Efecto de la aplicación exógena de brasinoesteroides sobre el crecimiento, fotosíntesis y respuestas bioquímicas del tomate de árbol (Solanum betaceum Cav.) bajo condiciones de anegamiento
dc.contributor.advisor | Balaguera López, Helber Enrique | |
dc.contributor.advisor | Alvarado Sanabria, Oscar Humberto | |
dc.contributor.author | Gutiérrez Villamil, Diego Alejandro | |
dc.contributor.cvlac | Gutiérrez Villamil, Diego Alejandro [0001824123] | |
dc.contributor.orcid | Gutiérrez Villamil, Diego Alejandro [0000-0003-1771-5603] | |
dc.contributor.researchgate | Gutiérrez Villamil, Diego Alejandro [Diego-Alejandro-Gutierrez-Villamil?ev=hdr_xprf] | |
dc.contributor.researchgroup | Horticultura | |
dc.date.accessioned | 2025-09-18T12:46:03Z | |
dc.date.available | 2025-09-18T12:46:03Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, graficos, fotografías | spa |
dc.description.abstract | El tomate de árbol (Solanum betaceum Cav.) es una especie frutal andina de importancia económica y nutricional. Sin embargo, su desarrollo se ve afectado por eventos de precipitación extrema que causan anegamiento del suelo. Según una revisión sistemática realizada en el estado del arte, el tomate de árbol es una especie poco estudiada en cuanto a su respuesta a este tipo de estrés. Además, estos eventos suelen coincidir con periodos de baja radiación, generando dos condiciones de estrés. En este contexto, el Capítulo 1 evaluó los efectos de distintos períodos de inundación bajo condiciones de sombrío, encontrando que la especie es altamente susceptible al anegamiento, presentando una reducción progresiva en parámetros fisiológicos y de crecimiento a partir de dos días de estrés. A los cuatro días de inundación, los efectos fueron severos, y a los seis días se presentó muerte celular, sin posibilidad de recuperación. Se identificó además que la fase de re-oxigenación del suelo es crítica, ya que acentúa los daños sufridos por las plantas. En el Capítulo 2, se exploró la aplicación foliar de brasinoesteroides (BR) como una estrategia para mitigar los efectos del anegamiento. Los resultados mostraron que el análogo espirostánico D1-31, en dosis de 3 µM, promovió respuestas bioquímicas y fisiológicas positivas, como la acumulación de osmoprotectantes (prolina y azúcares solubles), el mantenimiento del contenido de pigmentos fotosintéticos y mejoras en la eficiencia fotosintética, asimilación de CO2, el potencial hídrico foliar y la protección del fotosistema II, durante y después del estrés. Estos efectos permitieron una mayor recuperación del crecimiento aéreo. En conjunto, estos hallazgos sugieren que el uso de BR puede ser una herramienta valiosa en el manejo agronómico del tomate de árbol frente a inundaciones, contribuyendo a fortalecer la resiliencia del cultivo en escenarios de cambio climático. (Texto tomado de la fuente) | spa |
dc.description.abstract | The tree tomato or tamarillo (Solanum betaceum Cav.) is an Andean fruit species of economic and nutritional importance. However, its development is affected by extreme precipitation events that cause soil flooding. According to a systematic review conducted in Chapter 1, the tree tomato is a poorly studied species in terms of its response to this type of stress. Furthermore, these events often coincide with periods of low radiation, creating two stress conditions. In this context, Chapter 1 evaluated the effects of different flooding periods under shading conditions, finding that the species is highly susceptible to flooding, showing a progressive reduction in physiological and growth parameters after two days of stress. After four days of flooding, the effects were severe, and after six days, cell death occurred, with no possibility of recovery. It was also identified that the soil re-oxygenation phase is critical, as it exacerbates the damage suffered by the plants. In Chapter 2, the foliar application of brassinosteroids (BR) was explored as a strategy to mitigate the effects of flooding. The results showed that the spirostanic analogue D1-31, at a dose of 3 µM, promoted positive biochemical and physiological responses, such as the accumulation of osmoprotectants (proline and soluble sugars), the maintenance of photosynthetic pigment content, and improvements in photosynthetic efficiency, CO2 assimilation, foliar water potential, and protection of the photosystem II, during and after stress. These effects allowed for a greater recovery of aerial growth. In conclusion, these findings suggest that BR can be a valuable tool in the agronomic management of tree tomato in the face of flooding, helping to strengthen the crop's resilience in climate change scenarios. | eng |
dc.description.abstract | O tomateiro-árvore (Solanum betaceum Cav.) é uma espécie frutífera andina de importância econômica e nutricional. No entanto, seu desenvolvimento é afetado por eventos de precipitação extrema que causam o encharcamento do solo. De acordo com uma revisão sistemática realizada no estado da arte, o tomateiro-árvore é uma espécie pouco estudada quanto à sua resposta a esse tipo de estresse. Além disso, esses eventos costumam coincidir com períodos de baixa radiação, gerando duas condições de estresse. Nesse contexto, o Capítulo 1 avaliou os efeitos de diferentes períodos de inundação sob condições de sombreamento, constatando que a espécie é altamente suscetível ao encharcamento, apresentando redução progressiva nos parâmetros fisiológicos e de crescimento a partir de dois dias de estresse. Após quatro dias de inundação, os efeitos foram severos e, após seis dias, ocorreu morte celular, sem possibilidade de recuperação. Também se identificou que a fase de reoxigenação do solo é crítica, pois acentua os danos sofridos pelas plantas. No Capítulo 2, explorou-se a aplicação foliar de brassinoesteroides (BR) como uma estratégia para mitigar os efeitos do encharcamento. Os resultados mostraram que o análogo espirostânico D1-31, na dose de 3 µM, promoveu respostas bioquímicas e fisiológicas positivas, como o acúmulo de osmoprotetores (prolina e açúcares solúveis), a manutenção do conteúdo de pigmentos fotossintéticos e melhorias na eficiência fotossintética, assimilação de CO₂, potencial hídrico foliar e proteção do fotossistema II, durante e após o estresse. Esses efeitos permitiram uma maior recuperação do crescimento da parte aérea. Em conjunto, esses achados sugerem que o uso de BR pode ser uma ferramenta valiosa no manejo agronômico do tomateiro-árvore frente às inundações, contribuindo para fortalecer a resiliência da cultura em cenários de mudanças climáticas. | por |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magister en Ciencias Agrarias | |
dc.description.researcharea | Fisiología de Cultivos | |
dc.description.sponsorship | Esta investigación recibió apoyo financiero parcial de la Facultad de Ciencias Agrarias de la Universidad Nacional de Colombia (Sede Bogotá), a través de la convocatoria 2024 para la financiación parcial de proyectos de tesis de doctorado y maestría (Fondo de Investigación – Modalidad 2), con el código de proyecto Hermes 62752. | |
dc.format.extent | xvi, 145 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88901 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias Agrarias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias | |
dc.relation.references | Acosta-Quezada, P. G., Martínez-Laborde, J. B., y Prohens, J. (2011). Variation among tree tomato (Solanum betaceum Cav.) accessions from different cultivar groups: implications for conservation of genetic resources and breeding. Genetic Resources and Crop Evolution, 58(6), 943–960. https://doi.org/10.1007/s10722-010-9634-9 | |
dc.relation.references | Acosta-Quezada, P. G., Vilanova, S., Martínez-Laborde, J. B., y Prohens, J. (2012). Genetic diversity and relationships in accessions from different cultivar groups and origins in the tree tomato (Solanum betaceum Cav.). Euphytica, 187(1), 87–97. https://doi.org/10.1007/s10681-012-0736-7 | |
dc.relation.references | Acosta-Quezada, P., Riofrío-Cuenca, T., Rojas, J., Vilanova, S., Plazas, M., y Prohens, J. (2016). Phenological growth stages of tree tomato (Solanum betaceum Cav.), an emerging fruit crop, according to the basic and extended BBCH scales. Scientia Horticulturae, 199, 216-223. https://doi.org/10.1016/j.scienta.2015.12.045 | |
dc.relation.references | Agronet. (2025). Sistema de Estadísticas Agropecuarias – SEA [Base de datos]. Recuperado de https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 | |
dc.relation.references | Ahanger, M. A., Ashraf, M., Bajguz, A., y Ahmad, P. (2018). Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones. Journal of Plant Growth Regulation, 37(4), 1007-1024. https://doi.org/10.1007/s00344-018-9855-2 | |
dc.relation.references | Ahmad-Lone, W., Majeed, N., Yaqoob, U., y Jhon, R. (2022). Exogenous brassinosteroid and jasmonic acid improve drought tolerance in Brassica rapa L. genotypes by modulating osmolytes, antioxidants and photosynthetic system. Plant Cell Reports, 41, 603–617. https://doi.org/10.1007/s00299-021-02763-9 | |
dc.relation.references | Aldana, F., García, P. N., y Fischer, G. (2014). Effect of waterlogging stress on the growth, development and symptomatology of cape gooseberry (Physalis peruviana L.) plants. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 38(149), 393-400. | |
dc.relation.references | Bąba, W., Kalaji, H.M., Kompała-Bąba, A., y Goltsev, V. (2016). Acclimatization of photosynthetic apparatus of tor grass (Brachypodium pinnatum) during expansion. PLoS One 11(6), e0156201. https://doi.org/10.1371/journal.pone.0156201 | |
dc.relation.references | Back, T. G., y Pharis, R. P. (2003). Structure-Activity Studies of Brassinosteroids and the Search for Novel Analogues and Mimetics with Improved Bioactivity. Journal of Plant Growth Regulation, 22(4), 350–361. https://doi.org/10.1007/s00344-003-0057-0 | |
dc.relation.references | Bajguz, A., y Piotrowska-Niczyporuk, A. (2023). Biosynthetic pathways of hormones in plants. Metabolites, 13(8), 884. https://doi.org/10.3390/metabo13080884 | |
dc.relation.references | Balakhnina, T.I. (2015). Plant responses to soil flooding. En: Tripathi, B., Müller, M. (eds). Stress Responses in Plants (pp. 115-142). Springer. https://doi.org/10.1007/978-3-319-13368-3_5 | |
dc.relation.references | Baracaldo, A., Carvajal, R., Romero, A. P., Prieto, A. M., García, F. J., Fischer, G., y Miranda, D. (2014). El anegamiento afecta el crecimiento y producción de biomasa en tomate chonto (Solanum lycopersicum L.), cultivado bajo sombrío. Revista Colombiana de Ciencias Hortícolas, 8(1), 92–102. https://doi.org/10.17584/rcch.2014v8i1.2803 | |
dc.relation.references | Barickman, T. C., Simpson, C. R., y Sams, C. E. (2019). Waterlogging Causes Early Modification in the Physiological Performance, Carotenoids, Chlorophylls, Proline, and Soluble Sugars of Cucumber Plants. Plants, 8(6), 160. https://doi.org/10.3390/plants8060160 | |
dc.relation.references | Bates, l. (1973) Rapid determination of free proline for water − stress studies. Plant Soil. 39, 205-207. http://dx.doi.org/10.1007/BF00018060 | |
dc.relation.references | Betancourt-Osorio J, Sanchez-Canro D, Restrepo-Diaz H (2016) Effect of nitrogen nutritional statuses and waterlogging conditions on growth parameters, nitrogen use efficiency and chlorophyll fluorescence in tamarillo seedlings. Not Bot Horti Agrobot Cluj-Napoca 44:375-381. https://doi.org/10.15835/nbha44210438 | |
dc.relation.references | Bhatt, R. M., Upreti, K. K., Divya, M., Bhat, S., Pavithra, C., y Sadashiva, A. (2015). Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 182, 8-17. https://doi.org/10.1016/j.scienta.2014.10.043 | |
dc.relation.references | Bohs, L. (1989). Ethnobotany of the genus Cyphomandra (Solanaceae). Economic Botany, 43(2), 143–163. https://doi.org/10.1007/BF02859855 | |
dc.relation.references | Bohs, L. (1995). Transfer of Cyphomandra (Solanaceae) and Its Species to Solanum. Taxon, 44(4), 583–587. https://doi.org/10.2307/1223500 | |
dc.relation.references | Bohs, L. (2007). Phylogeny of the Cyphomandra clade of the genus Solanum (Solanaceae) based on ITS sequence data. Taxon, 56(4), 1012-1026. https://doi.org/10.2307/25065901 | |
dc.relation.references | Bonnet, J., y Cárdenas, J. (2012). Tomate de árbol (Cyphomandra betacea Sendt.). En: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico (825 - 850 p.). Produmedios, Bogotá (Colombia). | |
dc.relation.references | Briglia, N., Williams, K., Wu, D., Li, Y., Tao, S., Corke, F., Montanaro, G., Petrozza, A., Amato, D., Cellini, F., Doonan, J. H., Yang, W., y Nuzzo, V. (2020). Image-based assessment of drought response in grapevines. Frontier in Plant Science, 11, 595. https://doi.org/10.3389/fpls.2020.00595 | |
dc.relation.references | Buchanan, B. B., Gruissem, W., y Jones, R. L. (Eds.). (2015). Biochemistry and molecular biology of plants (2nd ed.). Wiley Blackwell. | |
dc.relation.references | Bui, L. T., Novi, G., Lombardi, L., Iannuzzi, C., Rossi, J., Santaniello, A., Mensuali, A., Corbineau, F., Giuntoli, B., Perata, P., Zaffagnini, M., y Licausi, F. (2019). Conservation of ethanol fermentation and its regulation in land plants. Journal of Experimental Botany, 70(6), 1815-1827. https://doi.org/10.1093/jxb/erz052 | |
dc.relation.references | Burda, B. U., Webber, E. M., Redmond, N., y Perdue, L. A. (2017). Estimating data from figures with a Web-based program: Considerations for a systematic review. Research Synthesis Methods, 8(3), 258-262. https://doi.org/10.1002/jrsm.1232 | |
dc.relation.references | Caeiro, A., Caeiro, S., Correia, S., y Canhoto, J. (2022). Induction of Somatic Embryogenesis in Tamarillo (Solanum betaceum Cav.) Involves Increases in the Endogenous Auxin Indole-3-Acetic Acid. Plants, 11(10), 1347. https://doi.org/10.3390/plants11101347 | |
dc.relation.references | Cao, X., Wu, L., Wu, M., Zhu, C., Jin, Q., y Zhang, J. (2020). Abscisic acid mediated proline biosynthesis and antioxidant ability in roots of two different rice genotypes under hypoxic stress. BMC Plant Biology, 20, 1-14. https://doi.org/10.1186/s12870-020-02414-3 | |
dc.relation.references | Cardona, W. A. A., Bautista-Montealegre, L. G., Flórez-Velasco, N., y Fischer, G. (2016). Biomass and root development response of lulo (Solanum quitoenses var. septentrionale) plants to shading and waterlogging. Revista Colombiana De Ciencias Hortícolas, 10(1), 53–65. https://doi.org/10.17584/rcch.2016v10i1.5124 | |
dc.relation.references | Casierra-Posada, F. (2007). Fotoinhibición: Respuesta fisiológica de los vegetales al estrés por exceso de luz. Una revisión. Revista Colombiana de Ciencias Hortícolas, 1(1), 114-123. | |
dc.relation.references | Casierra-Posada, F., Peña-Olmos, J., Peñaloza, J., y Roveda, G. (2013). Influencia de la sombra y de las micorrizas sobre el crecimiento de plantas de lulo (Solanum quitoense Lam.). Revista U.D.C.A Actualidad y Divulgación Científica, 16(1),61–70. https://doi.org/10.31910/rudca.v16.n1.2013.859 | |
dc.relation.references | Castañeda-Murillo, C. C., Rojas-Ortiz, J. G., Sánchez-Reinoso, A. D., Chávez-Arias, C. C., y Restrepo-Díaz, H. (2022). Foliar brassinosteroid analogue (DI-31) sprays increase drought tolerance by improving plant growth and photosynthetic efficiency in lulo plants. Heliyon, 8(2), e08977. https://doi.org/10.1016/j.heliyon.2022.e08977 | |
dc.relation.references | Chakraborty, N., Ganguly, R., Sarkar, A., Dasgupta, D., Sarkar, J., Acharya, K., ... y Keswani, C. (2025). Multifunctional Role of Brassinosteroids in Plant Growth, Development, and Defense. Journal of Plant Growth Regulation, 1-14. https://doi.org/10.1007/s00344-024-11593-4 | |
dc.relation.references | Chaumont, F., y Tyerman, S. D. (2014). Aquaporins: Highly Regulated Channels Controlling Plant Water Relations. Plant Physiology, 164(4), 1600-1618. https://doi.org/10.1104/pp.113.233791 | |
dc.relation.references | Chávez-Arias, C. C., Gómez-Caro, S., y Restrepo-Díaz, H. (2020). Mitigation of the impact of vascular wilt and soil hypoxia on cape gooseberry plants by foliar application of synthetic elicitors. HortScience, 55(1), 121-132. https://doi.org/10.21273/HORTSCI14550-19 | |
dc.relation.references | Chen, S., Zhang, Q., y Lin, S. (2024). Nutritional and phytochemical composition of the red tamarillo grown in Taiwan. Journal of Food Composition and Analysis, 131, 106258. https://doi.org/10.1016/j.jfca.2024.106258 | |
dc.relation.references | Chen, X., Xue, H., Zhu, L., Wang, H., Long, H., Zhao, J., Meng, F., Liu, Y., Ye, Y., Luo, X., Liu, Z., Xiao, G., y Zhu, S. (2022). ERF49 mediates brassinosteroid regulation of heat stress tolerance in Arabidopsis thaliana. BMC Biology, 20(1), 254. https://doi.org/10.1186/s12915-022-01455-4 | |
dc.relation.references | Chen, Y., Zhang, H., Chen, W., Gao, Y., Xu, K., Sun, X., y Huo, L. (2024). The role of ethylene in the regulation of plant response mechanisms to waterlogging stress. Plant Cell Report, 43, 278. https://doi.org/10.1007/s00299-024-03367-9 | |
dc.relation.references | Choudhary, S. P., Bhardwaj, R., Gupta, B. D., Dutt, P., Gupta, R. K., Biondi, S., y Kanwar, M. (2010). Epibrassinolide induces changes in indole-3-acetic acid, abscisic acid and polyamine concentrations and enhances antioxidant potential of radish seedlings under copper stress. Physiologia Plantarum, 140(3), 280-296. https://doi.org/10.1111/j.1399-3054.2010.01403.x | |
dc.relation.references | Cordeiro, D., Pérez-Pérez, Y., Canhoto, J., Testillano, P. S., y Correia, S. (2023). H3K9 methylation patterns during somatic embryogenic competence expression in tamarillo (Solanum betaceum Cav.). Scientia Horticulturae, 321, 112259. https://doi.org/10.1016/j.scienta.2023.112259 | |
dc.relation.references | Correia, S., Braga, A., Martins, J., Correia, B., Pinto, G., y Canhoto, J. (2023). Effects of polyploidy on physiological performance of acclimatized Solanum betaceum Cav. plants under water deficit. Forests, 14(2), 208. https://doi.org/10.3390/f14020208 | |
dc.relation.references | Dai, Y., Shen, Z., Liu, Y., Wang, L., Hannaway, D., y Lu, H. (2009). Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany, 65(2-3), 177-182. https://doi.org/10.1016/j.envexpbot.2008.12.008 | |
dc.relation.references | de Ollas, C., Pitarch, Z., Matus, J. T., Candela, H., Rambla, J. L., Granell, A., y Arbona, V. (2021). Identification of ABA-Mediated Genetic and Metabolic Responses to Soil Flooding in Tomato (Solanum lycopersicum L. Mill). Frontiers in Plant Science, 12, 613059. https://doi.org/10.3389/fpls.2021.613059 | |
dc.relation.references | de Pedro, L. F., Mignolli, F., Scartazza, A., Melana Colavita, J. P., Bouzo, C. A., y Vidoz, M. L. (2020). Maintenance of photosynthetic capacity in flooded tomato plants with reduced ethylene sensitivity. Physiologia Plantarum, 170(2), 202-217. https://doi.org/10.1111/ppl.13141 | |
dc.relation.references | Dell'Amico, J., Torrecillas, A., Rodrı́guez, P., Morales, D., y Sánchez-Blanco, M. J. (2001). Differences in the effects of flooding the soil early and late in the photoperiod on the water relations of pot-grown tomato plants. Plant Science, 160(3), 481-487. https://doi.org/10.1016/S0168-9452(00)00409-X | |
dc.relation.references | Diep, T. T., Rush, E. C., y Yoo, M. J. Y. (2020). Tamarillo (Solanum betaceum Cav.): A Review of Physicochemical and Bioactive Properties and Potential Applications. Food Reviews International, 38(7), 1343–1367. https://doi.org/10.1080/87559129.2020.1804931 | |
dc.relation.references | Dresbøll, D.B., Thorup-Kristensen, K., Mckenzie, B.M., Dupuy, L.X., y Bengough, A.G. (2013). Timelapse scanning reveals spatial variation in tomato (Solanum lycopersicum L.) root elongation rates during partial waterlogging. Plant and Soil, 369, 467–477. https://doi.org/10.1007/s11104-013-1592-5 | |
dc.relation.references | Duan, F., Ding, J., Lee, D., Lu, X., Feng, Y., y Song, W. (2017). Overexpression of SoCYP85A1, a Spinach Cytochrome p450 Gene in Transgenic Tobacco Enhances Root Development and Drought Stress Tolerance. Frontiers in Plant Science, 8, 267863. https://doi.org/10.3389/fpls.2017.01909 | |
dc.relation.references | Dubois, M., G Illes, K., Hamilton, J., R Ebers, P., y Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. http://dx.doi.org/10.1021/ac60111a017 | |
dc.relation.references | Earl, H. J., y Ennahli, S. (2004). Estimating photosynthetic electron transport via chlorophyll fluorometry without Photosystem II light saturation. Photosynthesis Research, 82(2), 177–186. https://doi.org/10.1007/s11120-004-1454-3. | |
dc.relation.references | Elizalde-Romero, C. A., Montoya-Inzunza, L. A., Contreras-Angulo, L. A., Heredia, J. B., and Gutiérrez-Grijalva, E. P. (2021). Solanum Fruits: Phytochemicals, bioaccessibility and bioavailability, and their relationship with their health-promoting effects. Frontiers in Nutrition, 8, 790582. https://doi.org/10.3389/fnut.2021.790582 | |
dc.relation.references | Else, M. A., Hall, K. C., Arnold, G. M., Davies, W. J., y Jackson, M. B. (1995). Export of abscisic acid, 1-aminocyclopropane-1-carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants (accounting for effects of xylem sap flow rate on concentration and delivery). Plant Physiology, 107(2), 377-384. https://doi.org/10.1104/pp.107.2.377 | |
dc.relation.references | Else, M. A., Taylor, J. M., y Atkinson, C. J. (2006). Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA. Journal of Experimental Botany, 57(12), 3349–3357. https://doi.org/10.1093/jxb/erl099 | |
dc.relation.references | Else, M. A., y Jackson M. B. (1998). Transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty. Functional Plant Biology, 25, 453-458. https://doi.org/10.1071/PP97105 | |
dc.relation.references | Fan, B., Liao, K., Wang, L.-N., Shi, L.-L., Zhang, Y., Xu, L.-J., Zhou, Y., Li, J.-F., Chen, Y.-Q., Chen, Q.-F., y Xiao, S. (2023). Calcium-dependent activation of CPK12 facilitates its cytoplasm-to-nucleus translocation to potentiate plant hypoxia sensing by phosphorylating ERF-VII transcription factors. Molecular Plant, 16(6), 979–998. https://doi.org/10.1016/j.molp.2023.04.002 | |
dc.relation.references | FAO, Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2022). Análisis departamental de vulnerabilidad y riesgo frente al cambio climático para el sector agropecuario en Colombia. Disponible en: https://cambioclimatico.fao.org.co/analisis-vulnerabilidad/ | |
dc.relation.references | Farkas, Z., Anda, A., Veisz, O., y Varga, B. (2020). Effects of Waterlogging, Drought and Their Combination on Yield and Water-Use Efficiency of Five Hungarian Winter Wheat Varieties. Water, 12(5), 1318. https://doi.org/10.3390/w12051318 | |
dc.relation.references | Fischer, G., Balaguera-López, H.E., y Magnitskiy, S. (2021). Review on the ecophysiology of important Andean fruits: Solanaceae. Rev. U.D.C.A Act. y Div. Cient. 24(1): e1701. http://doi.org/10.31910/rudca.v24.n1.2021.1701 | |
dc.relation.references | Fischer, G., Casierra-Posada, F. y Blanke, M. (2023). Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: A review. Agronomía Colombiana, 41(2), e108351. https://doi.org/10.15446/agron.colomb.v41n2.108351 | |
dc.relation.references | Flórez-Velasco, N., Balaguera-López, H. E., y Restrepo-Díaz, H. (2015). Effects of foliar urea application on lulo (Solanum quitoense cv. Septentrionale) plants grown under different waterlogging and nitrogen conditions. Scientia Horticulturae, 186, 154-162. https://doi.org/10.1016/j.scienta.2015.02.021 | |
dc.relation.references | Flórez-Velasco, N., Fischer, G. y Balaguera-López, H. E. (2024). Photosynthesis in fruit crops of the high tropical Andes: A systematic review. Agronomía Colombiana, 42(2), e113887. https://doi.org/10.15446/agron.colomb.v42n2.113887 | |
dc.relation.references | Force, L., Critchley, C., y van Rensen, J.J. (2003). New fluorescence parameters for monitoring photosynthesis in plants. Photosynthesis Research, 78, 17–33. https://doi.org/10.1023/A:1026012116709 | |
dc.relation.references | Forero, L. E., Grenzer, J., Heinze, J., Schittko, C., y Kulmatiski, A. (2019). Greenhouse- and field-measured plant-soil feedbacks are not correlated. Frontiers in Environmental Science, 7, 478851. https://doi.org/10.3389/fenvs.2019.00184 | |
dc.relation.references | Formisano, L., Ciriello, M., Zhang, L., De Pascale, S., Lucini, L., y Rouphael, Y. (2022). Between light and shading: morphological, biochemical, and metabolomics insights into the influence of blue photoselective shading on vegetable seedlings. Frontiers in Plant Science, 13, 890830. https://doi.org/10.3389/fpls.2022.890830 | |
dc.relation.references | Fukui, H. N., Teubner, F. G., Wittwer, S. H., y Sell, H. M. (1958). Growth Substances in Corn Pollen. Plant Physiology, 33(2), 144. https://doi.org/10.1104/pp.33.2.144 | |
dc.relation.references | Geisler-Lee, J., Caldwell, C. R., y Gallie, D. (2010). Expression of the ethylene biosynthetic machinery in maize roots is regulated in response to hypoxia. Journal of Experimental Botany, 61(3), 857-871. https://doi.org/10.1093/jxb/erp362 | |
dc.relation.references | Geldhof, B., Novák, O., y Van De Poel, B. (2024). Leaf ontogeny modulates epinasty through shifts in hormone dynamics during waterlogging in tomato. Journal of Experimental Botany, 75(3), 1081-1097. Doi: https://doi.org/10.1093/jxb/erad432 | |
dc.relation.references | Geldhof, B., y Pattyn, J. (2023). From a different angle: Genetic diversity underlies differentiation of waterlogging-induced epinasty in tomato. Frontiers in Plant Science, 14, 1178778. https://doi.org/10.3389/fpls.2023.1178778 | |
dc.relation.references | Ghatak, A., Chaturvedi, P., Paul, P., Agrawal, G. K., Rakwal, R., Kim, S. T., Weckwerth, W., y Gupta, R. (2017). Proteomics survey of Solanaceae family: Current status and challenges ahead. Journal of Proteomics, 169, 41-57. https://doi.org/10.1016/j.jprot.2017.05.016 | |
dc.relation.references | González, M.S., Perales, V.H., y Salcedo, A.M. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica, 27(4), 119-129. | |
dc.relation.references | Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Steffens, G. L., L., J., y Cook, J. C. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 281(5728), 216-217. https://doi.org/10.1038/281216a0 | |
dc.relation.references | Guimarães, M.L., Tomé, M.C., y Cruz, G.S. (1996). Cyphomandra betacea (Cav.) Sendtn. (Tamarillo). En: Bajaj, Y.P. (eds), Trees IV. Biotechnology in Agriculture and Forestry (pp. 120-137), vol 35. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-10617-4_7 | |
dc.relation.references | Gutiérrez-Villamil, D. A., Magnitskiy, S., y Balaguera-López, H. E. (2024). Physiological and molecular functions of brassinosteroids during fruit development, ripening, and postharvest damage of horticultural products: A review. Postharvest Biology and Technology, 214, 112984. https://doi.org/10.1016/j.postharvbio.2024.112984 | |
dc.relation.references | Han, R., Ma, L., Terzaghi, W., Guo, Y., y Li, J. (2024). Molecular mechanisms underlying coordinated responses of plants to shade and environmental stresses. The Plant Journal, 117(6), 1893-1913. https://doi.org/10.1111/tpj.16653 | |
dc.relation.references | Han, X., Shen, Y., Wang, Y., Shen, J., Wang, H., Ding, S., Xu, Y., Mao, Y., Chen, H., Song, Y., Ding, Z., y Fan, K. (2023). Transcriptome revealed the effect of shading on the photosynthetic pigment and photosynthesis of overwintering tea leaves. Agronomy, 13(7), 1701. https://doi.org/10.3390/agronomy13071701 | |
dc.relation.references | Hartman, S., Van Dongen, N., Renneberg, D. M., Kociemba, J., Sasidharan, R., y Voesenek, L. A. (2020). Ethylene differentially modulates hypoxia responses and tolerance across Solanum species. Plants, 9(8), 1022. https://doi.org/10.3390/plants9081022 | |
dc.relation.references | Hewett, E.W. (1993). New horticultural crops in New Zealand. En: Janick, J., y Simon, J.E. (eds). New Crops (pp. 57-64). New York: John Wiley and Sons. | |
dc.relation.references | Hochberg, U., Rockwell, F.E., Holbrook, N.M., y Cochard, H. (2018). Iso/Anisohydry: a plant–environment interaction rather than a simple hydraulic trait. Trends in Plant Science, 23(2),112-120. https://doi.org/10.1016/j.tplants.2017.11.002 | |
dc.relation.references | Hola, D. (2019). Role of Brassinosteroids in the Plant Response to Drought: Do We Know Anything for Certain?. En: Hayat, S., Yusuf, M., Bhardwaj, R., y Bajguz, A. (eds). Brassinosteroids: Plant Growth and Development (pp. 101-168). Springer, Singapore. https://doi.org/10.1007/978-981-13-6058-9_5 | |
dc.relation.references | Horchani, F., Aloui, A., Brouquisse, R., y Aschi-Smiti, S. (2008). Physiological Responses of Tomato Plants (Solanum lycopersicum) as Affected by Root Hypoxia. Journal of Agronomy and Crop Science, 194(4), 297-303. https://doi.org/10.1111/j.1439-037X.2008.00313.x | |
dc.relation.references | Igamberdiev, A. U., y Hill, R. D. (2018). Elevation of cytosolic Ca2+ in response to energy deficiency in plants: The general mechanism of adaptation to low oxygen stress. Biochemical Journal 475(8), 1411–1425. http://doi.org/10.1042/BCJ20180169 | |
dc.relation.references | Jackson, M. B., Saker, L. R., Crisp, C. M., Else, M. A., u Janowiak, F. (2003). Ionic and pH signalling from roots to shoots of flooded tomato plants in relation to stomatal closure. Plant and Soil, 253, 103–113. https://doi.org/10.1023/A:1024588532535 | |
dc.relation.references | Jaramillo, V., Vintimilla, C., Torres, A. F., Arahana, V., y Torres, M. D. L. (2018). Differential expression of genes in response to salinity stress in tree tomato (Solanum betaceum). Mexican Journal of Biotechnology, 3(2), 1-15. https://doi.org/10.29267/mxjb.2018.3.2.1 | |
dc.relation.references | Jethva, J., Schmidt, R. R., Sauter, M., y Selinski, J. (2022). Try or Die: dynamics of plant respiration and how to survive low oxygen conditions. Plants, 11(2), 205. https://doi.org/10.3390/plants11020205 | |
dc.relation.references | Jia, W., Ma, M., Chen, J., y Wu, S. (2021). Plant Morphological, Physiological and Anatomical Adaption to Flooding Stress and the Underlying Molecular Mechanisms. International Journal of Molecular Sciences, 22(3), 1088. https://doi.org/10.3390/ijms22031088 | |
dc.relation.references | Jiang, M., y Zhang, J. (2001). Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant and Cell Physiology, 42(11), 1265-1273. https://doi.org/10.1093/pcp/pce162 | |
dc.relation.references | Jiang, Z., Xia, X., Liu, Y., He, J., y Yang, X. (2023). Integrated miRNA and Mrna transcriptome analysis reveals eggplant’s (Solanum melongena L.) responses to waterlogging stress. Agronomy, 13(9), 2215. https://doi.org/10.3390/agronomy13092215 | |
dc.relation.references | Jiménez, J. C., Moreno F., L. P., y Magnitskiy, S. (2013). Respuesta de las plantas a estrés por inundación. Una revisión. Revista Colombiana De Ciencias Hortícolas, 6(1), 96–109. https://doi.org/10.17584/rcch.2012v6i1.1287 | |
dc.relation.references | Jiménez, D.L., Mustroph, A., Pedersen, O., Weits, D.A., y Schmidt-Schippers, R. (2024). Flooding stress and responses to hypoxia in plants. Functional Plant Biology, 51, FP24061 https://doi.org/10.1071/fp24061 | |
dc.relation.references | Kar, S., Montague, D. T., y Villanueva-Morales, A. (2021). Measurement of photosynthesis in excised leaves of ornamental trees: a novel method to estimate leaf level drought tolerance and increase experimental sample size. Trees, 35, 889-905. https://doi.org/10.1007/s00468-021-02088-w | |
dc.relation.references | Khoury, M. G., Martin, R., Houben, M., y Muday, G. (2024). Flooding tolerance mechanisms in roots. En: Eshel, A., y Beeckman, T. (eds.). Plant Roots: The Hidden Half (pp. 247-260). 5th ed. CRC Press Taylor y Francis Group, Florida. https://doi.org/10.1201/b23126 | |
dc.relation.references | Kim, E. J., y Russinova, E. (2020). Brassinosteroid signalling. Current Biology, 30(7), 294-298. https://doi.org/10.1016/j.cub.2020.02.011 | |
dc.relation.references | Kothari, A., y Lachowiec, J. (2021). Roles of Brassinosteroids in Mitigating Heat Stress Damage in Cereal Crops. International Journal of Molecular Sciences, 22(5), 2706. https://doi.org/10.3390/ijms22052706 | |
dc.relation.references | Kour, J., Kohli, S. K., Khanna, K., Bakshi, P., Sharma, P., Singh, A. D., Ibrahim, M., Devi, K., Sharma, N., Ohri, P., Skalicky, M., Brestic, M., Bhardwaj, R., Landi, M., y Sharma, A. (2021). Brassinosteroid signaling, crosstalk and, physiological functions in plants under heavy metal stress. Frontiers in Plant Science, 12, 608061. https://doi.org/10.3389/fpls.2021.608061 | |
dc.relation.references | Kudoyarova, G., Veselov, D., Yemelyanov, V., y Shishova, M. (2022). The Role of Aquaporins in Plant Growth under Conditions of Oxygen Deficiency. International Journal of Molecular Sciences, 23(17), 10159. https://doi.org/10.3390/ijms231710159 | |
dc.relation.references | Kuhlgert, S., Austic, G., Zegarac, R., Osei-Bonsu, I., Hoh, D., Chilvers, M.I., Roth, M.G., Bi, K., Teravest, D., Weebadde, P., y Kramer, D. M. (2016). MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society Open Science, 3, 160592. https://doi.org/10.1098/rsos.160592 | |
dc.relation.references | Lehmann, S., Funck, D., Szabados, L., y Rentsch, D. (2010). Proline metabolism and transport in plant development. Amino Acids, 39(4), 949–962. https://doi.org/10.1007/s00726-010-0525-3 | |
dc.relation.references | Lenssen, J. P., y J. Menting, F. B. (2003). Plant responses to simultaneous stress of waterlogging and shade: Amplified or hierarchical effects? New Phytologist, 157(2), 281-290. https://doi.org/10.1046/j.1469-8137.2003.00666.x | |
dc.relation.references | Lester, R.N., y Hawkes, J.G. (2001). Solanaceae. En: Hanelt, P. (ed.). Mansfelds Encyclopedia of Agricultural and Horticultural Crops (Except Ornamentals) (pp. 1790-1856). Berlin, Germany: Institute of Plant Genetics and Crop Research Springer. | |
dc.relation.references | Li, S., Dong, Q., Jin, Y., Li, S., Li, M., Liu, T., Zhao, X., Chen, J., Ye, P., y Lyu, M. (2023). Response and evaluation of leaf traits and physiological parameters of Cyphoma betacea seedlings under shading environment. Journal of Agricultural Science and Technology, 25(1), 72-82. https://doi.org/10.13304/j.nykjdb.2021.0508 | |
dc.relation.references | Li, X. J., Guo, X., Zhou, Y. H., Shi, K., Zhou, J., Yu, J. Q., y Xia, X. J. (2016). Overexpression of a brassinosteroid biosynthetic gene Dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato. BMC Plant Biology, 16, 1-12. https://doi.org/10.1186/s12870-016-0715-6 | |
dc.relation.references | Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1 | |
dc.relation.references | Liu, C., Lan, C., Li, C., Li, C., y Huang, J. (2023). Exogenous spermidine and calcium alleviate waterlogging stress in cherry tomato at the seedling stage. Scientia Horticulturae, 307, 111504. https://doi.org/10.1016/j.scienta.2022.111504 | |
dc.relation.references | Liu, K., Harrison, M. T., Yan, H., Liu, D. L., Meinke, H., Hoogenboom, G., Wang, B., Peng, B., Guan, K., Jaegermeyr, J., Wang, E., Zhang, F., Yin, X., Archontoulis, S., Nie, L., Badea, A., Man, J., Wallach, D., Zhao, J., Borrego Benjumea, A., Fahad, S., Tian, X., Wang, W., Tao, F., Zhang, Z., Rötter, R., Yuan, Y., Zhu, M., Dai, P., Nie, J., Yang, Y., Zhang, Y., & Zhou, M. (2023). Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nature Communications, 14(1), 765. https://doi.org/10.1038/s41467-023-36129-4 | |
dc.relation.references | Liu, W., Liu, K., Chen, D., Zhang, Z., Li, B., M., M., Tian, S., y Chen, T. (2022). Solanum lycopersicum, a model plant for the studies in developmental biology, stress biology and food science. Foods, 11(16), 2402. https://doi.org/10.3390/foods11162402 | |
dc.relation.references | Lobo A., M., Medina C., y Cardona G., M. (2000). Resistencia de campo a la antracnosis de los frutos (Colletotrichum gloeosporioides) en tomate de arbol (Cyphomandra (Solanum) betacea (betaceum) Cav. Sendt.). Revista Facultad Nacional de Agronomía Medellín, 53(2), 1129–1142. | |
dc.relation.references | Lobo, F.A., de Barros, M.P., Dalmagro, H.J., Dalmolin, Â.C., Pereira, W.E., de Souza, É.C., Vourlitis, G.L., y Rodríguez Ortíz, C.E. (2013). Fitting net photosynthetic light-response curves with Microsoft Excel - a critical look at the models. Photosynthetica, 51(3), 445-456. https://doi.org/10.1007/s11099-013-0045-y | |
dc.relation.references | Lopes, A. B., Andreoli, R. V., F. Souza, R. A., Cerón, W. L., Kayano, M. T., y Canchala, T. (2022). Multiyear La Niña effects on the precipitation in South America. International Journal of Climatology, 42(16), 9567-9582. https://doi.org/10.1002/joc.7847 | |
dc.relation.references | Lothier, J., Diab, H., Cukier, C., Limami, A. M., y Tcherkez, G. (2020). Metabolic Responses to Waterlogging Differ between Roots and Shoots and Reflect Phloem Transport Alteration in Medicago truncatula. Plants, 9(10), 1373. https://doi.org/10.3390/plants9101373 | |
dc.relation.references | Lu, X. M., Sun, J., Guo, S. R., y Li, B. (2012). Effects of exogenous 24-epibrassinolide on the leaf photosynthetic characteristics and polyamines content of cucumber seedlings under hypoxia stress. Chinese Journal of Applied Ecology, 13(1), 140-146. https://www.cjae.net/EN/abstract/abstract6991.shtml | |
dc.relation.references | Lu, Y., Wang, B., Zhang, M., Yang, W., Wu, M., Ye, J., Ye, S., y Zhu, G. (2024). Exogenous brassinolide ameliorates the adverse effects of gamma radiation stress and increases the survival rate of rice seedlings by modulating antioxidant metabolism. International Journal of Molecular Sciences, 25(21), 11523. https://doi.org/10.3390/ijms252111523 | |
dc.relation.references | Luo, Q., Ma, Y., Xie, H., Chang, F., Guan, C., Yang, B., y Ma, Y. (2024). Proline Metabolism in Response to Climate Extremes in Hairgrass. Plants, 13(10), 1408. https://doi.org/10.3390/plants13101408 | |
dc.relation.references | Ma, Y.H., y Guo, S.R. (2014). 24-epibrassinolide improves cucumber photosynthesis under hypoxia by increasing CO2 assimilation and photosystem II efficiency. Photosynthetica, 52(1), 96-104. https://doi.org/10.1007/s11099-014-0010-4 | |
dc.relation.references | Manghwar, H., Hussain, A., Alam, I., Khoso, M. A., Ali, Q., y Liu, F. (2024). Waterlogging stress in plants: Unraveling the mechanisms and impacts on growth, development, and productivity. Environmental and Experimental Botany, 224, 105824. https://doi.org/10.1016/j.envexpbot.2024.105824 | |
dc.relation.references | Manghwar, H., Hussain, A., Ali, Q., y Liu, F. (2022). Brassinosteroids (BRs) Role in Plant Development and Coping with Different Stresses. International Journal of Molecular Sciences, 23(3), 1012. https://doi.org/10.3390/ijms23031012 | |
dc.relation.references | Marcial, L., Martínez, A., León, J., Suárez, A., y Viera, W. (2023). Desarrollo del fruto en cultivares de tomate de árbol (Solanum betaceum Cav.). Perfiles, 1(29), 30-39. https://doi.org/10.47187/perf.v1i29.200 | |
dc.relation.references | Martin, T. N., Fipke, G, Minussi-Winck, J., y Márchese, J. (2020). ImageJ software as an alternative method for estimating leaf area in oats. Acta Agronómica, 69(3), 162-169. https://doi.org/10.15446/acag.v69n3.69401 | |
dc.relation.references | Martínez-Arias, C., Witzell, J., Solla, A., Martin, J. A., y Rodríguez-Calcerrada, J. (2022). Beneficial and pathogenic plant-microbe interactions during flooding stress. Plant, Cell y Environment, 45(10), 2875-2897. https://doi.org/10.1111/pce.14403 | |
dc.relation.references | Mauro, R. P., Agnello, M., Distefano, M., Sabatino, L., Leonardi, C., y Giuffrida, F. (2020). Chlorophyll fluorescence, photosynthesis and growth of tomato plants as affected by long-term oxygen root zone deprivation and grafting. Agronomy, 10(1), 137. https://doi.org/10.3390/agronomy10010137 | |
dc.relation.references | Miao, R., Li, C., Liu, Z., Zhou, X., Chen, S., Zhang, D., Luo, J., Tang, W., Wang, C., Wu, J., y Chen, Z. (2024). The role of endogenous brassinosteroids in the mechanisms regulating plant reactions to various abiotic stresses. Agronomy, 14(2), 356. https://doi.org/10.3390/agronomy14020356 | |
dc.relation.references | Mitchell, J. W., Mandava, N., Worley, J. F., Plimmer, J. R., y Smith, M. V. (1970). Brassins—A New Family of Plant Hormones from Rape Pollen. Nature, 225(5237), 1065-1066. https://doi.org/10.1038/2251065a0 | |
dc.relation.references | Mitchell, J. W., y Whitehead, M. R. (1941). Responses of Vegetative Parts of Plants Following Application of Extract of Pollen from Zea mays. Botanical Gazette, 102(4), 770-791. https://doi.org/10.1086/335010 | |
dc.relation.references | Molina, S., Zamarreño, A. M., María, J., y Aroca, R. (2014). The symbiosis with the arbuscular mycorrhizal fungus rhizophagus irregularis drives root water transport in flooded tomato plants. Plant and Cell Physiology, 55(5), 1017-1029. https://doi.org/10.1093/pcp/pcu035 | |
dc.relation.references | Moreno, L., Crespo, S., Pérez, W., y Melgarejo, L. M. (2010). Pruebas bioquímicas como herramientas para estudios en fisiología. En: Melgarejo, L.M. (ed). Experimentos en Fisiología Vegetal (pp. 187–277), 1st edn. Universidad Nacional de Colombia, Bogotá. http://ciencias.bogota.unal.edu.co/fileadmin/Facultad_de_Ciencias/Publicaciones/Imagenes/Portadas_Libros/Biologia/Experimentos_en_fisiologia_Vegetal/ExperimentosEnFisiologiaVegetal.pdf | |
dc.relation.references | Moreno-Castillo, E., Ramírez-Echemendía, D. P., Hernández-Campoalegre, G., Mesa-Tejeda, D., Coll-Manchado, F., y Coll-García, Y. (2018). In silico identification of new potentially active brassinosteroid analogues. Steroids, 138, 35-42. https://doi.org/10.1016/j.steroids.2018.06.009 | |
dc.relation.references | Moreno-Echeverry, D., Useche-Rodríguez, D., y Balaguera, H. (2019). Respuesta fisiológica de especies arbóreas al anegamiento. Nuevo conocimiento sobre especies de interés en el arbolado urbano de Bogotá. Colombia Forestal, 22(1), 51-67. http://dx.doi.org/10.14483/2256201X.13453 | |
dc.relation.references | Mullen, J. L., Weining, C., y Hangarter, R. P. (2006). Shade avoidance and the regulation of leaf inclination in Arabidopsis. Plant, Cell y Environment, 29(6), 1099-1106. https://doi.org/10.1111/j.1365-3040.2005.01484.x | |
dc.relation.references | Mumtaz, M. A., Munir, S., Liu, G. Z., Chen, W. F., Wang, Y., Yu, H. Y., Mahmood, S., Ahiakpa, J. K., Tamim, S.A., y Zhang, Y. Y. (2020). Altered brassinolide sensitivity1 transcriptionally inhibits chlorophyll synthesis and photosynthesis capacity in tomato. Plant Growth Regulation, 92, 417–426. https://doi.org/10.1007/s10725-020-00650-z | |
dc.relation.references | Nada, K., Iwatani, E., Doi, T., y Tachibana, S. (2004). Effect of putrescine pretreatment to roots on growth and lactate metabolism in the root of tomato (Lycopersicon esculentum Mill.) under root-zone hypoxia. Journal of the Japanes Society for Horticultural Science, 73(4), 337–339. https://doi.org/10.2503/jjshs.73.337 | |
dc.relation.references | Núñez-Vázquez, M., Reyes-Guerrero, Y., Rosabal-Ayán, L., y Martínez-González, L. (2014). Análogos espirostánicos de brasinoesteroides y sus potencialidades de uso en la agricultura. Cultivos Tropicales, 35(2), 34-42. | |
dc.relation.references | NZHEA, New Zealand Horticulture Export Authority. (2023). Tamarillos. Disponible en: https://www.hea.co.nz/2012-05-11-03-05-28/tamarillo-trade | |
dc.relation.references | Oh, M., Honey, S. H., y Tax, F. E. (2020). The Control of Cell Expansion, Cell Division, and Vascular Development by Brassinosteroids: A Historical Perspective. International Journal of Molecular Sciences, 21(5), 1743. https://doi.org/10.3390/ijms21051743 | |
dc.relation.references | Ohnishi, T. (2018). Recent advances in brassinosteroid biosynthetic pathway: Insight into novel brassinosteroid shortcut pathway. Journal of Pesticide Science, 43(3), 159. https://doi.org/10.1584/jpestics.D18-040 | |
dc.relation.references | Orsák M, Kotíková Z, Hnilička F, y Lachman J. (2023). Effect of long-term drought and waterlogging stress on photosynthetic pigments in potato. Plant, Soil and Environmental, 69(4):152-160. https://doi.org/10.17221/415/2022-pse | |
dc.relation.references | Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G., y Lobell, D. B. (2021). Anthropogenic climate change has slowed global agricultural productivity growth. Nature Climate Change, 11(4), 306-312. https://doi.org/10.1038/s41558-021-01000-1 | |
dc.relation.references | Otie, V., Ping, A., Ibrahim, A., y Eneji, E. (2019). Plant Growth Regulator-Brassinolide for Mitigating Field Waterlogging Stress on Maize. International Journal of Plant y Soil Science, 30(3), 1–14. https://doi.org/10.9734/ijpss/2019/v30i330178 | |
dc.relation.references | Pan, J., Sharif, R., Xu, X., y Chen, X. (2021). Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects. Frontiers in Plant Science, 11, 627331. https://doi.org/10.3389/fpls.2020.627331 | |
dc.relation.references | Perata, P. (2020). Ethylene signaling controls fast oxygen sensing in plants. Trends in Plant Science, 25(1), 3-6. https://doi.org/10.1016/j.tplants.2019.10.010 | |
dc.relation.references | Pereira, Y. C., Silva, F. R. da, Silva, B. R. S. da, Cruz, F. J. R., Marques, D. J., y Lobato, A. K. da S. (2020). 24-epibrassinolide induces protection against waterlogging and alleviates impacts on the root structures, photosynthetic machinery and biomass in soybean. Plant Signaling y Behavior, 15(11). https://doi.org/10.1080/15592324.2020.1805885 | |
dc.relation.references | Pérez-Borroto, L. S., Guzzo, M. C., Posada, G., Peña Malavera, A. N., Castagnaro, A. P., Gonzalez-Olmedo, J., Coll-García, Y., y Pardo, E. M. (2022). A brassinosteroid functional analogue increases soybean drought resilience. Scientific Reports, 12(1), 1-14. https://doi.org/10.1038/s41598-022-15284-6 | |
dc.relation.references | Pérez-Borroto, L. S., Toum, L., Castagnaro, A. P., González-Olmedo, J. L., Coll-Manchado, F., Pardo, E. M., y Coll-García, Y. (2021). Brassinosteroid and brassinosteroid-mimic differentially modulate Arabidopsis thaliana fitness under drought. Plant Growth Regulation, 95(1), 33-47. https://doi.org/10.1007/s10725-021-00722-8 | |
dc.relation.references | Pierik, R., Millenaar, F. F., Peeters, A. J., y Voesenek, L. A. (2005). New Perspectives in Flooding Research: The Use of Shade Avoidance and Arabidopsis thaliana. Annals of Botany, 96(4), 533-540. https://doi.org/10.1093/aob/mci208 | |
dc.relation.references | Pita, P., Hernández, M. J., y Pardos, M. (2023). Contrasting ethylene-mediated responses to waterlogging in four Eucalyptus globulus Labill. Clones. Environmental and Experimental Botany, 215, 105503. https://doi.org/10.1016/j.envexpbot.2023.105503 | |
dc.relation.references | Pociecha, E., Dziurka, M., Waligórski, P., Krępski, T., y Janeczko, A. (2017). 24-Epibrassinolide pre-treatment modifies cold-induced photosynthetic acclimation mechanisms and phytohormone response of perennial ryegrass in cultivar-dependent manner. Journal of Plant Growth Regulation, 36, 618-628. https://doi.org/10.1007/s00344-016-9662-6 | |
dc.relation.references | Portalfruticola. (2023). Crecen las exportaciones del tomate de árbol colombiano en el primer bimestre de 2023. Disponible en: https://www.portalfruticola.com/noticias/2023/05/30/crecen-las-exportaciones-del-tomate-de-arbol-colombiano-en-el-primer-bimestre-de-2023/ | |
dc.relation.references | PP Systems. (2024). CIRAS-4 Portable Photosynthesis System: Operation Manual. Version 1.4. PP Systems. | |
dc.relation.references | Prohens, J., y Nuez, F.. (2001). The Tamarillo (Cyphomandra betacea). Small Fruits Review, 1(2), 43–68. https://doi.org/10.1300/j301v01n02_06 | |
dc.relation.references | Radoglou, K., Cabral, R., Repo, T., Hasanagas, N., Sutinen, M. L., y Waisel, Y. (2007). Appraisal of root leakage as a method for estimation of root viability. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 141(3), 443–459. https://doi.org/10.1080/11263500701626143 | |
dc.relation.references | Ramírez, D., Yactayo, W., Gutiérrez, R., Mares, V., De Mendiburu, F., Posadas, A., y Quiroz, R. (2014). Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Scientia Horticulturae, 168, 202-209. https://doi.org/10.1016/j.scienta.2014.01.036 | |
dc.relation.references | Ramírez, F. (2021). Tree tomato (Solanum betaceum Cav.) grafted with a wild Solanum species. Genetic Resources and Crop Evolution, 68, 2265–2271. https://doi.org/10.1007/s10722-021-01194-5 | |
dc.relation.references | Ramírez, F. (2025). Genetic Diversity of Tree Tomato Tamarillo (Solanum betaceum Cav.) and Sustainable Utilization. En: Murthy, N. (ed.), Genetic Diversity of Fruits and Nuts (pp. 62-77). Boca Raton: CRC Press. | |
dc.relation.references | Ramírez, F., y Kallarackal, J. (2019). Tree tomato (Solanum betaceum Cav.) reproductive physiology: A review. Scientia Horticulturae, 248, 206-215. https://doi.org/10.1016/j.scienta.2019.01.019 | |
dc.relation.references | Ramírez-Soler, C.H., Magnitskiy, M., Martínez, S.S., Álvarez-Flórez, F., y Melgarejo, L.M. (2021). Photosynthesis, biochemical activity, and leaf anatomy of tree tomato (Solanum betaceum cav.) plants under potassium deficiency. Journal of Applied Botany and Food Quality, 94, 75-81. https://doi.org/10.5073/JABFQ.2021.094.009 | |
dc.relation.references | Rattan, A., Kapoor, D., Kapoor, N., Bhardwaj, R., y Sharma, A. (2022). Involvement of brassinosteroids in plant response to salt stress. En: Ahammed, G., Sharma, A., y Yu, K. (eds.), Brassinosteroids in Plant Developmental Biology and Stress Tolerance (pp. 237-253). Academic Press. https://doi.org/10.1016/B978-0-12-813227-2.00003-5 | |
dc.relation.references | Rehman, A., Shahzad, B., Haider, F. U., Ibraheem Ahmed, H. A., Lee, D., Im, S. Y., y Khan, I. (2022). An introduction to brassinosteroids: History, biosynthesis, and chemical diversity. En: Ahammed, G., Sharma, A., y Yu, K. (eds.), Brassinosteroids in Plant Developmental Biology and Stress Tolerance (pp. 1-14). Academic Press. https://doi.org/10.1016/B978-0-12-813227-2.00006-0 | |
dc.relation.references | Ren, B., Yu, W., Liu, P., Zhao, B., y Zhang, J. (2023). Responses of photosynthetic characteristics and leaf senescence in summer maize to simultaneous stresses of waterlogging and shading. The Crop Journal, 11(1), 269-277. https://doi.org/10.1016/j.cj.2022.06.003 | |
dc.relation.references | Renziehausen, T., Frings, S., y Schmidt-Schippers, R. (2024). ‘Against all floods’: Plant adaptation to flooding stress and combined abiotic stresses. The Plant Journal, 117(6), 1836-1855. https://doi.org/10.1111/tpj.16614 | |
dc.relation.references | Rodríguez-Gamir, J., Xue, J., Clearwater, M. J., Meason, D. F., Clinton, P. W., y Domec, C. (2019). Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in Pinus radiata under water stress. Plant, Cell y Environment, 42(2), 717-729. https://doi.org/10.1111/pce.13460 | |
dc.relation.references | Salah, A., Nwafor, C. C., Han, Y., Liu, L., Rashid, M., Batool, M., El-Badri, A. M., Cao, C., y Zhan, M. (2022). Spermidine and brassinosteroid regulate root anatomical structure, photosynthetic traits and antioxidant defense systems to alleviate waterlogging stress in maize seedlings. South African Journal of Botany, 144, 389-402. https://doi.org/10.1016/j.sajb.2021.08.012 | |
dc.relation.references | Sánchez-Reinoso, A. D., Jiménez-Pulido, Y., Martínez-Pérez, J. P., Pinilla, C. S., y Fischer, G. (2019). Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Revista Colombiana De Ciencias Hortícolas, 13(3), 325–335. https://doi.org/10.17584/rcch.2019v13i3.10017 | |
dc.relation.references | Sarker, K. K., Quamruzzaman, A. K. M., Uddin, M. N., Rahman, A., Quddus, A., Biswas, S. K., Gaber, A., y Hossain, A. (2023). Evaluation of 10 eggplant (Solanum melongena L.) genotypes for development of cultivars suitable for short-term waterlogged conditions. Gesunde Pflanzen, 75(1), 179–192. https://doi.org/10.1007/s10343-022-00688-1 | |
dc.relation.references | Sarker, M. S. A., Islam, A., Islam, M. W., Dhar, P. C., y Abdullah, M. R. (2023). Effect of water logging on vegetative growth and fruit yield of brinjal. Bangladesh Journal, 44, 9-12. | |
dc.relation.references | Schotsmans, W., East, A., y Woolf, A. (2011). Tamarillo (Solanum betaceum (Cav.)). En: Yahia M. (ed). Postharvest Biology and Technology of Tropical and Subtropical Fruits (pp 427-442), 2nd vol. Woodhead Publishing, Cambridge. https://doi.org/10.1533/9780857092618.427 | |
dc.relation.references | Serna, M., Coll, Y., Zapata, P. J., Botella, M. Á., Pretel, M. T., y Amorós, A. (2015). A brassinosteroid analogue prevented the effect of salt stress on ethylene synthesis and polyamines in lettuce plants. Scientia Horticulturae, 185, 105-112. https://doi.org/10.1016/j.scienta.2015.01.005 | |
dc.relation.references | Serna, M., Coll, Y., Zapata, P. J., Botella, M. Á., Pretel, M. T., y Amorós, A. (2015). A brassinosteroid analogue prevented the effect of salt stress on ethylene synthesis and polyamines in lettuce plants. Scientia Horticulturae, 185, 105-112. https://doi.org/10.1016/j.scienta.2015.01.005 | |
dc.relation.references | Serna, M., Hernández, F., Coll, F., Coll, Y., y Amorós, A. (2012). Brassinosteroid analogues effects on the yield and quality parameters of greenhouse-grown pepper (Capsicum annuum L.). Plant Growth Regulation, 68, 333-342. https://doi.org/10.1007/s10725-012-9718-y | |
dc.relation.references | Shah, R.A., Bakshi, P., Itoo, H., y Kour, G. (2023). Tamarillo (Cyphomandra betacea (Cav.)) origin, cultivation, breeding and management. En: Khan, M. (ed.), Tropical Plant Species and Technological Interventions for Improvement (pp. 1–28). Pakistan: IntechOpen. https://doi.org/10.5772/intechopen.106601 | |
dc.relation.references | Shukla, V., Lombardi, L., Iacopino, S., Pencik, A., Novak, O., Perata, P., Giuntoli, B., y Licausi, F. (2019). Endogenous hypoxia in lateral root primordia controls root architecture by antagonizing auxin signaling in Arabidopsis. Molecular Plant, 12(4), 538–551. https://doi.org/10.1016/j.molp.2019.01.007 | |
dc.relation.references | Siddiqui, H., Hayat, S., y Bajguz, A. (2018). Regulation of photosynthesis by brassinosteroids in plants. Acta Physiologiae Plantarum, 40(3). https://doi.org/10.1007/s11738-018-2639-2 | |
dc.relation.references | Singh, D., Nigam, M., Mishra, A.P., Devkota, H.P., y Saxena, J. (2023). Cyphomandra betacea (Cav.) Sendtn. En: Belwal, T., Bhatt, I., y Devkota, H. (eds), Himalayan fruits and berries (pp. 99–110). Cambridge: Academic Press. https://doi.org/10.1016/B978-0-323-85591-4.00038-6 | |
dc.relation.references | Singh, G. P., y Bali, A. S. (2022). Plant responses to drought stress: Role of brassinosteroids. En: Ahammed, G., Sharma, A., y Yu, K. (eds.), Brassinosteroids in Plant Developmental Biology and Stress Tolerance (pp. 201-216). Academic Press. https://doi.org/10.1016/B978-0-12-813227-2.00012-6 | |
dc.relation.references | Solarte, M.E., Moreno, L., y Melgarejo, L.M. (2010) Fotosíntesis y pigmentos vegetales. En: Melgarejo, L.M. (ed). Experimentos en Fisiología Vegetal (pp. 107–122), 1st edn. Universidad Nacional de Colombia, Bogotá. http://ciencias.bogota.unal.edu.co/fileadmin/Facultad_de_Ciencias/Publicaciones/Imagenes/Portadas_Libros/Biologia/Experimentos_en_fisiologia_Vegetal/ExperimentosEnFisiologiaVegetal.pdf | |
dc.relation.references | Strasser, R.J., Srivastava, A., y Tsimilli-Michael, M. (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. En: Yunus, M., Pathre, U., y Mohanty, P. (eds). Probing Photosynthesis: Mechanism, Regulation y Adaptation (pp. 445-483). CRC Press, London. https://doi.org/10.1201/9781482268010 | |
dc.relation.references | Striker, G. G. (2012). Time is on our side: the importance of considering a recovery period when assessing flooding tolerance in plants. Ecological Research, 27, 983-987. https://doi.org/10.1007/s11284-012-0978-9 | |
dc.relation.references | Striker, G. G., Casas, C., Kuang, X., y Grimoldi, A. A. (2017). No escape? Costs and benefits of leaf de-submergence in the pasture grass Chloris gayana under different flooding regimes. Functional Plant Biology, 44(9), 899–906. https://doi.org/10.1071/FP17128 | |
dc.relation.references | Sun, B., Meng, W., Yin, W., Niu, M., Liu, D., Liu, J., Zhang, X., Dong, N., Yang, Y., Li, X., Geng, S., Zhang, H., y Tong, H. (2024). Vital contribution of brassinosteroids to hypoxia-stimulated coleoptile elongation in submerged rice. The Crop Journal, 12(5), 1379-1390. https://doi.org/10.1016/j.cj.2024.05.013 | |
dc.relation.references | Symons, G. M., y Reid, J. B. (2004). Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiology, 135(4), 2196–2206. https://doi.org/10.1104/pp.104.043034 | |
dc.relation.references | Tahjib-Ul-Arif, M., Hasan, M. T., Rahman, M. A., Nuruzzaman, M., Rahman, A. M. S., Hasanuzzaman, M., Haque, M. R., Hossain, M. A., Abdel Latef, A. A. H., Murata, Y., y Brestic, M. (2023). Plant response to combined salinity and waterlogging stress: Current research progress and future prospects. Plant Stress, 7, 100137. https://doi.org/10.1016/j.stress.2023.100137 | |
dc.relation.references | Tandazo-Yunga, J. V., Ruiz-González, M. X., Rojas, J. R., Capa-Mora, E. D., Prohens, J., Alejandro, J. D., y Acosta-Quezada, P. G. (2017). The impact of an extreme climatic disturbance and different fertilization treatments on plant development, phenology, and yield of two cultivar groups of Solanum betaceum Cav. PLOS ONE, 12(12), e0190316. https://doi.org/10.1371/journal.pone.0190316 | |
dc.relation.references | Tang, J., Han, Z. y Chai, J. (2016). QyA: what are brassinosteroids and how do they act in plants?. BMC Biology, 14, 113. https://doi.org/10.1186/s12915-016-0340-8 | |
dc.relation.references | Tanveer, M., Shahzad, B., Sharma, A., y Khan, E. A. (2019). 24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. Plant Physiology and Biochemistry, 135, 295-303. https://doi.org/10.1016/j.plaphy.2018.12.013 | |
dc.relation.references | Tian, L., Zhang, Y., Chen, P., Zhang, F., Li, J., Yan, F., Dong, Y., y Feng, B. (2021). How Does the Waterlogging Regime Affect Crop Yield? A Global Meta-Analysis. Frontiers in Plant Science, 12, 634898. https://doi.org/10.3389/fpls.2021.634898 | |
dc.relation.references | Tietz, S., Hall, C. C., Cruz, J. A., y Kramer, D. M. (2017). NPQ(T): A chlorophyll fluorescence parameter for rapid estimation and imaging of non‐photochemical quenching of excitons in photosystem‐II‐associated antenna complexes. Plant, Cell y Environment, 40(9), 1243–1255. https://doi.org/10.1111/pce.12924 | |
dc.relation.references | Toro-Tobón, G., Álvarez-Flórez, F., Mariño-Blanco, H. D., y Melgarejo, L. M. (2022). Foliar functional traits of resource island-forming nurse tree species from a semi-arid ecosystem of La Guajira, Colombia. Plants, 11(13), 1723. https://doi.org/10.3390/plants11131723 | |
dc.relation.references | Van Nguyen, T., Park, C., Lee, K., Lee, S., y Kim, C. S. (2021). BES1/BZR1 Homolog 3 cooperates with E3 ligase AtRZF1 to regulate osmotic stress and brassinosteroid responses in Arabidopsis. Journal of Experimental Botany, 72(2), 636-653. https://doi.org/10.1093/jxb/eraa458 | |
dc.relation.references | Vasco, C., Avila, J., Ruales, J., Svanberg, U., y Kamal-Eldin, A. (2009). Physical and chemical characteristics of golden-yellow and purple-red varieties of tamarillo fruit (Solanum betaceum Cav.). International Journal of Food Sciences and Nutrition, 60(7), 278–288. https://doi.org/10.1080/09637480903099618 | |
dc.relation.references | Villarreal-Navarrete, A., Fischer, G., Melgarejo, L. M., Correa, G., y Hoyos-Carvajal, L. (2017). Growth response of the cape gooseberry (Physalis peruviana L.) to waterlogging stress and Fusarium oxysporum infection. Acta Horticulturae, 1178, 161–168. https://doi.org/10.17660/ActaHortic.2017.1178.28 | |
dc.relation.references | Visser, E. J., Zhang, Q., De Gruyter, F., Martens, S., y Huber, H. (2016). Shade affects responses to drought and flooding – Acclimation to multiple stresses in bittersweet (Solanum dulcamara L.). Plant Biology, 18, 112–119. https://doi.org/10.1111/plb.12304 | |
dc.relation.references | Wang, S., y Zhu, F. (2020). Tamarillo (Solanum betaceum): Chemical composition, biological properties, and product innovation. Trends in Food Science y Technology, 95, 45-58. https://doi.org/10.1016/j.tifs.2019.11.004 | |
dc.relation.references | Wang, Y., Platre, M. P., Callebaut, B., Smokvarska, M., Ferrer, K., Luo, Y., Nolan, T. M., Sato, T., Busch, W., Benfey, P. N., Kvasnica, M., Winne, J. M., Bayer, E. M., Vukašinović, N., y Russinova, E. (2023). Plasmodesmata mediate cell-to-cell transport of brassinosteroid hormones. Nature Chemical Biology, 19(11), 1331-1341. https://doi.org/10.1038/s41589-023-01346-x | |
dc.relation.references | Wei, Z., y Li, J. (2016). Brassinosteroids Regulate Root Growth, Development, and Symbiosis. Molecular Plant, 9(1), 86-100. https://doi.org/10.1016/j.molp.2015.12.003 | |
dc.relation.references | Wen, J., Sui, S., Tian, J., Ji, Y., Wu, Z., Jiang, F., Ottosen, C., Zhong, Q., y Zhou, R. (2024). Moderately elevated temperature offsets the adverse effects of waterlogging stress on tomato. Plants, 13(14), 1924. https://doi.org/10.3390/plants13141924 | |
dc.relation.references | Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Springer-Verlag, New York. https://doi.org/10.1007/978-3-319-24277-4 | |
dc.relation.references | Xia, X. J., Huang, L. F., Zhou, Y. H., Mao, W. H., Shi, K., Wu, J. X., y Yu, J. Q. (2009). Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230, 1185-1196. https://doi.org/10.1007/s00425-009-1016-1 | |
dc.relation.references | Yeung, E., Van Veen, H., Vashisht, D., Sobral Paiva, A. L., Hummel, M., Rankenberg, T., Steffens, B., Sauter, M., De Vries, M., Schuurink, R. C., Bazin, J., Voesenek, L. A., y Sasidharan, R. (2018). A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 115(26), E6085-E6094. https://doi.org/10.1073/pnas.1803841115 | |
dc.relation.references | Yin J., Niu L., Li Y., Song X., y Ottosen C.O. (2023). The effects of waterlogging stress on plant morphology, leaf physiology and fruit yield in six tomato genotypes at anthesis stage. Vegetable Research, 3, 31. https://doi.org/10.48130/VR-2023-0031 | |
dc.relation.references | Yousuf, W., Bhat, S. A., Bashir, S., Rather, R. A., Panigrahi, K. C., y John, R. (2024). Brassinosteroid improves light stress tolerance in tomato (Lycopersicon esculentum) by regulating redox status, photosynthesis and photosystem II. Functional Plant Biology, 51, FP24170. https://doi.org/10.1071/FP24170 | |
dc.relation.references | Zeng, R., Chen, T., Wang, X., Cao, J., Li, X., Xu, X., Chen, L., Xia, Q., Dong, Y., Huang, L., Wang, L., Zhang, J., y Zhang, L. (2021). Physiological and Expressional Regulation on Photosynthesis, Starch and Sucrose Metabolism Response to Waterlogging Stress in Peanut. Frontiers in Plant Science, 12, 601771. https://doi.org/10.3389/fpls.2021.601771 | |
dc.relation.references | Zhang, C., Liang, Q., Wang, Y., Liang, S., Huang, Z., Li, H., Escalona, V. H., Yao, X., Cheng, W., Chen, Z., Zhang, F., Wang, Q., Tang, Y., y Sun, B. (2024). BoaBZR1.1 mediates brassinosteroid-induced carotenoid biosynthesis in Chinese kale. Horticulture Research, 11(6). https://doi.org/10.1093/hr/uhae104 | |
dc.relation.references | Zhang, Q., Liu, X., Zhang, Z., Liu, N., Li, D., y Hu, L. (2019). Melatonin Improved Waterlogging Tolerance in Alfalfa (Medicago sativa) by Reprogramming Polyamine and Ethylene Metabolism. Frontiers in Plant Science, 10, 420797. https://doi.org/10.3389/fpls.2019.00044 | |
dc.relation.references | Zhang, X., Duan, S., Xia, Y., Li, J., Liu, L., Tang, M., Tang, J., Sun, W., y Yi, Y. (2023). Transcriptomic, physiological, and metabolomic response of an alpine plant, rhododendron delavayi, to waterlogging stress and post-waterlogging recovery. International Journal of Molecular Sciences, 24(13), 10509. https://doi.org/10.3390/ijms241310509 | |
dc.relation.references | Zhang, Y., Liu, G., Dong, H., y Li, C. (2021). Waterlogging stress in cotton: Damage, adaptability, alleviation strategies, and mechanisms. The Crop Journal, 9(2), 257-270. https://doi.org/10.1016/j.cj.2020.08.005 | |
dc.relation.references | Zheng, S., Guo, H., Dong, Q., Cha, X., y Sun, L. (2024). Response of nutrient content, photosynthetic characteristics, and root characteristics of Solanum betaceum seedlings to different shading conditions. Research Square, version 1. https://doi.org/10.21203/rs.3.rs-4816006/v1 | |
dc.relation.references | Zhu, J.-Y., Sae-Seaw, J., Wang, Z.-Y. (2013). Brassinosteroid signalling. Development, 140(8), 1615–1620. https://doi.org/10.1242/dev.060590 | |
dc.relation.references | Zivcak, M., Brestic, M., Kalaji, H. M., y Govindjee. (2014). Photosynthetic responses of sun- and shade-grown barley leaves to high light: Is the lower PSII connectivity in shade leaves associated with protection against excess of light? Photosynthesis Research, 119(1–2), 339–354. https://doi.org/10.1007/s11120-014-9969-8 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura) | |
dc.subject.ddc | 570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas | |
dc.subject.lemb | Tomate de árbol | spa |
dc.subject.lemb | Tree tomato | eng |
dc.subject.lemb | Hormonas vegetales | spa |
dc.subject.lemb | Plant hormones | eng |
dc.subject.proposal | Hipoxia | spa |
dc.subject.proposal | Curvas de luz | spa |
dc.subject.proposal | Hormonas vegetales | spa |
dc.subject.proposal | Sombrío | spa |
dc.subject.proposal | Brasinoesteroides | spa |
dc.subject.proposal | Tomate de árbol | spa |
dc.subject.proposal | Solanum betaceum | spa |
dc.subject.proposal | Hypoxia | spa |
dc.subject.proposal | Hypoxia | eng |
dc.subject.proposal | Gas exchange | eng |
dc.subject.proposal | Light curves | eng |
dc.subject.proposal | Plant hormones | eng |
dc.subject.proposal | Shading | eng |
dc.subject.proposal | Brassinosteroids | eng |
dc.subject.proposal | Tamarillo | eng |
dc.subject.proposal | Solanum betaceum | eng |
dc.subject.wikidata | Hematosis | spa |
dc.subject.wikidata | Gas exchange | eng |
dc.subject.wikidata | Curva de luz | spa |
dc.subject.wikidata | Light curve | eng |
dc.title | Efecto de la aplicación exógena de brasinoesteroides sobre el crecimiento, fotosíntesis y respuestas bioquímicas del tomate de árbol (Solanum betaceum Cav.) bajo condiciones de anegamiento | spa |
dc.title.translated | Effect of exogenous application of brassinosteroids on growth, photosynthesis, and biochemical responses of tree tomato (Solanum betaceum Cav.) under waterlogging conditions | eng |
dc.title.translated | Efeito da aplicação exógena de brassinoesteroides sobre o crescimento, a fotossíntese e as respostas bioquímicas do tomateiro-árvore (Solanum betaceum Cav.) sob condições de encharcamento | por |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Grupos comunitarios | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
oaire.fundername | Facultad de Ciencias Agrarias de la Universidad Nacional de Colombia (Sede Bogotá) |