Matrices de masa y mezcla del sector leptónico en el modelo con dos dobletes de Higgs

dc.contributor.advisorQuimbay Herrera, Carlos Jose
dc.contributor.authorGutierrez Saavedra, Julian Steven
dc.contributor.cvlacGutierrez Saavedra, Julian Steven [0000837733]spa
dc.contributor.orcidGutierrez, Julian [0000000349442945]spa
dc.contributor.researchgroupGrupo de campos y partículasspa
dc.date.accessioned2024-04-17T16:45:17Z
dc.date.available2024-04-17T16:45:17Z
dc.date.issued2024-04-08
dc.description.abstractEl principal objetivo de esta tesis de doctorado es obtener, en el contexto del Modelo con Dos Dobletes de Higgs tipo III (M2DH-III), expresiones análiticas exactas para las matrices de masa y de mezcla de neutrinos, que son generadas mediante el Mecanismo See-Saw tipo I (MSS-I) y el Mecanismo See-Saw tipo I+III (MSS-I+III), introduciendo una simetría permutacional de sabor S3. Para el caso del MSS-I la matriz de mezcla más general 6 × 6, que también se obtiene de manera analítica y exacta, es construida considerando simultáneamente los tres neutrinos ligeros y los tres neutrinos pesados (escenario 3+3). Para cumplir con el anterior objetivo, inicialmente se extiende el lagragiano de Yukawa incluyendo el término de Majorana, con el fin de implementar los dos mecanismos de generación de masa de neutrinos considerados, es decir MSS-I y MSS-I+III. A continuación, para cada uno de estos dos casos de generación de masa, se obtienen las matrices de masa para los neutrinos activos de Dirac y se deducen expresiones analíticas exactas para los elementos de las correspondientes matrices de mezcla en términos de las masas de los leptones cargados, de las diferencias de los cuadrados de las masas de los neutrinos y de los parámetros asociados a la simetría S3. Partiendo de estas expresiones e implementando un método estadístico de verosimilitud, para cada uno de los anteriores casos, se estiman los valores de las masas de los neutrinos activos de Dirac, de las fases de violación de CP de Dirac y de los ángulos de mezcla. Como aplicación de los resultados obtenidos para el caso del MSS-I, se consideran los dos canales de decaimiento leptónicos del tauón, con lo cual se obtiene una relación novedosa entre los cuadrados de las constantes de acoplamiento de Yukawa involucradas en estos dos procesos. Adicionalmente, para el caso MSS-I, se deducen expresiones analíticas para dos masas efectivas de Majorana, a partir de las cuales se estiman los valores de estas masas, usando las masas de los neutrinos activos de Dirac y de los ángulos de mezcla previamente obtenidos. Finalmente, se calculan las fases de violación de CP de Majorana α12, α13 y se calculan las probabilidades de oscilación de neutrino-antineutrino para el caso de tres generaciones con el fin de estimar los parámetros de violación de CP y el parámetro de asimetría Aαβ de materia antimateria (Texto tomado de la fuente)spa
dc.description.abstractThe main purpose of this doctoral thesis is to obtain, in the context of the two-Higgs Doublet Model type III (2HDM-III), exact analytical expressions for the mass and mixing matrices of neutrinos. These matrices are generated by the See-Saw Mechanism type I (SSM-I) and See-Saw Mechanism type I + III (SSM-I+III), introducing a permutational flavor symmetry S3. For the SSM-I, the 6 × 6 most general mixing matrix, which is also obtained in an analytical and exact form, is constructed considering simultaneously the three light and three heavy neutrinos (3+3 scenario). To accomplish the objective previously stated, initially the Yukawa Lagragian is extended including the Majorana term in order to implement the two neutrino mass generation mechanisms considered, that is, SSM-I, and SSM-I+III. Then, for each of these two cases of mass generation, the mass matrices for the Dirac active neutrinos are obtained, and exact analytical expressions for the elements of the corresponding mixing matrices are deduced in terms of the charged lepton masses, the differences between the squares of the neutrino masses, and the parameters associated to the S3 symmetry. Starting from these expressions and implementing a statistical method of verisimilitude, for each of the previous cases, the values of the Dirac active neutrino masses, CP violation phases and mixing angles are estimated. As an application of the results obtained for the case of MSS-I, the two lepton decay channels are considered of the tauon, thereby obtaining a novel relationship between the squares of the Yukawa association constants involved in these two processes. Additionally, for the SSM-I case, analytical expressions for two effective Majorana masses are deduced, with which the values of these two masses are estimated using the previously obtained values of the Dirac active neutrino masses and mixing angles. Finally, the Majorana CP violation phases α12, α13 are calculated and the probabilities of neutrino-antineutrino oscillation are calculated for the case of three generations in order to estimate the CP violation parameters △CP and the Aαβ matter-antimatter asymmetry parameter.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.description.researchareaFísica de neutrinosspa
dc.format.extentv, 115 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85933
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.referencesSheldon L. Glashow. Partial-symmetries of weak interactions. Nuclear Physics, 22(4):579 – 588, 1961.spa
dc.relation.referencesAbdus Salam. On parity conservation and neutrino mass. Il Nuovo Cimento (1955- 1965), 5(1):299–301, 1957.spa
dc.relation.referencesSheldon L Glashow and Steven Weinberg. Natural conservation laws for neutral currents. Physical Review D, 15(7):1958, 1977spa
dc.relation.referencesSteven Weinberg. A model of leptons. Physical review letters, 19:1264–1266, Nov 1967spa
dc.relation.referencesPeter Van Nieuwenhuizen. Supergravity. Physics Reports, 68(4):189–398, 1981.spa
dc.relation.referencesTsutomu Yanagida. Proc. workshop on unified theory and the baryon number in the universe. KEK Report No. 79-18, 95, 1979.spa
dc.relation.referencesRabindra N Mohapatra and Goran Senjanovic. Neutrino mass and spontaneous ´ parity nonconservation. Physical Review Letters, 44(14):912, 1980.spa
dc.relation.referencesV Barger, JL Hewett, and RJN Phillips. New constraints on the charged higgs sector in two-higgs-doublet models. Physical Review D, 41(11):3421, 1990.spa
dc.relation.referencesGustavo Castelo Branco, PM Ferreira, L Lavoura, MN Rebelo, Marc Sher, and Joao P Silva. Theory and phenomenology of two-higgs-doublet models. Physics reports, 516(1-2):1–102, 2012.spa
dc.relation.referencesStefano Bertolini. Quantum effects in a two higgs doublet model of the electroweak interactions. Nuclear Physics B, 272(1):77–98, 1986.spa
dc.relation.referencesJF Gunion, HE Haber, GL Kane, and S Dawson. The higgs hunter’s guide addison, 1990.spa
dc.relation.referencesDavid Atwood, Laura Reina, and Amarjit Soni. Phenomenology of two higgs doublet models with flavor-changing neutral currents. Physical Review D, 55(5):3156, 1997.spa
dc.relation.referencesDavid Atwood, Shaouly Bar-Shalom, and Amarjit Soni. Neutrino masses, mixing and leptogenesis in a two higgs doublet model “for the third generation”. Physics Letters B, 635(2-3):112–117, 2006.spa
dc.relation.referencesAntonio Pich. Precision tau physics. Progress in Particle and Nuclear Physics, 75:41–85, Mar 2014.spa
dc.relation.referencesJ Lorenzo Diaz-Cruz, R Noriega-Papaqui, and A Rosado. Mass matrix ansatz and lepton flavor violation in the two-higgs doublet model-III. Physical Review D, 69(9):095002, 2004spa
dc.relation.referencesTD Lee. A theory of spontaneous t violation. Physical Review D, 8(4):1226, 1973.spa
dc.relation.referencesE Barradas-Guevara, O Felix-Beltran, F Gonzalez-Canales, and M Zeleny-Mora. Lepton CP violation in a ν2HDM with flavor. Physical Review D, 97(3):035003, 2018.spa
dc.relation.referencesSubhasmita Mishra. Neutrino mixing and leptogenesis with modular s3 symmetry in the framework of type III seesaw, 2020.spa
dc.relation.referencesS Gabriel and S Nandi. A new two higgs doublet model. Physics Letters B, 655(3- 4):141–147, 2007.spa
dc.relation.referencesDaniel A Camargo, Miguel D Campos, Tessio B de Melo, and Farinaldo S Queiroz. ´ A two Higgs doublet model for dark matter and neutrino masses. Physics Letters B, 795:319–326, 2019.spa
dc.relation.referencesAE Carcamo Hernández, I de Medeiros Varzielas, and E Schumacher. Fermion and scalar phenomenology of a two-higgs-doublet model with s3. Physical Review D, 93(1):016003, 2016.spa
dc.relation.referencesDG Michael, P Adamson, T Alexopoulos, WWM Allison, GJ Alner, K Anderson, C Andreopoulos, M Andrews, R Andrews, KE Arms, et al. Observation of muon neutrino disappearance with the minos detectors in the numi neutrino beam. Physical Review Letters, 97(19):191801, 2006.spa
dc.relation.referencesMH Ahn, E Aliu, S Andringa, S Aoki, Y Aoyama, J Argyriades, K Asakura, R Ashie, F Berghaus, HG Berns, et al. Measurement of neutrino oscillation by the K2K experiment. Physical Review D, 74(7):072003, 2006.spa
dc.relation.referencesB Aharmim, SN Ahmed, JF Amsbaugh, AE Anthony, J Banar, N Barros, EW Beier, Alain Bellerive, B Beltran, M Bergevin, et al. Independent measurement of the total active B8 solar neutrino flux using an array of he 3 proportional counters at the sudbury neutrino observatory. Physical Review Letters, 101(11):111301, 2008.spa
dc.relation.referencesS Abe, T Ebihara, S Enomoto, K Furuno, Y Gando, K Ichimura, H Ikeda, K Inoue, Y Kibe, Y Kishimoto, et al. Precision measurement of neutrino oscillation parameters with kamland. Physical Review Letters, 100(22):221803, 2008.spa
dc.relation.referencesErnest Ma. Pathways to naturally small neutrino masses. Physical Review Letters, 81(6):1171, 1998.spa
dc.relation.referencesPA Zyla, Particle Data Group, et al. to be published in prog. theor. Exp. Phys, 2020.spa
dc.relation.referencesCarlo Giunti and Chung W Kim. Fundamentals of neutrino physics and astrophysics. Oxford university press, 2007.spa
dc.relation.referencesRabindra Nath Mohapatra and Palash B Pal. Massive neutrinos in physics and astrophysics, volume 72. World scientific, 2004.spa
dc.relation.referencesRabindra N. Mohapatra and Goran Senjanovic. Neutrino mass and spontaneous ´ parity nonconservation. Physical review letters, 44:912–915, Apr 1980.spa
dc.relation.referencesA Zee. A theory of lepton number violation and neutrino majorana masses. Physics Letters B, 93(4):389–393, 1980.spa
dc.relation.referencesJackson D Clarke, Robert Foot, and Raymond R Volkas. Natural leptogenesis and neutrino masses with two higgs doublets. Physical Review D, 92(3):033006, 2015.spa
dc.relation.referencesRaymond Volkas. Neutrino mass models and their connections with other physics beyond the standard model. npa, page 46, 2018.spa
dc.relation.referencesWei Chao and Michael J Ramsey-Musolf. Hidden from view: Neutrino masses, dark matter, and tev-scale leptogenesis in a neutrinophilic two-higgs-doublet model. Physical Review D, 89(3):033007, 2014.spa
dc.relation.referencesWei-Shu Hou. Tree level t → ch0 or h0 → tc decays. Physics Letters B, 296(1-2):179–184, 1992.spa
dc.relation.referencesD Chang, WS Hou, and W-Y Keung. Two-loop contributions of flavor-changing neutral higgs bosons to µ → eγ. Physical Review D, 48(1):217, 1993.spa
dc.relation.referencesJ-M Gerard and Michel Herquet. Twisted custodial symmetry in two-higgs-doublet models. Physical review letters, 98(25):251802, 2007.spa
dc.relation.referencesJohn F Gunion and Howard E Haber. CP-conserving two-Higgs-doublet model: the approach to the decoupling limit. Physical Review D, 67(7):075019, 2003.spa
dc.relation.referencesJohn F Gunion, Gordon L Kane, Sally Dawson, and Howard E Haber. The higgs hunter’s guide. Front. Phys., 80(BNL-41644):1–404, 1989.spa
dc.relation.referencesSanti Bejar, Jaume Guasch, and Joan Sola. Higgs boson flavor-changing neutral ´ decays into top quark in a general two-higgs-doublet model. Nuclear physics B, 675(1-2):270–288, 2003.spa
dc.relation.referencesAndreas Crivellin, Christoph Greub, and Ahmet Kokulu. Flavor-phenomenology of two-higgs-doublet models with generic yukawa structure. Physical Review D, 87(9):094031, 2013.spa
dc.relation.referencesSanti Bejar, Jaume Guasch, and Joan Sola. FCNC top quark decays beyond the standard model. arXiv preprint hep-ph/0101294, 2001.spa
dc.relation.referencesAnn E Nelson and David Wright. Horizontal, anomalous U (1) symmetry for the more minimal supersymmetric standard model. Physical Review D, 56(3):1598, 1997.spa
dc.relation.referencesJunjie Cao, Peihua Wan, Lei Wu, and Jin Min Yang. Lepton-specific two-higgsdoublet model: Experimental constraints and implication on higgs phenomenology. Physical Review D, 80(7), Oct 2009.spa
dc.relation.referencesHeather E. Logan and Deanna MacLennan. Charged higgs phenomenology in the lepton-specific two higgs doublet model. Physical Review D, 79:115022, Jun 2009.spa
dc.relation.referencesYuji Omura, Eibun Senaha, and Kazuhiro Tobe. Lepton-flavor-violating higgs decay h → µτ and muon anomalous magnetic moment in a general two higgs doublet model. Journal of High Energy Physics, 2015(5):28, 2015.spa
dc.relation.referencesKrawczyk, M. and Temes, D. Large 2HDM(II) okkne-loop corrections in leptonic tau decays. Eur. Phys. J. C, 44(3):435–446, 2005spa
dc.relation.referencesShinya Kanemura, Mariko Kikuchi, and Kei Yagyu. Fingerprinting the extended higgs sector using one-loop corrected higgs boson couplings and future precision measurements. Nuclear Physics B, 896:80–137, 2015.spa
dc.relation.referencesJules Hernandez-Sanchez, S. Moretti, R. Noriega-Papaqui, and Alfonso Rosado. ´ Off-diagonal terms in yukawa textures of the type-III 2-Higgs doublet model and light charged higgs boson phenomenology. Journal of High Energy Physics, 2013:1–51, 2012.spa
dc.relation.referencesAndreas Crivellin, Julian Heeck, and Peter Stoffer. Perturbed lepton-specific twohiggs-doublet model facing experimental hints for physics beyond the standard model. Physical review letters, 116:081801, Feb 2016.spa
dc.relation.referencesMarco Drewes. The phenomenology of right handed neutrinos. International Journal of Modern Physics E, 22(08):1330019, 2013.spa
dc.relation.referencesJohannes Hirn and Jan Stern. Lepton-number violation and right-handed neutrinos in higgsless effective theories. Physical Review D, 73(5):056001, 2006.spa
dc.relation.referencesLaurent Canetti, Marco Drewes, Tibor Frossard, and Mikhail Shaposhnikov. Dark matter, baryogenesis and neutrino oscillations from right-handed neutrinos. Physical Review D, 87(9):093006, 2013.spa
dc.relation.referencesNaoyuki Haba and Koji Tsumura. ν-two higgs doublet model and its collider phenomenology. Journal of High Energy Physics, 2011(6):68, 2011.spa
dc.relation.referencesFlorian Bonnet, Daniel Hernandez, Toshihiko Ota, and Walter Winter. Neutrino masses from higher than d= 5 effective operators. Journal of High Energy Physics, 2009(10):076, 2009.spa
dc.relation.referencesFlorian Bonnet, Daniel Hernandez, Toshihiko Ota, and Walter Winter. Neutrino masses from higher than d= 5 effective operators. Journal of High Energy Physics, 2009(10):076, 2009.spa
dc.relation.referencesZhi-zhong Xing. Hierarchical neutrino masses and large mixing angles from the fritzsch texture of lepton mass matrices. Physics Letters B, 550(3-4):178–185, 2002.spa
dc.relation.referencesXiao-Gang He and A Zee. Some simple mixing and mass matrices for neutrinos. Physics Letters B, 560(1-2):87–90, 2003.spa
dc.relation.referencesStephen F King. Neutrino mass models. Reports on Progress in Physics, 67(2):107, 2003.spa
dc.relation.referencesAharon Davidson and Kameshwar C Wali. Universal seesaw mechanism? Physical Review Letters, 59(4):393, 1987.spa
dc.relation.referencesDarwin Chang and Rabindra N Mohapatra. Small and calculable dirac neutrino mass. Physical Review Letters, 58(16):1600, 1987.spa
dc.relation.referencesKS Babu and Rabindra N Mohapatra. CP violation in seesaw models of quark masses. Physical review letters, 62(10):1079, 1989.spa
dc.relation.referencesZG Berezhiani and Riccardo Rattazzi. Universal seesaw and radiative quark mass hierarchy. Physics Letters B, 279(1-2):124–130, 1992.spa
dc.relation.referencesPeter Minkowski. µ→ eγ at a rate of one out of 109 muon decays? Physics Letters B, 67(4):421–428, 1977.spa
dc.relation.referencesM Gell-Mann, P Ramond, and R Slansky. Supergravity ed p van nieuwenhuizen and dz freedman. Amsterdam: North-Holland) p, 315:79–18, 1979.spa
dc.relation.referencesSheldon L Glashow. Quarks and leptons ed m levy et al, 1980.spa
dc.relation.referencesW Konetschny and W Kummer. Nonconservation of total lepton number with scalar bosons. Physics Letters B, 70(4):433–435, 1977.spa
dc.relation.referencesTP Cheng and Ling-Fong Li. Neutrino masses, mixings, and oscillations in SU (2)× U (1) models of electroweak interactions. Physical Review D, 22(11):2860, 1980.spa
dc.relation.referencesGeorge Lazarides, Q Shafi, and Ch Wetterich. Proton lifetime and fermion masses in an so (10) model. Nuclear Physics B, 181(2):287–300, 1981.spa
dc.relation.referencesJ Schechter and Jose WF Valle. Neutrino masses in SU(2) ´ ⊗ U (1) theories. Physical Review D, 22(9):2227, 1980.spa
dc.relation.referencesRabindra N Mohapatra and Goran Senjanovic. Neutrino masses and mixings in ´ gauge models with spontaneous parity violation. Physical Review D, 23(1):165, 1981.spa
dc.relation.referencesB Bajc. JHEP0708, 014 (2007); b. bajc, m. nemevsek, and g. senjanovic. Physical Review D, 76:055011, 2007.spa
dc.relation.referencesPavel Fileviez Perez. Renormalizable adjoint SU(5). ´ Physics Letters B, 654(5- 6):189–193, 2007.spa
dc.relation.referencesPavel Fileviez Perez. Supersymmetric adjoint SU(5). Physical Review D, 76(7):071701, 2007.spa
dc.relation.referencesJ Hisano, Takeo Moroi, K Tobe, and Masahiro Yamaguchi. Lepton-flavor violation via right-handed neutrino yukawa couplings in the supersymmetric standard model. Physical Review D, 53(5):2442, 1996.spa
dc.relation.referencesAlejandro Ibarra and Cristoforo Simonetto. Understanding neutrino properties from decoupling right-handed neutrinos and extra higgs doublets. Journal of High Energy Physics, 2011(11):22, 2011.spa
dc.relation.referencesF del Aguila and JA Aguilar-Saavedra. Distinguishing seesaw models at LHC with multi-lepton signals. Nuclear Physics B, 813(1-2):22–90, 2009spa
dc.relation.referencesRoberto Franceschini, Thomas Hambye, and Alessandro Strumia. Type-III seesaw mechanism at CERN LHC. Physical Review D, 78(3):033002, 2008spa
dc.relation.referencesCarl H Albright and SM Barr. Leptogenesis in the type III seesaw mechanism. Physical Review D, 69(7):073010, 2004.spa
dc.relation.referencesTong Li and Xiao-Gang He. Neutrino masses and heavy triplet leptons at the LHC: Testability of the type III seesaw mechanism. Physical Review D, 80(9):093003, 2009spa
dc.relation.referencesYong Liu and Utpal Sarkar. CP violation in neutrino mixing matrix and leptogenesis. Modern Physics Letters A, 16(09):603–613, 2001.spa
dc.relation.referencesSF King. Atmospheric and solar neutrinos from single right-handed neutrino dominance and U(1) family symmetry. Nuclear Physics B, 562(1-2):57–77, 1999.spa
dc.relation.referencesV Barger, Duane A Dicus, Hong-Jian He, and Tianjun Li. Structure of cosmological CP-violation via neutrino seesaw. Physics Letters B, 583(1-2):173–185, 2004spa
dc.relation.referencesAlexei Yu. Smirnov. Seesaw enhancement of lepton mixing. Physical Review D, 48:3264–3270, Oct 1993.spa
dc.relation.referencesA. Kleppe. Extending the standard model with two right-handed neutrinos. In 3rd Tallinn Symposium on Neutrino Physics, pages 118–125, 1995.spa
dc.relation.referencesPaul H Frampton, SL Glashow, and T Yanagida. Cosmological sign of neutrino CP violation. Physics Letters B, 548(3-4):119–121, 2002.spa
dc.relation.referencesMartti Raidal and ALESSANDRO Strumia. Predictions of the most minimal seesaw model. Physics Letters B, 553(1-2):72–78, 2003.spa
dc.relation.referencesYuji Omura, Eibun Senaha, and Kazuhiro Tobe. τ-and µ-physics in a general two ’textHiggs doublet model with µ- τ flavor violation. Physical Review D, 94(5):055019, 2016.spa
dc.relation.referencesGustavo Castello Branco, W Grimus, and L Lavoura. The seesaw mechanism in the presence of a conserved lepton number. Nuclear Physics B, 312(2):492–508, 1989.spa
dc.relation.referencesE Barradas-Guevara, O Felix-Beltrán, F Gonzalez-Canales, E Gonzáalez Hernandez, E Rodríguez-Jauregui, and M Zeleny-Mora. Analysis of the lepton mixing matrix in the two Higgs doublet model. arXiv preprint arXiv:1606.05388, 2016.spa
dc.relation.referencesF Gonzalez Canales and A Mondragon. The s3 symmetry: Flavour and texture zeroes. In Journal of Physics: Conference Series, volume 287, page 012015. IOP Publishing, 2011.spa
dc.relation.referencesH Fritzsch and Z.-Z Xing. Mass and flavor mixing schemes of quarks and leptons. Progress in Particle and Nuclear Physics, 45(1):1–81, Jan 2000.spa
dc.relation.referencesWalter Grimus and Luis Lavoura. On a model with two zeros in the neutrino mass matrix. Journal of Physics G: Nuclear and Particle Physics, 31(7):693, 2005.spa
dc.relation.referencesChuan-Hung Chen and Takaaki Nomura. Two-Higgs-doublet type-II seesaw model. Physical Review D, 90(7):075008, 2014.spa
dc.relation.referencesPriyotosh Bandyopadhyay, Sandhya Choubey, and Manimala Mitra. Two higgs doublet type III seesaw with µ-τ symmetry at LHC. Journal of High Energy Physics, 2009(10):012, 2009.spa
dc.relation.referencesAsmaa Abada, Carla Biggio, Florian Bonnet, Maria B Gavela, and Thomas Hambye. Low energy effects of neutrino masses. Journal of High Energy Physics, 2007(12):061, 2007.spa
dc.relation.referencesAsmaa Abada, Carla Biggio, Florian Bonnet, Maria Belen Gavela, and Thomas Hambye. µ→ eγ and τ→ lγ decays in the fermion triplet seesaw model. Physical Review D, 78(3):033007, 2008spa
dc.relation.referencesAbdesslam Arhrib, Rachid Benbrik, and Chuan-Hung Chen. Lepton flavor violating τ decays in the type-III seesaw mechanism. Physical Review D, 81(11):113003, 2010.spa
dc.relation.referencesD Cogollo, Ricardo D Matheus, Tessio B de Melo, and Farinaldo S Queiroz. Type I+ II seesaw in a two Higgs doublet model. Physics Letters B, 797:134813, 2019.spa
dc.relation.referencesZhi-zhong Xing. Full parametrization of the 6× 6 flavor mixing matrix in the presence of three light or heavy sterile neutrinos. Physical Review D, 85(1):013008, 2012.spa
dc.relation.referencesPavel Fileviez Perez. Type III seesaw and left-right symmetry. Journal of High Energy Physics, 2009(03):142, 2009spa
dc.relation.referencesRN Mohapatra, Nobuchika Okada, and Hai-Bo Yu. ν-gauge mediated supersymmetry breaking with type III seesaw mechanism and phenomenology. Physical Review D, 78(7):075011, 2008.spa
dc.relation.referencesBruno Pontecorvo. Neutrino experiments and the problem of conservation of leptonic charge. Sov. Phys. JETP, 26(984-988):165, 1968.spa
dc.relation.referencesZiro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the unified model of elementary particles. Progress of Theoretical Physics, 28(5):870–880, 1962.spa
dc.relation.referencesMakoto Kobayashi and Toshihide Maskawa. CP-violation in the renormalizable theory of weak interaction. Progress of Theoretical Physics, 49(2):652–657, 1973.spa
dc.relation.referencesGerhard Buchalla and Andrzej J Buras. K→π ν ν and high precision determinations of the CKM matrix. Physical Review D, 54(11):6782, 1996.spa
dc.relation.referencesA Hocker, H Lacker, S Laplace, and F Le Diberder. A new approach to a global fit of the CKM matrix. The European Physical Journal C-Particles and FieldsParticles and Fields, 21(2):225–259, 2001.spa
dc.relation.referencesMarco Battaglia, AJ Buras, Paolo Gambino, A Stocchi, D Abbaneo, A Ali, P Amaral, V Andreev, M Artuso, E Barberio, et al. The CKM matrix and the unitarity triangle. arXiv preprint hep-ph/0304132, 2003.spa
dc.relation.referencesJeróme Charles, A Hocker, Heiko Lacker, Sandrine Laplace, FR Le Diberder, Julie Malcles, José Ocariz, Muriel Pivk, and Lydia Roos. CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories. The European Physical Journal C-Particles and Fields-Particles and Fields, 41(1):1–131, 2005.spa
dc.relation.referencesPaul F Harrison, Don H Perkins, and WG Scott. Tri-bimaximal mixing and the neutrino oscillation data. Physics Letters B, 530(1-4):167–173, 2002.spa
dc.relation.referencesClaudio Giganti, Stephane Lavignac, and Marco Zito. Neutrino oscillations: the ´ rise of the PMNS paradigm. Progress in Particle and Nuclear Physics, 98:1–54, 2018.spa
dc.relation.referencesPaul H Frampton, ST Petcov, and W Rodejohann. On deviations from bimaximal neutrino mixing. Nuclear Physics B, 687(1-2):31–54, 2004.spa
dc.relation.referencesS. Bilenky. Neutrinos: Majorana or dirac?, 2020.spa
dc.relation.referencesSamoil M Bilenky, J Hosek, and ST Petcov. On oscillations of neutrinos with dirac and majorana masses. Technical report, Joint Inst. for Nuclear Research, 1980.spa
dc.relation.referencesWerner Rodejohann, Xun-Jie Xu, and Carlos E Yaguna. Distinguishing between dirac and majorana neutrinos in the presence of general interactions. Journal of High Energy Physics, 2017(5):24, 2017.spa
dc.relation.referencesBoris Kayser and Robert E Shrock. Distinguishing between dirac and majorana neutrinos in neutral-current reactions. Physics Letters B, 112(2):137–142, 1982.spa
dc.relation.referencesWerner Rodejohann. Neutrino-less double beta decay and particle physics. International Journal of Modern Physics E, 20(09):1833–1930, 2011.spa
dc.relation.referencesIvan Girardi, ST Petcov, and AV Titov. Determining the dirac CP violation phase in the neutrino mixing matrix from sum rules. Nuclear Physics B, 894:733–768, 2015.spa
dc.relation.referencesST Petcov, I Girardi, and AV Titov. Predictions for the dirac CP violation phase in the neutrino mixing matrix. International Journal of Modern Physics A, 30(13):1530035, 2015.spa
dc.relation.referencesI Girardi, ST Petcov, and AV Titov. Predictions for the leptonic dirac CP violation phase: a systematic phenomenological analysis. The European Physical Journal C-Particles and Fields, 75(7):345, 2015.spa
dc.relation.referencesIvan Girardi, ST Petcov, and AV Titov. Predictions for the majorana CP violation phases in the neutrino mixing matrix and neutrinoless double beta decay. Nuclear Physics B, 911:754–804, 2016.spa
dc.relation.referencesCarlo Giunti. No effect of majorana phases in neutrino oscillations. Physics Letters B, 686(1):41–43, 2010.spa
dc.relation.referencesA Capolupo, SM Giampaolo, BC Hiesmayr, and G Vitiello. Geometric phase of neutrinos: Differences between dirac and majorana neutrinos. Physics Letters B, 780:216–220, 2018.spa
dc.relation.referencesSM Bilenky and C Giunti. Neutrinoless double-beta decay: a probe of physics beyond the standard model. International Journal of Modern Physics A, 30(04n05):1530001, 2015.spa
dc.relation.referencesLing-Lie Chau and Wai-Yee Keung. Comments on the parametrization of the kobayashi-maskawa matrix. Physical Review Letters, 53(19):1802, 1984.spa
dc.relation.referencesHarald Fritzsch and Zhi-Zhong Xing. Flavor symmetries and the description of flavor mixing. Physics Letters B, 413(3-4):396–404, 1997.spa
dc.relation.referencesJ Barranco, F Gonzalez Canales, and A Mondragon. Universal mass matrix for quarks and leptons and CP violation. Physical Review D, 82(7):073010, 2010.spa
dc.relation.referencesDarius Jurciukonis, Thomas Gajdosik, and Andrius Juodagalvis. Seesaw neutrino masses with a second Higgs doublet added. arXiv preprint arXiv:1507.03459, 2015.spa
dc.relation.referencesD Jurciukonis, T Gajdosik, and A Juodagalvis. Seesaw neutrinos with one right- handed singlet field and a second higgs doublet. Journal of High Energy Physics, 2019(11):146, 2019spa
dc.relation.referencesJ. S. Gutierrez and C. Quimbay. Relationship between the yukawa coupling constants present in the leptonic decay τ → ντ lν¯l and the neutrino masses generated via see-saw type I mechanism in the two Higgs doublet model type III. To be submitted to publication in the next weeks.spa
dc.relation.references] J. S. Gutierrez and C. Quimbay. Mass and mixing matrices for neutrinos via seesaw type I mechanism in the two Higgs doublet model type III. To be submitted to publication in the next weeks.spa
dc.relation.referencesJ. S. Gutierrez and C. Quimbay. See-saw mechanism in the two Higgs doublet model type III through the simultaneous introduction of a singlet and a triplet majorana. To be submitted to publication in the next weeks.spa
dc.relation.referencesRJ Guth, AH Hoang, and JH Kuhn. Tau decay in the two higgs doublet model. ¨ Physics Letters B, 285(1-2):75–79, 1992.spa
dc.relation.referencesHeather E Logan and Deanna MacLennan. Charged higgs phenomenology in the lepton-specific two higgs doublet model. Physical Review D, 79(11):115022, 2009.spa
dc.relation.referencesJ. S. Gutierrez and C. Quimbay. Majorana CP violation phases in the 6 × 6 leptonic mixing matrix in the two higgs doublet model type III. To be submitted to publication in the next weeks.spa
dc.relation.referencesHarald Fritzsch and Z-z Xing. Mass and flavor mixing schemes of quarks and leptons. Progress in Particle and Nuclear Physics, 45(1):1–81, 2000.spa
dc.relation.referencesZhi-Zhong Xing and He Zhang. Lepton mass matrices with four texture zeros. Physics Letters B, 569(1-2):30–40, 2003.spa
dc.relation.referencesGuido Altarelli, Ferruccio Feruglio, and Luca Merlo. Revisiting bimaximal neutrino mixing in a model with s4 discrete symmetry. Journal of High Energy Physics, 2009(05):020, 2009.spa
dc.relation.referencesReinier de Adelhart Toorop, Federica Bazzocchi, and Luca Merlo. The interplay between gut and flavour symmetries in a pati-salam× S4 model. Journal of High Energy Physics, 2010(8):1, 2010.spa
dc.relation.referencesFlorian Plentinger and Gerhart Seidl. Mapping out SU(5) grand unified theories with non-abelian discrete flavor symmetries. Physical Review D, 78(4):045004, 2008.spa
dc.relation.referencesSeungwon Baek and Takaaki Nomura. Dark matter physics in neutrino specific two higgs doublet model. Journal of High Energy Physics, 2017(3):59, 2017.spa
dc.relation.referencesZhen Liu and Pei-Hong Gu. Extending two higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay. Nuclear Physics B, 915:206–223, 2017.spa
dc.relation.referencesDaniel A Camargo, Alex G Dias, Tessio B de Melo, and Farinaldo S Queiroz. Neu- ´ trino masses in a two Higgs doublet model with a U(1) gauge symmetry. Journal of High Energy Physics, 2019(4):129, 2019.spa
dc.relation.referencesM Kobayashi and T Maskawa. Prog. b 511, 240 (2001). Theor. Phys, 49:652, 1973.spa
dc.relation.referencesPeter W Higgs. Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13(16):508, 1964.spa
dc.relation.referencesJ Ellis. Mk gaillard and dv nanopoulos. Nuclear Physics B, 106:292, 1976spa
dc.relation.referencesDavid Atwood, Laura Reina, and Amarjit Soni. Flavor changing neutral scalar currents at µ+µ− colliders. Physical review letters, 75:3800–3803, Nov 1995.spa
dc.relation.referencesRabindra N Mohapatra. Ictp lectures on theoretical aspects of neutrino masses and mixings. arXiv preprint hep-ph/0211252, 2002.spa
dc.relation.referencesKM Case. Reformulation of the majorana theory of the neutrino. Physical Review, 107(1):307, 1957.spa
dc.relation.referencesElisabetta Sassaroli. Neutrino flavor mixing and oscillations in field theory. arXiv preprint hep-ph/9805480, 1998spa
dc.relation.referencesRobert Foot, H Lew, X-G He, and Girish C Joshi. See-saw neutrino masses induced by a triplet of leptons. Zeitschrift fur Physik C Particles and Fields , 44(3):441–444, 1989.spa
dc.relation.referencesDavid Atwood, Laura Reina, and Amarjit Soni. Rb and Rc in the two-Higgs-doublet model with flavor-changing neutral currents. Physical Review D, 54(5):3296, 1996.spa
dc.relation.referencesDavid Atwood, Laura Reina, and Amarjit Soni. Probing flavor-changing topcharm-scalar interactions in e+e− collisions. Physical Review D, 53(3):1199, 1996.spa
dc.relation.referencesDavid Atwood, Laura Reina, and Amarjit Soni. Flavor changing neutral scalar currents at µ+ µ− colliders. Physical review letters, 75(21):3800, 1995.spa
dc.relation.referencesMarc Sher and Yao Yuan. Rare b decays, rare τ decays, and grand unification. Physical Review D, 44:1461–1472, Sep 1991.spa
dc.relation.referencesRabindra N Mohapatra and Alexei Y Smirnov. Neutrino mass and new physics. Annual Review of Nuclear and Particle Science, 56:569–628, 2006.spa
dc.relation.referencesErnest Ma. Connection between the neutrino seesaw mechanism and properties of the majorana neutrino mass matrix. Physical Review D, 71(11):111301, 2005.spa
dc.relation.referencesAsan Damanik. Nonzero θ13 and neutrino masses from modified neutrino mixing matrix. International Journal of Modern Physics A, 27(17):1250091, 2012.spa
dc.relation.referencesPaul H Frampton, Sheldon L Glashow, and Danny Marfatia. Zeroes of the neutrino mass matrix. Physics Letters B, 536(1-2):79–82, 2002.spa
dc.relation.referencesParticle Data Group et al. pdg. lbl. gov, review of particle physics; latest published version m. tanabashi, et al., particle data group. Physical Review D, 98:010001, 2018.spa
dc.relation.referencesHarald Fritzsch. Calculating the cabibbo angle. Physics Letters B, 70(4):436–440, 1977.spa
dc.relation.referencesSandip Pakvasa and Hirotaka Sugawara. Discrete symmetry and cabibbo angle. Physics Letters B, 73(1):61–64, 1978.spa
dc.relation.referencesHaim Harari, Herve Haut, and Jacques Weyers. Quark masses and cabibbo angles. Physics Letters B, 78(4):459–461, 1978.spa
dc.relation.referencesHarald Fritzsch. Quark masses and flavor mixing. Nuclear Physics B, 155(1):189– 207, 1979.spa
dc.relation.referencesHajime Ishimori, Tatsuo Kobayashi, Hiroshi Ohki, Yusuke Shimizu, Hiroshi Okada, and Morimitsu Tanimoto. Non-abelian discrete symmetries in particle physics. Progress of Theoretical Physics Supplement, 183:1–163, 2010.spa
dc.relation.referencesFlorian Plentinger, Gerhart Seidl, and Walter Winter. Group space scan of flavor symmetries for nearly tribimaximal lepton mixing. Journal of High Energy Physics, 2008(04):077, 2008.spa
dc.relation.referencesZhi-zhong Xing. Flavor mixing and CP violation of massive neutrinos. International Journal of Modern Physics A, 19(01):1–79, 2004.spa
dc.relation.referencesWerner Rodejohann and JWF Valle. Symmetrical parametrizations of the lepton mixing matrix. Physical Review D, 84(7):073011, 2011.spa
dc.relation.referencesKA Hochmuth, ST Petcov, and Werner Rodejohann. UPMNS =U†l Uν .arXivpreprintarXiv : 0706,2975,2007.spa
dc.relation.referencesM Kobayashi. K. maskawa. Prog. Theor. Phys, 49:652, 1973spa
dc.relation.referencesIvan Esteban, MC Gonzalez-Garcia, Michele Maltoni, Ivan Martinez-Soler, and Thomas Schwetz. Updated fit to three neutrino mixing: exploring the acceleratorreactor complementarity. Journal of High Energy Physics, 2017(1):87, 2017.spa
dc.relation.referencesEung Jin Chun and Jinsu Kim. Leptonic precision test of leptophilic two-higgsdoublet model. Journal of High Energy Physics, 2016(7):1–14, 2016.spa
dc.relation.referencesWilliam J Marciano and A Sirlin. Electroweak radiative corrections to τ decay. Physical Review Letters, 61(16):1815, 1988.spa
dc.relation.referencesJ Michael Roney. Tau physics prospects at superb. Nuclear Physics B (Proceedings Supplements), (169):379–386, 2007.spa
dc.relation.referencesFrancisco J Botella, GC Branco, Adrian Carmona, M Nebot, Leonardo Pedro, and ´ MN Rebelo. Physical constraints on a class of two-higgs doublet models with fcnc at tree level. Journal of High Energy Physics, 2014(7):1–33, 2014.spa
dc.relation.referencesKazuhiro Tobe. Michel parameters for τ decays µ- τ flavor violation. Journal of High Energy Physics, 2016(10):1–14, 2016.spa
dc.relation.referencesR. L. Workman and Others. Review of Particle Physics. PTEP, 2022:083C01, 2022.spa
dc.relation.referencesMaria Krawczyk and David Temes. 2hdm (ii) radiative corrections in leptonic tau decays. arXiv preprint hep-ph/0410248, 2004.spa
dc.relation.referencesErnest Ma. Neutrino mass seesaw version 3: recent developments. In AIP Conference Proceedings, volume 1116, pages 239–246. American Institute of Physics, 2009.spa
dc.relation.referencesDiego Aristizabal Sierra, Jernej F Kamenik, and Miha Nemevsek. Implications of ˇ flavor dynamics for fermion triplet leptogenesis. Journal of High Energy Physics, 2010(10):36, 2010.spa
dc.relation.referencesErnest Ma. B and not l in supersymmetry: New U (1) gauge symmetry and dark matter. Physical Review D, 78(1):017701, 2008.spa
dc.relation.referencesJA Aguilar-Saavedra and Gustavo Castello Branco. Unitarity triangles and geometrical description of CP violation with majorana neutrinos. Physical Review D, 62(9):096009, 2000.spa
dc.relation.referencesJose F Nieves and Palash B Pal. Rephasing-invariant CP violating parameters with majorana neutrinos. Physical Review D, 64(7):076005, 2001.spa
dc.relation.referencesJose F Nieves and Palash B Pal. Minimal rephasing-invariant CP-violating parameters with dirac and majorana fermions. Physical Review D, 36(1):315, 1987.spa
dc.relation.referencesPatrick D Bolton. Neutrinoless double beta decay versus other probes of heavy sterile neutrinosspa
dc.relation.referencesC Barbero, Ling-Fong Li, G Lopez Castro, and A Mariano. △l = 2 hyperon semileptonic decays. Physical Review D, 76(11):116008, 2007.spa
dc.relation.referencesHans Volker Klapdor-Kleingrothaus and Irina Vladimirovna Krivosheina. The evidence for the observation of 0νβ β decay: The identification of 0νβ β events from the full spectra. Modern Physics Letters A, 21(20):1547–1566, 2006.spa
dc.relation.referencesStefano Dell’Oro, Simone Marcocci, Matteo Viel, and Francesco Vissani. Neutrinoless double beta decay: 2015 review. Advances in High Energy Physics, 2016, 2016.spa
dc.relation.referencesD.Q. Adams, C. Alduino, K. Alfonso, F.T. Avignone, O. Azzolini, G. Bari, F. Bellini, G. Benato, M. Biassoni, A. Branca, and et al. Improved limit on neutrinoless double-beta decay in te130 with cuore. Physical Review Letters, 124(12), Mar 2020.spa
dc.relation.referencesJun Cao, Guo yuan Huang, Yu-Feng Li, Yifang Wang, Liang-Jian Wen, Zhi zhong Xing, Zhen hua Zhao, and Shun Zhou. Towards the meV limit of the effective neutrino mass in neutrinoless double-beta decays. Chinese Physics C, 44(3):031001, mar 2020.spa
dc.relation.referencesJ.J Gomez-Cadenas, J Martín-Albo, J. Munoz Vidal, and C Peña-Garay. Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale cmb observations. Journal of Cosmology and Astroparticle Physics, 2013(03):043–043, Mar 2013.spa
dc.relation.referencesM Agostini, M Allardt, AM Bakalyarov, M Balata, I Barabanov, L Baudis, C Bauer, E Bellotti, S Belogurov, ST Belyaev, et al. Background-free search for neutrinoless double-β decay of 76 ge with gerda. Nature, 544(7648):47–52, 2017.spa
dc.relation.referencesLeslie Camilleri, Eligio Lisi, and John F Wilkerson. Neutrino masses and mixings: status and prospects. Annual Review of Nuclear and Particle Science, 58:343–369, 2008spa
dc.relation.referencesST Petcov. Dirac and majorana CP-violation. Nuclear Physics B-Proceedings Supplements, 145:148–153, 2005.spa
dc.relation.referencesBernard Sadoulet. Dark matter searches. International Journal of Modern Physics A, 15:687–714, 2000.spa
dc.relation.referencesC Arnaboldi, DR Artusa, FT Avignone III, M Balata, I Bandac, M Barucci, JW Beeman, C Brofferio, C Bucci, S Capelli, et al. New limit on the neutrinoless β β decay of 130 Te. Physical review letters, 95(14):142501, 2005.spa
dc.relation.referencesR Arnold, C Augier, J Baker, AS Barabash, M Bongrand, G Broudin, V Brudanin, AJ Caffrey, V Egorov, AI Etienvre, et al. Measurement of double beta decay of 100mo to excited states in the NEMO 3 experiment. Nuclear Physics A, 781(1- 2):209–226, 2007.spa
dc.relation.referencesMichael Duerr, Manfred Lindner, and Alexander Merle. On the quantitative impact of the schechter-valle theorem. Journal of High Energy Physics, 2011(6):91, 2011.spa
dc.relation.referencesPalash B Pal. Dirac, majorana, and weyl fermions. American Journal of Physics, 79(5):485–498, 2011.spa
dc.relation.referencesJ. Beringer, J. F. Arguin, R. M. Barnett, K. Copic, O. Dahl, D. E. Groom, C. J. Lin, J. Lys, H. Murayama, C. G. Wohl, W. M. Yao, P. A. Zyla, C. Amsler, M. Antonelli, D. M. Asner, H. Baer, H. R. Band, T. Basaglia, C. W. Bauer, J. J. Beatty, V. I. Belousov, E. Bergren, G. Bernardi, W. Bertl, S. Bethke, H. Bichsel, O. Biebel, E. Blucher, S. Blusk, G. Brooijmans, O. Buchmueller, R. N. Cahn, M. Carena, A. Ceccucci, D. Chakraborty, M. C. Chen, R. S. Chivukula, G. Cowan, G. D’Ambrosio, T. Damour, D. de Florian, A. de Gouvea, T. DeGrand, P. de Jong, G. Dissertori, B. Do- ˆ brescu, M. Doser, M. Drees, D. A. Edwards, S. Eidelman, J. Erler, V. V. Ezhela, W. Fetscher, B. D. Fields, B. Foster, T. K. Gaisser, L. Garren, H. J. Gerber, G. Gerbier, T. Gherghetta, S. Golwala, M. Goodman, C. Grab, A. V. Gritsan, J. F. Grivaz, M. Grunewald, A. Gurtu, T. Gutsche, H. E. Haber, K. Hagiwara, C. Hagmann, ¨ C. Hanhart, S. Hashimoto, K. G. Hayes, M. Heffner, B. Heltsley, J. J. Hernandez- ´ Rey, K. Hikasa, A. Hocker, J. Holder, A. Holtkamp, J. Huston, J. D. Jackson, K. F. ¨ Johnson, T. Junk, D. Karlen, D. Kirkby, S. R. Klein, E. Klempt, R. V. Kowalewski, F. Krauss, M. Kreps, B. Krusche, Yu. V. Kuyanov, Y. Kwon, O. Lahav, J. Laiho, P. Langacker, A. Liddle, Z. Ligeti, T. M. Liss, L. Littenberg, K. S. Lugovsky, S. B. Lugovsky, T. Mannel, A. V. Manohar, W. J. Marciano, A. D. Martin, A. Masoni, J. Matthews, D. Milstead, R. Miquel, K. Monig, F. Moortgat, K. Nakamura, ¨ M. Narain, P. Nason, S. Navas, M. Neubert, P. Nevski, Y. Nir, K. A. Olive, L. Pape, J. Parsons, C. Patrignani, J. A. Peacock, S. T. Petcov, A. Piepke, A. Pomarol, G. Punzi, A. Quadt, S. Raby, G. Raffelt, B. N. Ratcliff, P. Richardson, S. Roesler, S. Rolli, A. Romaniouk, L. J. Rosenberg, J. L. Rosner, C. T. Sachrajda, Y. Sakai, G. P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, D. Scott, W. G. Seligman, M. H. Shaevitz, S. R. Sharpe, M. Silari, T. Sjostrand, P. Skands, J. G. Smith, ¨ G. F. Smoot, S. Spanier, H. Spieler, A. Stahl, T. Stanev, S. L. Stone, T. Sumiyoshi, M. J. Syphers, F. Takahashi, M. Tanabashi, J. Terning, M. Titov, N. P. Tkachenko, N. A. Tornqvist, D. Tovey, G. Valencia, K. van Bibber, G. Venanzoni, M. G. ¨ Vincter, P. Vogel, A. Vogt, W. Walkowiak, C. W. Walter, D. R. Ward, T. Watari, G. Weiglein, E. J. Weinberg, L. R. Wiencke, L. Wolfenstein, J. Womersley, C. L. Woody, R. L. Workman, A. Yamamoto, G. P. Zeller, O. V. Zenin, J. Zhang, R. Y. Zhu, G. Harper, V. S. Lugovsky, and P. Schaffner. Review of particle physics. Physical Review D, 86:010001, Jul 2012.spa
dc.relation.referencesVernon Barger, Danny Marfatia, and Adam Tregre. Neutrino mass limits from SDSS, 2dFGRS and WMAP. Physics Letters B, 595(1-4):55–59, 2004.spa
dc.relation.referencesStephen F King, Alexander Merle, and Alexander J Stuart. The power of neutrino mass sum rules for neutrinoless double beta decay experiments. Journal of High Energy Physics, 2013(12):5, 2013.spa
dc.relation.referencesP Hernandez. Neutrino physics. arXiv preprint arXiv:1010.4131, 2010.spa
dc.relation.referencesHitoshi Murayama and T Yanagida. Leptogenesis in supersymmetric standard model with right-handed neutrino. Physics Letters B, 322(4):349–354, 1994.spa
dc.relation.referencesR Jeannerot. New mechanism for leptogenesis. Physical review letters, 77(16):3292, 1996.spa
dc.relation.referencesErnest Ma, Subir Sarkar, and Utpal Sarkar. Scale of SU(2)R symmetry breaking and leptogenesis. Physics Letters B, 458(1):73–78, 1999.spa
dc.relation.referencesNicola Cabibbo, Earl C. Swallow, and Roland Winston. Semileptonichyperondecays. Annual Review of Nuclear and Particle Science, 53(1):39–75, Dec 2003.spa
dc.relation.referencesIvan Esteban, MC Gonzalez-Garcia, Alvaro Hernandez-Cabezudo, Michele Maltoni, and Thomas Schwetz. Global analysis of three-flavour neutrino oscillations: Synergies and tensions in the determination of θ23, δCP, and the mass ordering. Journal of High Energy Physics, 2019(1):1–35, 2019.spa
dc.relation.referencesMario A Acero, P Adamson, L Aliaga, T Alion, V Allakhverdian, S Altakarli, N Anfimov, A Antoshkin, A Aurisano, A Back, et al. First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOνA. Physical review letters, 123(15):151803, 2019.spa
dc.relation.referencesM. Tanabashi, K. Hagiwara, K. Hikasa, K. Nakamura, Y. Sumino, F. Takahashi, J. Tanaka, K. Agashe, G. Aielli, C. Amsler, M. Antonelli, D. M. Asner, H. Baer, Sw. Banerjee, R. M. Barnett, T. Basaglia, C. W. Bauer, J. J. Beatty, V. I. Belousov, J. Beringer, S. Bethke, A. Bettini, H. Bichsel, O. Biebel, K. M. Black, E. Blucher, O. Buchmuller, V. Burkert, M. A. Bychkov, R. N. Cahn, M. Carena, A. Ceccucci, A. Cerri, D. Chakraborty, M.-C. Chen, R. S. Chivukula, G. Cowan, O. Dahl, G. D’Ambrosio, T. Damour, D. de Florian, A. de Gouvea, T. DeGrand, P. de Jong, G. Dissertori, B. A. Dobrescu, M. D’Onofrio, M. Doser, M. Drees, H. K. Dreiner, D. A. Dwyer, P. Eerola, S. Eidelman, J. Ellis, J. Erler, V. V. Ezhela, W. Fetscher, B. D. Fields, R. Firestone, B. Foster, A. Freitas, H. Gallagher, L. Garren, H.-J. Gerber, G. Gerbier, T. Gershon, Y. Gershtein, T. Gherghetta, A. A. Godizov, M. Goodman, C. Grab, A. V. Gritsan, C. Grojean, D. E. Groom, M. Grunewald, A. Gurtu, T. Gutsche, H. E. Haber, C. Hanhart, S. Hashimoto, Y. Hayato, K. G. Hayes, A. Hebecker, S. Heinemeyer, B. Heltsley, J. J. Hernandez-Rey, J. Hisano, A. Hocker, J. Holder, A. Holtkamp, T. Hyodo, K. D. Irwin, K. F. Johnson, M. Kado, M. Karliner, U. F. Katz, S. R. Klein, E. Klempt, R. V. Kowalewski, F. Krauss, M. Kreps, B. Krusche, Yu. V. Kuyanov, Y. Kwon, O. Lahav, J. Laiho, J. Lesgourgues, A. Liddle, Z. Ligeti, C.-J. Lin, C. Lippmann, T. M. Liss, L. Littenberg, K. S. Lugovsky, S. B. Lugovsky, A. Lusiani, Y. Makida, F. Maltoni, T. Mannel, A. V. Manohar, W. J. Marciano, A. D. Martin, A. Masoni, J. Matthews, U.-G. Meißner, D. Milstead, R. E. Mitchell, K. Monig, P. Molaro, F. Moortgat, M. Moskovic, H. Murayama, M. Narain, P. Nason, S. Navas, M. Neubert, P. Nevski, Y. Nir, K. A. Olive, S. Pagan Griso, J. Parsons, C. Patrignani, J. A. Peacock, M. Pennington,S. T. Petcov, V. A. Petrov, E. Pianori, A. Piepke, A. Pomarol, A. Quadt, J. Rademacker, G. Raffelt, B. N. Ratcliff, P. Richardson, A. Ringwald, S. Roesler, S. Rolli, A. Romaniouk, L. J. Rosenberg, J. L. Rosner, G. Rybka, R. A. Ryutin, C. T. Sachrajda, Y. Sakai, G. P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, A. J. Schwartz, D. Scott, V. Sharma, S. R. Sharpe, T. Shutt, M. Silari, T. Sjostrand, P. Skands, T. Skwarnicki, J. G. Smith, G. F. Smoot, S. Spanier, H. Spieler, C. Spiering, A. Stahl, S. L. Stone, T. Sumiyoshi, M. J. Syphers, K. Terashi, J. Terning, U. Thoma, R. S. Thorne, L. Tiator, M. Titov, N. P. Tkachenko, N. A. Tornqvist, D. R. Tovey, G. Valencia, R. Van de Water, N. Varelas, G. Venanzoni, L. Verde, M. G. Vincter, P. Vogel, A. Vogt, S. P. Wakely, W. Walkowiak, C. W. Walter, D. Wands, D. R. Ward, M. O. Wascko, G. Weiglein, D. H. Weinberg, E. J. Weinberg, M. White, L. R. Wiencke, S. Willocq, C. G. Wohl, J. Womersley, C. L. Woody, R. L. Workman, W.-M. Yao, G. P. Zeller, O. V. Zenin, R.-Y. Zhu, S.-L. Zhu, F. Zimmermann, P. A. Zyla, J. Anderson, L. Fuller, V. S. Lugovsky, and P. Schaffner. Review of particle physics. Physical Review D, 98:030001, Aug 2018.spa
dc.relation.referencesBorut Bajc and Goran Senjanovic. Seesaw at lhc. ´ Journal of High Energy Physics, 2007(08):014, 2007.spa
dc.relation.referencesM Fukugita and Tsutomu Yanagida. Barygenesis without grand unification. Physics Letters B, 174(1):45–47, 1986.spa
dc.relation.referencesMasaharu Tanabashi, K Hagiwara, K Hikasa, K Nakamura, Y Sumino, F Takahashi, J Tanaka, K Agashe, G Aielli, C Amsler, et al. Review of particle physics. Physical Review D, 98(3):030001, 2018.spa
dc.relation.referencesMattias Blennow and Enrique Fernandez-Martinez. Parametrization of seesaw models and light sterile neutrinos. Physics Letters B, 704(3):223–229, 2011.spa
dc.relation.referencesJoachim Kopp, Michele Maltoni, and Thomas Schwetz. Are there sterile neutrinos at the eV scale? Physical Review Letters, 107(9):091801, 2011.spa
dc.relation.referencesGayatri Ghosh. Significance of broken µ − τ symmetry in correlating δCP, θ13, lightest neutrino mass and neutrinoless double beta decay 0νβ β, 2020spa
dc.relation.referencesS. M. Bilenky, S. Pascoli, and S. T. Petcov. Majorana neutrinos, neutrino mass spectrum, CP violation, and neutrinoless double β decay: The three-neutrino mixing case. Physical Review D, 64(5), Aug 2001.spa
dc.relation.referencesJunxing Pan, Jin Sun, Xiao-Dong Ma, and Xiao-Gang He. CP violating phase sum rule δqKM +δLKM = 0 for CKM and PMNS matrices. Physics Letters B, 807:135573, Aug 2020.spa
dc.relation.referencesMichelle J Dolinski, Alan WP Poon, and Werner Rodejohann. Neutrinoless doublebeta decay: status and prospects. Annual Review of Nuclear and Particle Science, 69:219–251, 2019.spa
dc.relation.referencesB Dziewit, K Kajda, J Gluza, and M Zrałek. Majorana neutrino textures from numerical considerations: The c p conserving case. Physical Review D, 74(3):033003, 2006.spa
dc.relation.referencesYH Ahn and Paolo Gondolo. Towards a realistic model of quarks and leptons, leptonic CP violation, and neutrinoless β β-decay. Physical Review D, 91(1):013007, 2015.spa
dc.relation.referencesJulia Gehrlein, Alexander Merle, and Martin Spinrath. Predictivity of neutrino mass sum rules. Physical Review D, 94(9):093003, 2016.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalMatrices de masa y mezcla de neutrinosspa
dc.subject.proposalModelo con dos dobletes de higgsspa
dc.subject.proposalMass and mixing matrices of the leptoneng
dc.subject.proposalSimetría permutacional de sabor S3spa
dc.subject.proposalMecanismos See-Saw tipo I y tipo I+IIIspa
dc.subject.proposalGeneracion de masas de neutrinosspa
dc.subject.proposalNeutrino mass generationeng
dc.subject.proposalTwo Higgs doublet model type IIIeng
dc.subject.proposalS3 flavor permutational symmetryeng
dc.subject.proposalSee-Saw Mechanism type I and type I+IIIeng
dc.subject.proposalMixing and mass matrices of neutrinoseng
dc.subject.wikidataFísicaspa
dc.titleMatrices de masa y mezcla del sector leptónico en el modelo con dos dobletes de Higgsspa
dc.title.translatedMass and mixing matrices of the lepton sector in the two Higgs doublet modeleng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TesisDoctoradoJulianGutierrezFeb2024F (2).pdf
Tamaño:
657.03 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Física de Neutrinos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: