Potential of optical waveguide structures to measure the chirality parameter of chiral substances

dc.contributor.advisorTorres Trujillo, Pedro Ignacio
dc.contributor.authorEnríquez Espinoza, Jim Alexander
dc.contributor.researchgroupFotónica y Optoelectrónicaspa
dc.date.accessioned2021-06-21T19:54:19Z
dc.date.available2021-06-21T19:54:19Z
dc.date.issued2021-02-18
dc.descriptionilustracionesspa
dc.description.abstractThe chiral molecule interactions depend on their chirality. Important molecules of life such as proteins, enzymes, amino acids, carbohydrates, and so on, are chiral. Chiral substances which interact with them, such as drugs and agrochemicals, must present a specific enantiomeric content to assure effectiveness. Thus, whereas one enantiomer of a chiral drug or agrochemical product has a desired effect, the other one may be inactive or even toxic. The study of methods to identify the enantiomeric content of chiral substances is a current research topic. Although there are a wide variety of methods, which generally demand expensive reagents, large equipment, and the need for highly qualified personnel, new techniques are still in demand due to the continuous development of new chiral substances, and the industrial need to perform millions of tests during short periods of time. In this scenary, methods based on optical waveguide structures present a great potential, providing great sensitivity, real-time monitoring, and no invasiveness. For this reason, in this M.Sc. thesis, a theoretical and numerical study of optical waveguides involving chiral media is presented. The study is centered around planar symmetric and asymmetric waveguides, where the effects of the real, and for the first time, the imaginary part of the chirality parameter are analyzed in the characteristics of the guided light. As an application of the study, a lossy mode resonances (LMR) based optical fiber sensor is designed to measure the chirality parameter. (Tomado de la fuente)eng
dc.description.abstractLas interacciones de moléculas quirales dependen de su quiralidad. Las moléculas importantes para la vida como proteínas, enzimas, aminoácidos, carbohidratos, etc., son quirales. Las sustancias quirales que interactúan con ellas, como fármacos y agroquímicos, deben poseer un contenido enantiomérico específico para asegurar su efectividad. De esta manera, mientras un enantiómero de un fármaco quiral o un agroquímico quiral produce los efectos deseados, el otro podría ser inactivo o incluso tóxico. El estudio de los métodos para identificar el contenido enantiomérico de sustancias quirales es un área de investigación actual. A pesar de que hay una amplia variedad de métodos, los cuales generalmente demandan reactivos caros, equipos de gran tamaño y la necesidad de personal altamente calificado, se demandan nuevas técnicas debido al continuo desarrollo de sustancias quirales y la necesidad industrial de llevar a cabo millones de pruebas en cortos periodos de tiempo. En este escenario, los métodos basados en guías de onda ópticas presentan un gran potencial, ofreciendo gran sensibilidad, monitoreo en tiempo real y no invasibidad. Por esta razón, en esta tesis de maestría en ciencias se presenta un estudio teórico y numérico de guías de onda óptica con medios quirales. El estudio se centra en guías de onda planas simétricas y asimétricas, donde se analizan los efectos de la parte real, y por primera vez, la parte imaginaria del parámetro de quiralidad sobre la luz guiada. Como una aplicación del estudio, se diseña un sensor basado en resonancias de modos con pérdidas en fibra óptica para medir el parámetro de quiralidad. (Tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaFotónicaspa
dc.format.extent125 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79660
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.references[1] Nallamuthu Ananthi. Role of Chirality in Drugs. Organic Medicinal Chemistry International Journal, 5(3), 2018.spa
dc.relation.references[2] Ernest Eliel, Samuel Wilen, and Lewis Mander. Stereochemistry of organic compounds. Number 9. 1995.spa
dc.relation.references[3] Xin Zhang, Jun Yin, and Juyoung Yoon. Recent advances in development of chiral fluorescent and colorimetric sensors. Chemical Reviews, 114(9):4918–4959, 2014.spa
dc.relation.references[4] Huishi Guo. Progress of quartz crystal microbalance in chiral analysis. Journal of Nanoscience and Nanotechnology, 14(2):1884–1897, 2014.spa
dc.relation.references[5] Erhan Zor, Haluk Bingol, and Mustafa Ersoz. Chiral sensors. TrAC - Trends in Analytical Chemistry, 121:1–17, 2019.spa
dc.relation.references[6] Brian Culshaw and Alan Kersey. Fiber-Optic Sensing: A Historical Perspective. 26(9):1064–1078, 2008.spa
dc.relation.references[7] Byoungho Lee. Review of the present status of optical fiber sensors. Optical Fiber Technology, 9(2):58, 2003.spa
dc.relation.references[8] M. Oksanen, P. K. Koivisto, and I. V. Lindell. Dispersion curves and fields for a chiral slab waveguide. IEE Proceedings H: Microwaves, Antennas and Propagation, 138(4):327–334, 1991.spa
dc.relation.references[9] Cornel Eftimiu and L Wilson Pearson. Guided electromagnetic waves in chiral media. Radio Science, 24(03):351–359, 1989.spa
dc.relation.references[10] Keqian Zhang, Jianguo Xiao and Lian Gong. Analysis of planar dielectric waveguide with chiral cladding. International Journal, 20(2):325–340, 1999.spa
dc.relation.references[11] Nader Engheta and Philippe Pelet. Modes in chirowaveguides. Optics Letters, 14(11):593–595, 1989.spa
dc.relation.references[12] Jian-Feng Dong and Chao Xu. Characteristics of guided modes in planar chiral nihility meta-material waveguides. Progress In Electromagnetics Research, 14:107–126, 2009.spa
dc.relation.references[13] Haixin Zhou and Keqian Zhang. Analysis of circular dielectric waveguide with chiral cladding. International Journal of Infrared and Millimeter Waves, 20(11):1989–1999, 1999.spa
dc.relation.references[14] Maoyan Wang, Hailong Li, Tong Xu, Guiping Li, Mengxia Yu, Baojun Jiang, Jun Xu, and Jian Wu. Probing a chiral drug using long period fiber gratings. Optics Express, 27(22):31407, 2019.spa
dc.relation.references[15] N. Paliwal and J. John. Lossy Mode Resonance (LMR) Based Fiber Optic Sensors: A Review. IEEE Sensors Journal, 15(10):5361–5371, 2015.spa
dc.relation.references[16] Luisa Torsi Kyriaki Manoli, Maria Magliulo. Chiral Sensor Devices for Differentiation of Enantiomers. In Schurig V. (eds) Differentiation of Enantiomers II. Topics in Current Chemistry, volume 341, pages 4–17. Springer, Cham, 2013.spa
dc.relation.references[17] Jonathan Clayden, Nick Greeves, and Stuart Warren. Organic Chemistry. Oxford University Press, 2 edition, 2012.spa
dc.relation.references[18] Ronny Wirz, Davide Ferri, Thomas Bürgi, and Alfons Baiker. Probing chiral recognition in liquid chromatography by absolute configuration modulation ATR-IR spectroscopy. Spectroscopy Europe, 19(1):8–16, 2007.spa
dc.relation.references[19] Natalija Nakov, Rumenka Petkovska, Liljana Ugrinova, Zoran Kavrakovski, Aneta Dimitrovska, and Dobrin Svinarov. Critical development by design of a rugged HPLCMS/MS method for direct determination of ibuprofen enantiomers in human plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 992:67–75, 2015.spa
dc.relation.references[20] C. J. Venkatramani, Mohammad Al-Sayah, Guannan Li, Meenakshi Goel, James Girotti, Lisa Zang, Larry Wigman, Peter Yehl, and Nik Chetwyn. Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography. Talanta, 148:548–555, 2016.spa
dc.relation.references[21] Cecilia Cagliero, Barbara Sgorbini, Chiara Cordero, Erica Liberto, Patrizia Rubiolo, and Carlo Bicchi. Enantioselective Gas Chromatography with Derivatized Cyclodextrins in the Flavour and Fragrance Field. Israel Journal of Chemistry, 56(11-12):925–939, 2016.spa
dc.relation.references[22] Stefanie Kaffarnik, Carolina Heid, Yasemin Kayademir, Dorothee Eibler, and Walter Vetter. High enantiomeric excess of the flavor relevant 4-Alkyl-branched fatty acids in milk fat and subcutaneous adipose tissue of sheep and goat. Journal of Agricultural and Food Chemistry, 63(2):469–475, 2015.spa
dc.relation.references[23] Robert W Woody. [4] Circular dichroism. In Biochemical Spectroscopy, volume 246 of Methods in Enzymology, pages 34–71. Academic Press, 1995.spa
dc.relation.references[24] Sanmitra Barman and Eric V. Anslyn. Rapid determination of enantiomeric excess of α-chiral aldehydes using circular dichroism spectroscopy. Tetrahedron, 70(6):1357–1362, 2014.spa
dc.relation.references[25] Qiaozhi Tang, Lu Zhao, Jingqian Xie, Kai Liu, Weiping Liu, and Shanshan Zhou. Deviations from Beer’s law in electronic absorption and circular dichroism: Detection for enantiomeric excess analysis. Chirality, 31(7):492–501, 2019.spa
dc.relation.references[26] Hyun Hwa Jo, Chung Yon Lin, and Eric V. Anslyn. Rapid optical methods for enantiomeric excess analysis: From enantioselective indicator displacement assays to exciton-coupled circular dichroism. Accounts of Chemical Research, 47(7):2212–2221, 2014.spa
dc.relation.references[27] Marie Urbanová and Petr Maloň. Circular Dichroism Spectroscopy. Analytical Methods in Supramolecular Chemistry, Volume 1 & 2: Second Edition, 1:337–369, 2012.spa
dc.relation.references[28] J Enrique Vázquez-Lozano and Alejandro Martínez. Toward chiral sensing and spectroscopy enabled by all-dielectric integrated photonic waveguides. Laser & Photonics Reviews, 14(9):1900422, 2020.spa
dc.relation.references[29] Giovanni Pellegrini, Marco Finazzi, Michele Celebrano, Lamberto Duò, and Paolo Biagioni. Surface-enhanced chiroptical spectroscopy with superchiral surface waves. Chirality, 30(7):883–889, 2018.spa
dc.relation.references[30] John McMurry. Organic Chemistry with Biological Applications. Broks/Cole, Cengage Learning, 2 edition, 2011.spa
dc.relation.references[31] Maab H. Al-Hafidh, Andrew Glidle, Rab Wilson, Anthony E. Kelly, Julien Reboud, and Jonathan M. Cooper. Multireflection Polarimetry in Microfluidics. IEEE Sensors Letters, 3(10):1–4, 2019.spa
dc.relation.references[32] Thomas C. Preston, Nathan D. Jones, Sven Stille, and Silvia Mittler. Simple liquid-core waveguide polarimetry. Applied Physics Letters, 89(25):10–13, 2006.spa
dc.relation.references[33] Míriam Pérez-Trujillo, Teodor Parella, and Lars T. Kuhn. NMR-aided differentiation of enantiomers: Signal enantioresolution. Analytica Chimica Acta, 876:63–70, 2015.spa
dc.relation.references[34] Ramisetti Nageswara Rao and Kondapalli Santhakumar. Cyclodextrin assisted enantiomeric recognition of emtricitabine by 19F NMR spectroscopy. New Journal of Chemistry, 40(10):8408–8417, 2016.spa
dc.relation.references[35] Guangling Bian, Shiwei Yang, Huayin Huang, Hua Zong, and Ling Song. A bisthiourea-based 1H NMR chiral sensor for chiral discrimination of a variety of chiral compounds. Sensors and Actuators, B: Chemical, 231:129–134, 2016.spa
dc.relation.references[36] Burkhard Luy. Disinction of enantiomers by NMR media. Journal Of The Indian Institute Of Science, 90:119–132, 2010.spa
dc.relation.references[37] Armando Navarro-Vázquez, Philippe Berdagué, and Philippe Lesot. Integrated Computational Protocol for the Analysis of Quadrupolar Splittings from Natural-Abundance Deuterium NMR Spectra in (Chiral) Oriented Media. ChemPhysChem, 18(10):1252– 1266, 2017.spa
dc.relation.references[38] Philippe Lesot, Philippe Berdagué, Abdelkrim Meddour, Alexander Kreiter, Markus Noll, and Michael Reggelin. 2 H and 13 C NMR-Based Enantiodetection Using Polyacetylene versus Polypeptide Aligning Media: Versatile and Complementary Tools for Chemists. ChemPlusChem, 84(2):144–153, 2019.spa
dc.relation.references[39] Jonathan Farjon and Nicolas Giraud. 1H NMR analyses of enantiomeric mixtures using chiral liquid crystals. Current Opinion in Colloid and Interface Science, 33:1–8, 2018.spa
dc.relation.references[40] Yap Wing Fen and W. Mahmood Mat Yunus. Optical characterization of multi layer thin films using surface plasmon resonance method: From electromagnetic theory to sensor application. AIP Conference Proceedings, 1482(2012):132–135, 2012.spa
dc.relation.references[41] Briliant Adhi Prabowo, Agnes Purwidyantri, and Kou Chen Liu. Surface plasmon resonance optical sensor: A review on light source technology. Biosensors, 8(3), 2018.spa
dc.relation.references[42] Ben M. Maoz, Yulia Chaikin, Alexander B. Tesler, Omri Bar Elli, Zhiyuan Fan, Alexander O. Govorov, and Gil Markovich. Amplification of chiroptical activity of chiral biomolecules by surface plasmons. Nano Letters, 13(3):1203–1209, 2013.spa
dc.relation.references[43] Dawei Zhai, Peng Wang, Rong Yao Wang, Xiaorui Tian, Yinglu Ji, Wenjing Zhao, Luming Wang, Hong Wei, Xiaochun Wu, and Xiangdong Zhang. Plasmonic polymers with strong chiroptical response for sensing molecular chirality. Nanoscale, 7(24):10690– 10698, 2015.spa
dc.relation.references[44] Guangcan Mi and Vien Van. Characteristics of surface plasmon polaritons at a chiral–metal interface. Optics Letters, 39(7):2028, 2014.spa
dc.relation.references[45] Sotiris Droulias and Lykourgos Bougas. Surface Plasmon Platform for Angle-Resolved Chiral Sensing. ACS Photonics, 6(6):1485–1492, 2019.spa
dc.relation.references[46] Maoyan Wang, Hailong Li, Tong Xu, Hu Zheng, Mengxia Yu, Guiping Li, Jun Xu, and Jian Wu. Probing bianisotropic biomolecules via a surface plasmon resonance sensor. Optics Express, 26(22):28277, 2018.spa
dc.relation.references[47] Maoyan Wang, Hailong Li, Tong Xu, Mengxia Yu, Guiping Li, Hu Zheng, Jian Wu, and Jun Xu. Sensing and Manipulation of Bianisotropic Biomolecules Using a Surface Plasmon Resonance Based Optical Fiber Sensor. Journal of Lightwave Technology, 36(24):5927–5934, 2018.spa
dc.relation.references[48] Katsunari Okamoto. Coupled mode theory. In Fundamentals of Optical Waveguides, pages 159–207. Academic, 2006.spa
dc.relation.references[49] Frank Vollmer and Peer Fischer. Ring-resonator-based frequency-domain optical activity measurements of a chiral liquid. Optics Letters, 31(4):453, 2006.spa
dc.relation.references[50] Haifeng Lu, Zhuangqi Cao, Honggen Li, and Qishen Shen. Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide. Applied Physics Letters, 85(20):4579–4581, 2004.spa
dc.relation.references[51] Xianping Wang, Cheng Yin, Honggen Li, Minghuang Sang, Wen Yuan, and Zhuangqi Cao. Ultrahigh-order mode-assisted determination of enantiomeric excess in chiral liquids. Optics Letters, 38(20):4085, 2013.spa
dc.relation.references[52] Jiun You Lin. Determination of the refractive index and the chiral parameter of a chiral solution based on chiral reflection equations and heterodyne interferometry. Applied Optics, 47(21):3828–3834, 2008.spa
dc.relation.references[53] Minghong Yang, Jiankun Peng, Gaopeng Wang, and Jixiang Dai. Fiber optic sensors based on nano-films. In Fiber Optic Sensors, pages 1–30. Springer, 2017.spa
dc.relation.references[54] Anuj K. Sharma, Rajan Jha, and B. D. Gupta. Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. IEEE Sensors Journal, 7(8):1118–1129, 2007.spa
dc.relation.references[55] Bo Fan, Tongmengxue Zhang, Simin He, Maoyan Wang, Hailong Li, Mengxia Yu, Guiping Li, and Jun Xu. Chirality parameter sensing based on surface plasmon resonance D-type photonic crystal fiber sensors. Applied Optics, 60(12):3314, 2021.spa
dc.relation.references[56] Mark A Ordal, LL Long, RJ Bell, SE Bell, RR Bell, RW Alexander, and CA Ward. Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared. Applied optics, 22(7):1099–1119, 1983.spa
dc.relation.references[57] Tinko Eftimov. Sensor applications of fiber bragg and long period gratings. In Optical Waveguide Sensing and Imaging, pages 1–23. Springer, 2008.spa
dc.relation.references[58] Xiaoyi Dong, Hao Zhang, Bo Liu, and Yinping Miao. Tilted fiber bragg gratings: Principle and sensing applications. Photonic Sensors, 1(1):6–30, 2011.spa
dc.relation.references[59] Kurt Mislow. Molecular chirality. Top. Stereochem., 22:1–82, 1999.spa
dc.relation.references[60] Georges H Wagni`ere. On chirality and the universal asymmetry: reflections on image and mirror image. John Wiley & Sons, 2007.spa
dc.relation.references[61] Ari Henrik Sihvola. Electromagnetic modeling of bi-isotropic media. Progress In Electromagnetics Research, 9:45–86, 1994.spa
dc.relation.references[62] Volker Schurig and Federica Balzano. Differentiation of Enantiomers I. Springer, 2013. [63] Alain Berthod. Chiral recognition in separation methods. Springer, 2010.spa
dc.relation.references[64] Peter Vollhardt and Neil Schore. Organic Chemestry. Structure and Function. Number 2. Clancy Marshall, 6th edition, 2011.spa
dc.relation.references[65] W. John Lough. Chiral analysis of pharmaceuticals. In Pharmaceutical Analysis, page 76. Blackwell Publishing, 2003.spa
dc.relation.references[66] A. Horeau. Interactions d’enantiomeres en solution ; influence sur le pouvoir rotatoire : Purete optique et purete enantiomerique. Tetrahedron Letters, 10(36):3121–3124, 1969.spa
dc.relation.references[67] Ben Yu-Kuang Hu. Kramers–Kronig in two lines. American Journal of Physics, 57(9):821–821, 1989.spa
dc.relation.references[68] A. LakhtakiaV. K. VaradanV. V. Varadan. Time-Harmonic Electromagnetic Fields in Chiral Media. Springer, Berlin, Heidelberg, 1989.spa
dc.relation.references[69] James Noonan and Tom G. Mackay. On electromagnetic surface waves supported by an isotropic chiral material. Optics Communications, 434(October 2018):224–229, 2019.spa
dc.relation.references[70] J. Margineda, G.J. Molina-Cuberos, M.J. Nunez, A.J. Garcia-Collado, and E. Marti. Electromagnetic Characterization of Chiral Media. Solutions and Applications of Scattering, Propagation, Radiation and Emission of Electromagnetic Waves, pages 1–22, 2012.spa
dc.relation.references[71] Peter Atkins and Julio De Paula. Physical chemistry for the life sciences. Oxford University Press, USA, 2011.spa
dc.relation.references[72] Laurence A. Nafie. Raman optical activity, theory. Encyclopedia of Spectroscopy and Spectrometry, 2628:891–899, 2016.spa
dc.relation.references[73] Amnon Yariv and Pochi Yeh. Photonics : optical electronics in modern communications. Oxford University Press, Inc., sixth edition, 2007.spa
dc.relation.references[74] Reza Mohammadi-Baghaee and Jalil Rashed-Mohassel. The Chirality Parameter for Chiral Chemical Solutions. Journal of Solution Chemistry, 45(8):1171–1181, 2016.spa
dc.relation.references[75] Elena Benito-Peña, Mayra Granda Valdés, Bettina Glahn-Martínez, and Maria C. Moreno-Bondi. Fluorescence based fiber optic and planar waveguide biosensors. A review. Analytica Chimica Acta, 943:18, 2016.spa
dc.relation.references[76] Aradhana Dutta, Bidyut Deka, and Partha Pratim Sahu. Planar Waveguide Optical Sensors. Springer, 2016.spa
dc.relation.references[77] Brian Culshaw. Principles of Fiber Optic Sensors. Elsevier Inc., 2006.spa
dc.relation.references[78] John F. Ready. Fiber Optics. In Industrial Applications of Lasers, page 542. Elsevier, 1997.spa
dc.relation.references[79] Wei Liang, Yanyi Huang, Yong Xu, Reginald K Lee, and Amnon Yariv. Highly sensitive fiber bragg grating refractive index sensors. Applied physics letters, 86(15):151122, 2005.spa
dc.relation.references[80] Tuan Guo, Fu Liu, Bai-Ou Guan, and Jacques Albert. Tilted fiber grating mechanical and biochemical sensors. Optics & Laser Technology, 78:19–33, 2016.spa
dc.relation.references[81] Liang Qi, Chun-Liu Zhao, Jianying Yuan, Manping Ye, Jianfeng Wang, Zaixuan Zhang, and Shangzhong Jin. Highly reflective long period fiber grating sensor and its application in refractive index sensing. Sensors and Actuators B: Chemical, 193:185–189, 2014.spa
dc.relation.references[82] Ignacio Del Villar, Francisco J. Arregui, Carlos R. Zamarreño, Jesus M. Corres, Candido Bariain, Javier Goicoechea, Cesar Elosua, Miguel Hernaez, Pedro J. Rivero, Abian B. Socorro, Aitor Urrutia, Pedro Sanchez, Pablo Zubiate, Diego Lopez, Nerea De Acha, Joaquin Ascorbe, and Ignacio R. Matias. Optical sensors based on lossy-mode resonances. Sensors and Actuators, B: Chemical, 240:174–185, 2017.spa
dc.relation.references[83] Francisco J. Arregui, Ignacio Del Villar, Jesus M. Corres, Javier Goicoechea, Carlos R. Zamarreño, Cesar Elosua, Miguel Hernaez, Pedro J. Rivero, Abian B. Socorro, Aitor Urrutia, Pedro Sanchez, Pablo Zubiate, Diego Lopez, Nerea De Acha, and Ignacio R. Matias. Fiber-optic lossy mode resonance sensors. Procedia Engineering, 87:3–8, 2014.spa
dc.relation.references[84] Ignacio Del Villar, Carlos R. Zamarreño, Miguel Hernáez, Francisco J. Arregui, and Ignacio R. Matias. Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications. Journal of Lightwave Technology, 28(1):111–117, 2010.spa
dc.relation.references[85] Miguel Hernáez, Ignacio Del Villar, Carlos R Zamarreño, Francisco J Arregui, and Ignacio R Matias. Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings. Applied optics, 49(20):3980–3985, 2010.spa
dc.relation.references[86] A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias. Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures. Sensors and Actuators, B: Chemical, 200:53–60, 2014.spa
dc.relation.references[87] P. Zubiate, C. R. Zamarreño, I. Del Villar, I. R. Matias, and F.J. Arregui. High sensitive refractometers based on lossy mode resonances (LMRs) supported by ITO coated D-shaped optical fibers. Optics Express, 23(6):8045, 2015.spa
dc.relation.references[88] Hunsperger Robert. Integrated Optics. Theory and Technology. Springer-Verlag New York, 6 edition, 2009.spa
dc.relation.references[89] Richard L. Burden and J. Douglas Faires. Numerical Analysis. The Prindle, Weber and Schmidt Series in Mathematics. PWS-Kent Publishing Company, Boston, fourth edition, 1989.spa
dc.relation.references[90] Seojoo Lee, Ji Hun Kang, Seok Jae Yoo, and Q. Han Park. Robust numerical evaluation of circular dichroism from chiral medium/nanostructure coupled systems using the finite-element method. Scientific Reports, 8(1):1–8, 2018.spa
dc.relation.references[91] Alfons Penzkofer. Optical Rotatory Dispersion Measurement of D-Glucose with Fixed Polarizer Analyzer Accessory in Conventional Spectrophotometer. Journal of Analytical Sciences, Methods and Instrumentation, 03(04):234–239, 2013.spa
dc.relation.references[92] F. Reinscheid and U. M. Reinscheid. Stereochemical analysis of (+)-limonene using theoretical and experimental NMR and chiroptical data. Journal of Molecular Structure, 1106:141–153, 2016.spa
dc.relation.references[93] C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui. Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings. Sensors and Actuators, B: Chemical, 155(1):290–297, 2011.spa
dc.relation.references[94] L. Ostrowski, M. Murawski, M. Szymanski, Z. Holdynski, T. Tenderenda, P. Pura, P. Mergo, P. Marć, T. Nasilowski, and L. R. Jaroszewicz. Numerical aperture analysis of specialty microstructured fibres in a broad wavelength range. Fifth European Workshop on Optical Fibre Sensors, 8794(May):879440, 2013.spa
dc.relation.references[95] Omar Fuentes, Javier Goicoechea, Jesus M Corres, Ignacio Del Villar, Aritz Ozcariz, and Ignacio R Matias. Generation of lossy mode resonances with different nanocoatings deposited on coverslips. Opt. Express, 28(1):288–301, 2020.spa
dc.relation.references[96] M. Hemissi, H. Amardjia-Adnani, and J. C. Plenet. Titanium oxide thin layers deposed by dip-coating method: Their optical and structural properties. Current Applied Physics, 9(4):717–721, 2009.spa
dc.relation.references[97] Francisco J. Arregui, Ignacio Del Villar, Carlos R. Zamarreño, Pablo Zubiate, and Ignacio R. Matias. Giant sensitivity of optical fiber sensors by means of lossy mode resonance. Sensors and Actuators, B: Chemical, 232:660–665, 2016.spa
dc.relation.references[98] Omar Fuentes, Ignacio Del Villar, Jesus M. Corres, and Ignacio R. Matias. Lossy mode resonance sensors based on lateral light incidence in nanocoated planar waveguides. Scientific Reports, 9(1):1–10, 2019.spa
dc.relation.references[99] M Albooyeh. Chiral slab: COMSOL simulation. Unpublished paper, 2017.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembGuías de ondas ópticas
dc.subject.proposalChirality parametereng
dc.subject.proposalChiral substanceseng
dc.subject.proposalDispersion curveseng
dc.subject.proposalEnantiomeric contenteng
dc.subject.proposalGuided modeseng
dc.subject.proposalPolarizationeng
dc.subject.proposalOptical waveguideeng
dc.subject.proposalSensor
dc.subject.proposalParámetro de quiralidadspa
dc.subject.proposalSustancias quiralesspa
dc.subject.proposalCurvas de dispersiónspa
dc.subject.proposalContenido enantioméricospa
dc.subject.proposalModos guiadosspa
dc.subject.proposalPolarizaciónspa
dc.subject.proposalGuía de onda ópticaspa
dc.titlePotential of optical waveguide structures to measure the chirality parameter of chiral substanceseng
dc.title.translatedPotencial de las estructuras de guía de ondas ópticas para medir el parámetro de quiralidad de sustancias quiralesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085321420.2021.pdf
Tamaño:
10.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: