concreto ( NT Build 492 ) teniendo en cuenta los fenómenos de adsorción e interacción iónica. 339. http://bdigital.unal.edu.co/57316/1/1016014601.2017.pdfspa
dc.relation.referencesFonseca Barrera, L. A. (2016). Empleo de ceniza volante colombiana como material cementicio suplementario y sus efectos sobre la fijación de cloruros en concretos. 319. http://www.bdigital.unal.edu.co/53975/spa
dc.relation.referencesFeliu, S., Andrade, C., González, J. A., & Alonso, C. (1996). A new method for in-situ measurement of electrical resistivity of reinforced concrete. Materials and Structures/Materiaux et Constructions, 29(6), 362–365. https://doi.org/10.1007/bf02486344spa
dc.relation.referencesDunn, R. C., Ross, R. A., & Davis, G. D. (2010). Corrosion monitoring of steel reinforced concrete structures using embedded instrumentation. NACE - International Corrosion Conference Series, July.spa
dc.relation.referencesCruz, J. M., Fita, I. C., Soriano, L., Payá, J., & Borrachero, M. v. (2013). The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans. Cement and Concrete Research, 50, 51–61. https://doi.org/10.1016/j.cemconres.2013.03.019spa
dc.relation.referencesClaisse, P. (2016). Civil engineering materials. Elsevier, Oxford, UK:spa
dc.relation.referencesChristensen, B. (2001). Time of setting. International Standards Worldwide STP 169D (ASTM), 68(C), 88–101. https://doi.org/10.1016/S0080-8784(01)80194-0spa
dc.relation.referencesChi, L., Wang, Z., Lu, S., Zhao, D., & Yao, Y. (2019). Development of mathematical models for predicting the compressive strength and hydration process using the EIS impedance of cementitious materials. Construction and Building Materials, 208, 659–668. https://doi.org/10.1016/j.conbuildmat.2019.03.056spa
dc.relation.referencesChi, L., Wang, Z., Lu, S., Wang, H., Liu, K., & Liu, W. (2021). Early assessment of hydration and microstructure evolution of belite-calcium sulfoaluminate cement pastes by electrical impedance spectroscopy. Electrochimica Acta, 389. https://doi.org/10.1016/j.electacta.2021.138699spa
dc.relation.referencesBroomfield, J. P. (2007). Corrosión of steel in croncrete (Taylor & F).spa
dc.relation.referencesBosques, J. (2010). Electricidad Básica autor FTS (Vol. 1).spa
dc.relation.referencesBentz, D; Clifton, J; Ferraris, C; Garboczi, E. (1999). Transport properties and durability of concrete- Literature review. Nacional Institute of Standards and Techonology, May 2014, 709–721.spa
dc.relation.referencesArchie, G. E. (2003). The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. SPE Reprint Series, 55, 9–16. https://doi.org/10.2118/942054-gspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc690 - Construcción de edificiosspa
dc.subject.lembCEMENTOspa
dc.subject.lembCementeng
dc.subject.lembIMPEDANCIA (ELECTRICIDAD)spa
dc.subject.lembImpedance (Electricity)eng
dc.subject.proposalElectrodos impresos en 3Dspa
dc.subject.proposalceniza volantespa
dc.subject.proposalespectroscopia de impedancia electroquímicaspa
dc.subject.proposalHidrataciónspa
dc.subject.proposalcalorimetríaspa
dc.subject.proposal3D printed electrodes,eng
dc.subject.proposalelectrochemical impedance spectroscopyeng
dc.subject.proposalfly asheng
dc.subject.proposalhydrationeng
dc.subject.proposalcalorimetryeng
dc.titleMetodología para la medición de la hidratación del cemento adicionado con ceniza volante a partir de impedancia eléctricaspa
dc.title.translatedMethodology for measuring the hydration of cement added with fly ash from electrical impedancespa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018478067 - 2022.pdf
Tamaño:
3.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: