Looking for a physical basis of rainfall multifractality

dc.contributor.advisorMesa Sánchez, Óscar Joséspa
dc.contributor.authorPeñanaranda Vélez, Victor Manuelspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupPosgrado en Aprovechamiento de Recursos Hidráulicosspa
dc.date.accessioned2020-03-13T16:32:12Zspa
dc.date.available2020-03-13T16:32:12Zspa
dc.date.issued2019-12-18spa
dc.description.abstractThe study of rainfall arises from the necessity for knowing large and short-term climatic dynamics, as well as their affectations in the context of engineering practices. This research focus on the study of tropical rainfall and it was guided toward the conceptual exploration of the physical mechanism that explains how the multifractal scaling properties emerges in the rainfall field. On the basis of space-time rainfall records and model outputs analysis, it was possible to collect evidence that confirm rainfall multifractality exists and such a statistical property can be also identified in physically-based model outputs. The conceptual exploration that was developed in this research based on either classic--physics conservation principles or modern theories related to the study of the well-known critical phenomena. Among the findings, multifractality is understood as an essential reflection of the atmospheric instability by convection processes. Either instabilities or their resulting multifractality are sub-products of a diffusive mechanism which takes effect in the atmosphere. Under particular conditions of the dynamical system representing the convection processes, diffusion-driven instabilities give rise to the concentration of spatial structures in the rainfall field, and the organization of such structures is described by multifractality. Although open questions remain about the physics of rainfall multifractality, this work sets up a path for building a general theory and to promote innovative engineering design tools.spa
dc.description.abstractEl estudio de la precipitación responde a la necesidad inherente por conocer las dinámicas climáticas de corto y largo plazo, como también sus afectaciones en el contexto de las prácticas de ingeniería. La presente investigación se delimitó al estudio de la precipitación tropical y se orientó a la exploración conceptual del mecanismo físico que explica la emergencia de las propiedades de escalamiento multifractal del campo de precipitación. Partiendo del análisis de registros espacio-temporales de precipitación y de patrones simulados por computador se agruparon evidencias que ratifican la existencia de la multifractalidad en la precipitación y que tal propiedad estadística puede también ser identificada en modelo de base física. La exploración conceptual realizada en la investigación se apoyó en los principios de conservación provenientes de la física clásica y en las teorías modernas que han dado lugar a lo que hoy en día es conocido como fenómenos críticos. Entre los hallazgos encontrados, se concibe la multifractalidad como una manifestación inherente de la inestabilidad atmosférica por procesos de convección. Las inestabilidades y consecuentemente la multifractalidad son subproductos inducidos por un mecanismo difusivo en la atmósfera terrestre. Bajo condiciones especiales del sistema dinámico asociado a los procesos de convección, las inestabilidades inducidas por difusión dan lugar a la concentración de estructuras espaciales en el campo de precipitación y la organización de estas estructuras se describen a través de la multifractalidad. Aún cuando se mantienen algunas preguntas abiertas sobre la física de la multifractalidad en la precipitación, esta investigación establece una ruta para la consolidación de una teoría general y el desarrollo de nuevas herramientas de diseño en el marco de la ingeniería..spa
dc.description.additionalDoctor en Ingeniería - Recursos Hidráulicosspa
dc.description.degreelevelDoctoradospa
dc.description.projectCrédito Educativo Condonable - Programa Nacional de Formación de Investigadoresspa
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS)spa
dc.format.extent246spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationV. Peñaranda. Looking for a Physical Basis of Rainfall Multifractality. Disertación Doctoral. Doctorado en Ingeniería Recursos Hidráulicos. Dpto. de Geociencias y Medio Ambiente. Universidad Nacional de Colombia, Medellín, 2019.spa
dc.identifier.citationPeñaranda, V. (2019). Looking for a Physical Basis of Rainfall Multifractality (Disertación Doctoral). Departamento de Geociencias y Medio Ambiente, Universidad Nacional de Colombia, Medellín.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/76073
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.relation.referencesA. Aharony. Percolation, fractals, and anomalous diffusion. Journal of Statistical Physics, 34(5):931–939, 1984. doi: 10.1007/BF01009449.spa
dc.relation.referencesS. Allen and J. Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica, 27(6):1085–1095, 1979. doi: https://doi.org/10.1016/0001-6160(79)90196-2.spa
dc.relation.referencesF. Anselmet, Y. Gagne, E. Hopfinger, and R. Antonia. High-order velocity structure functions in turbulent shear flows. Journal of Fluid Mechanics, 140:63–89, 1984. doi: DOI:10.1017/S0022112084000513.spa
dc.relation.referencesA. Arneodo, E. Bacry, S. Manneville, and J. Muzy. Analysis of random cascades using space-scale correlation functions. Physical Review Letters, 80(4):708–711, 1998.spa
dc.relation.referencesE. Bacry, J. Muzy, and A. Arnéodo. Singularity spectrum of fractal signals from wavelet analysis: exact results. Journal of Statistical Physics, 70(3-4):635–674, 1993.spa
dc.relation.referencesO. Barndorff-Nielsen and J. Schmiegel. Incremental similarity and turbulence. arXiv e-prints, 2015.spa
dc.relation.referencesO. Barndorff-Nielsen, P. Blæsild, and J. Schmiegel. A parsimonious and universal description of turbulent velocity increments. The European Physical Journal B - Condensed Matter and Complex Systems, 41(3):345–363, 2004. doi: 10.1140/epjb/e2004-00328-1.spa
dc.relation.referencesM. Barnsley. Fractals Everywhere. Morgan Kaufmann Publishers, 1993.spa
dc.relation.referencesJ. Bedrossian, A. Blumenthal, and S. Punshon-Smith. The batchelor spectrum of passive scalar turbulence in stochastic fluid mechanics. arXiv e-prints, 2019.spa
dc.relation.referencesF. Bernal. Desarrollo de modelos conceptuales y computacionales para simular estocásticamente la dinámica espacio-temporal de la precipitación en Bogotá. Master’s thesis, Universidad Nacional de Colombia, 2008.spa
dc.relation.referencesJ. Bjerknes. Saturated-adiabatic ascent of air through dry-adiabatically descending environment. Quarterly Journal of the Royal Meteorological Society, 64:325–330, 1938.spa
dc.relation.referencesD. Blanchard. Mesoscale convective patterns of the southern high plains. Bulletin of the American Meteorological Society, 71(7):994–1005, 1990. doi: 10.1175/1520-0477(1990) 071⟨0994:MCPOTS⟩2.0.CO;2.spa
dc.relation.referencesJ. Bouchaud and A. Georges. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Physics Reports, 195(4):127–293, 1990. doi: https://doi.org/10.1016/0370-1573(90)90099-N.spa
dc.relation.referencesA. Bray. Theory of phase-ordering kinetics. Advances in Physics, 43:357–459, 1994. doi: 10.1080/00018739400101505.spa
dc.relation.referencesC. Bretherton, M. Peters, and L. Back. Relationships between water vapor path and precipitation over the tropical oceans. Journal of Climate, 17(7):1517–1528, 2004.spa
dc.relation.referencesC. Bretherton, P. Blossey, and M. Khairoutdinov. An energy-balance analysis of deep convective self-aggregation above uniform SST. Journal of the Atmospheric Sciences, 62(12): 4273–4292, 2005.spa
dc.relation.referencesA. Cortis, C. Puente, and B. Sivakumar. Encoding hydrologic information via a fractal geometric approach and its extensions. Stochastic Environmental Research and Risk Assessment, 24(5):625–632, 2010. doi: 10.1007/s00477-009-0349-4.spa
dc.relation.referencesA. Cortis, C. Puente, H. Huang, M. Maskey, B. Sivakumar, and N. Obregón. A physical interpretation of the deterministic fractal–multifractal method as a realization of a generalized multiplicative cascade. Stochastic Environmental Research and Risk Assessment, 28(6):1421–1429, 2014. doi: 10.1007/s00477-013-0822-y.spa
dc.relation.referencesD. Cox and V. Isham. A simple spatial-temporal model of rainfall. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 415(1849):317–328, 1988.spa
dc.relation.referencesG. Craig and J. Mack. A coarsening model for self-organization of tropical convection. Journal of Geophysical Research D: Atmospheres, 118(16):8761–8769, 2013.spa
dc.relation.referencesC. De-Michele and P. Bernardara. Spectral analysis and modeling of space-time rainfall fields. Atmospheric Research, 77(1):124–136, 2005. doi: https://doi.org/10.1016/j.atmosres.2004. 10.031.spa
dc.relation.referencesJ. Delour, J. Muzy, and A. Arnéodo. Intermittency of 1D velocity spatial profiles in turbulence: a magnitude cumulant analysis. The European Physical Journal B, 23(2):243–248, 2001.spa
dc.relation.referencesR. Dickman, M. Muñoz, A. Vespignani, and S. Zapperi. Paths to self-organized criticality. Brazilian Journal of Physics, 30:27–41, 2000. doi: 10.1590/S0103-97332000000100004.spa
dc.relation.referencesS. Edwards and D. Wilkinson. The surface statistics of a granular aggregate. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 381(1780): 17–31, 1982.spa
dc.relation.referencesA. Einstein. Uber die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der Physik, 322(8):549–560, 1905. doi: 10.1002/andp.19053220806.spa
dc.relation.referencesC. Evertsz and B. Mandelbrot. Multifractal measures, pages 849–881. Springer, Chaos and Fractals: New Frontiers in Science edition, 1992.spa
dc.relation.referencesK. Falconer. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, Inc., 1990. ISBN 0471922870.spa
dc.relation.referencesF. Family and T. Vicsek. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. Journal of Physics A: Mathematical and General, 18(2):L75–L81, 1985. doi: 10.1088/0305-4470/18/2/005.spa
dc.relation.referencesJ. Feder. Fractals. Plenum Press, 1988.spa
dc.relation.referencesE. Foufoula-Georgiou. On scaling theories of space–time rainfall: some recent results and open problems, volume 7, pages 25—72. World Scientific, 1998.spa
dc.relation.referencesU. Frisch. Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press, 1995.spa
dc.relation.referencesU. Frisch and G. Parisi. On the singularity structure of fully developed turbulence. Turbulence and predictability in geophysical fluid dynamics and climate dynamics, 88, 1985.spa
dc.relation.referencesK. Gabriel and J. Neumann. A Markov chain model for daily rainfall occurrence at Tel Aviv. Quarterly Journal of the Royal Meteorological Society, 88(375):90–95, 1962. doi: 10.1002/qj.49708837511.spa
dc.relation.referencesJ. Geiser. Multicomponent and multiscale systems: theory, methods, and applications in engineering. Springer, 2016.spa
dc.relation.referencesL. Gmachowski. Fractal model of anomalous diffusion. European Biophysics Journal, 44(8): 613–621, 12 2015. doi: 10.1007/s00249-015-1054-5.spa
dc.relation.referencesN. Goldenfeld. Lectures on phase transitions and renormalization group. Number 85 in Frontiers in Physics. Addison-Wesley Publishing, 1992.spa
dc.relation.referencesJ. Gómez and G. Poveda. Estimación del espectro multifractal para series de precipitación horaria en los Andes Tropicales de Colombia. Revista de la Academia Colombiana de ciencias exactas, físicas y naturales, 32(125):483–502, 2008.spa
dc.relation.referencesF. Guichard and F. Couvreux. A short review of numerical cloud–resolving models. Tellus A: Dynamic Meteorology and Oceanography, 69(1), 2017. doi: 10.1080/16000870.2017. 1373578.spa
dc.relation.referencesV. Gupta and E. Waymire. A stochastic kinematic study of subsynoptic space–time rainfall. Water Resources Research, 15(3):637–644, 1979. doi: 10.1029/WR015i003p00637.spa
dc.relation.referencesV. Gupta and E. Waymire. A statistical analysis of mesoscale rainfall as a random cascade. Journal of American Meteorological Society, 32:251–267, 1993.spa
dc.relation.referencesH. Hardy and R. Beier. Fractals in Reservoir Engineering. World Scientific, 1994. ISBN 9789810220693.spa
dc.relation.referencesM. Hassan, M. Hassan, and N. Pavel. Dynamic scaling, data-collapse and self-similarity in Barabási-Albert networks. Journal of Physics A: Mathematical and Theoretical, 44(17), 2011. doi: 10.1088/1751-8113/44/17/175101.spa
dc.relation.referencesM. Herman and D. Raymond. WTG cloud modeling with spectral decomposition of heating. Journal of Advances in Modeling Earth Systems, 6(4):1121–1140, 2014. doi: 10.1002/ 2014MS000359.spa
dc.relation.referencesC. Holloway and D. Neelin. Moisture vertical structure, column water vapor, and tropical deep convection. Journal of the Atmospheric Sciences, 66(6):1665–1683, 2009.spa
dc.relation.referencesC. Holloway and J. Neelin. Temporal relations of column water vapor and tropical precipitation. Journal of the Atmospheric Sciences, 67(4):1091–1105, 2010.spa
dc.relation.referencesS. Hottovy and S. Stechmann. A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. Journal of the Atmospheric Sciences, 72(12):4721–4738, 2015.spa
dc.relation.referencesH. Huang, C. Puente, and A. Cortis. Geometric harnessing of precipitation records: reexamining four storms from Iowa City. Stochastic Environmental Research and Risk Assess- ment, 27(4):955–968, 2013.spa
dc.relation.referencesP. Hubert, Y. Tessier, S. Lovejoy, D. Schertzer, F. Schmitt, P. Ladoy, J. Carbonnel, S. Violette, and I. Desurosne. Multifractals and extreme rainfall events. Geophysical Research Letters, 20(10):931–934, 1993. doi: 10.1029/93GL01245.spa
dc.relation.referencesG. Huffman, R. Adler, D. Bolvin, G. Gu, E. Nelkin, K. Bowman, Y. Hong, E. Stocker, and D. Wolff. The TRMM multi-satellite precipitation analysis: quasi–global, multi–year, combined–sensor precipitation estimates at fine scale. Journal of Hydrometeorology, 8(1): 38–55, 2007.spa
dc.relation.referencesIntergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis. Fifth Assessment Report of the Intergovernmental Panel on Climate Change (AR5). Cambridge University Press, 2013.spa
dc.relation.referencesE. Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift fu ̈r Physik, 31(1):253–258, 1925. doi: 10.1007/BF02980577.spa
dc.relation.referencesB. Kang and J. Ramírez. A coupled stochastic space–time intermittent random cascade model for rainfall downscaling. Water Resources Research, 46(10), 2010. doi: 10.1029/ 2008WR007692.spa
dc.relation.referencesM. Khairoutdinov and K. Emanuel. Aggregated convection and the regulation of tropical climate. In 29th Conference on Hurricanes and Tropical Meteorology, 2010.spa
dc.relation.referencesM. Khairoutdinov and D. Randall. Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. Journal of the Atmospheric Sciences, 60(4):607–625, 2003.spa
dc.relation.referencesM. Kolb. Shape and selfsimilarity of diffusion limited aggregation clusters. In A. Pekalski and K. Sznajd-Weron, editors, Anomalous Diffusion From Basics to Applications, pages 253–261. Springer, 1999.spa
dc.relation.referencesA. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large reynolds’ numbers. Akademiia Nauk SSSR Doklady, 30:301–305, 1941.spa
dc.relation.referencesD. Koutsoyiannis, A. Paschalis, and N. Theodoratos. Two-dimensional Hurst–Kolmogorov process and its application to rainfall fields. Journal of Hydrology, 398(1):91–100, 2011. doi: doi.org/10.1016/j.jhydrol.2010.12.012.spa
dc.relation.referencesX. Li and S. Gao. Precipitation modeling and quantitative analysis. Springer Atmospheric Science. Springer, 2012. ISBN 9789400723818. doi: 10.1007/978-94-007-2381-8.spa
dc.relation.referencesS. Lovejoy. Area–perimeter relation for rain and cloud areas. Science, 216(4542):185–187, 1982.spa
dc.relation.referencesS. Lovejoy and D. Schertzer. Multifractals, universality classes and satellite and radar measurements of cloud and rain fields. Journal of Geophysical Research: Atmospheres, 95 (D3):2021–2034, 1990. doi: 10.1029/JD095iD03p02021.spa
dc.relation.referencesS. Lovejoy and D. Schertzer. Multifractals and rain, pages 61–103. Cambridge University Press, Cambridge, UK, 1995.spa
dc.relation.referencesS. Lovejoy and D. Schertzer. The weather and climate: emergent laws and multifractal cascades. Cambridge University Press, 2013. ISBN 9781107018983.spa
dc.relation.referencesB. Mandelbrot. The fractal geometry of nature. W. H. Freeman, 1982. ISBN 9780716711865.spa
dc.relation.referencesB. Mandelbrot. Multifractal measures, especially for the geophysicist. Pure and Applied Geophysics, 131:5–42, 1989. doi: 10.1007/BF00874478.spa
dc.relation.referencesB. Mapes, T. Warner, M. Xu, and A. Negri. Diurnal patterns of rainfall in northwestern South America. part I: Observations and context. Monthly Weather Review, 131(5):799– 812, 2003. doi: 10.1175/1520-0493(2003)131⟨0799:DPORIN⟩2.0.CO;2.spa
dc.relation.referencesD. Marzan, D. Schertzer, and S. Lovejoy. Causal space–time multifractal processes: predictability and forecasting of rain fields. Journal of Geophysical Research, 101:D21(26): 333–346, 1996.spa
dc.relation.referencesM. Maskey, C. Puente, B. Sivakumar, and A. Cortis. Encoding daily rainfall records via adaptations of the fractal multifractal method. Stochastic Environmental Research and Risk Assessment, 30(7):1917–1931, 2016. doi: 10.1007/s00477-015-1201-7.spa
dc.relation.referencesM. Maskey, C. Puente, and B. Sivakumar. Deterministic simulation of highly intermittent hydrologic time series. Stochastic Environmental Research and Risk Assessment, 31(10): 2719–2732, 2017. doi: 10.1007/s00477-016-1343-2.spa
dc.relation.referencesJ. Masoliver. Random Processes. World Scientific, 2017.spa
dc.relation.referencesC. Meneveau and K. Sreenivasan. Simple multifractal cascade model for fully developed turbulence. Physical Review Letters, 59(13), 1987.spa
dc.relation.referencesC. Meneveau and K. Sreenivasan. The multifractal nature of turbulent energy dissipation. Journal of Fluid Mechanics, 224(429-484):180, 1991.spa
dc.relation.referencesÓ. Mesa. ¿Adónde va caer este globo? Universidad Nacional de Colombia, Medellín, 2007.spa
dc.relation.referencesÓ. Mesa. Fractales y caos en ingeniería con aplicaciones. Universidad Nacional de Colombia, 2016.spa
dc.relation.referencesÓ. Mesa and V. Peñaranda. Complejidad de la estructura espacio-temporal de la precipitación. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39 (152):304–320, 2015. doi: 10.18257/raccefyn.196.spa
dc.relation.referencesÓ. Mesa, G. Poveda, and L. Carvajal. Introducción al clima de Colombia. Universidad Nacional de Colombia, Medellín, 1997.spa
dc.relation.referencesC. Muller. Impact of convective organization on the response of tropical precipitation extremes to warming. Journal of Climate, 26(14):5028–5043, 2013. doi: 10.1175/ JCLI-D-12-00655.1.spa
dc.relation.referencesC. Muller and I. Held. detailed investigation of the self-aggregation of convection in cloud-resolving simulations. Journal of the Atmospheric Sciences, 69(8):2551–2565, 2012. doi: 10.1175/JAS-D-11-0257.1.spa
dc.relation.referencesC. Muller, L. Back, P. O’Gorman, and K. Emanuel. A model for the relationship between tropical precipitation and column water vapor. Geophysical Research Letters, 36(16), 2009. doi: 10.1029/2009GL039667.spa
dc.relation.referencesK. Nagel and E. Raschke. Self-organizing criticality in cloud formation? Physica A: Statistical Mechanics and its Applications, 182(4):519–531, 1992. doi: http://dx.doi.org/10. 1016/0378-4371(92)90018-L.spa
dc.relation.referencesNational Research Council. Opportunities in the Hydrologic Sciences. National Academy Press, 1991.spa
dc.relation.referencesJ. Neelin, O. Peters, and K. Hales. The transition to strong convection. Journal of the Atmospheric Sciences, 66(8):2367–2384, 2009.spa
dc.relation.referencesK. Nordstrom and V. Gupta. Scaling statistics in a critical, nonlinear physical model of tropical oceanic rainfall. Nonlinear Processes in Geophysics, 10(6):531–543, 2003.spa
dc.relation.referencesT. Over. Modelling space-time mesoscale rainfal using random cascades. PhD thesis, University of Colorado, 1995.spa
dc.relation.referencesT. Over and V. Gupta. Statistical analysis of mesoscale rainfall: dependence of a random cascade generator on large–scale forcing. Journal of Hydrology, 33:1526–1542, 1994.spa
dc.relation.referencesT. Over and V. Gupta. A space–time theory of mesoscale rainfall using random cascades. Journal of Geophysical Research, 101:26:319–331, 1996.spa
dc.relation.referencesA. Parodi and K. Emanuel. a theory for buoyancy and velocity scales in deep moist convection. Journal of the Atmospheric Sciences, 66(11):3449–3463, 2009. doi: 10.1175/ 2009JAS3103.1.spa
dc.relation.referencesA. Parodi, E. Foufoula-Georgiou, and K. Emanuel. Signature of microphysics on spatial rainfall statistics. Journal of Geophysical Research: Atmospheres, 116(D14), 2011. doi: 10.1029/2010JD015124.spa
dc.relation.referencesA. Paschalis, P. Molnar, S. Fatichi, and P. Burlando. A stochastic model for high-resolution space-time precipitation simulation. Water Resources Research, 49(12):8400–8417, 2013. doi: 10.1002/2013WR014437.spa
dc.relation.referencesV. Peñaranda. Representación geométrica de registros de precipitación puntual en Bogotá con el modelo Fractal–Multifractal. Tesis de Maestría, Universidad Nacional de Colombia, Bogota, 2008.spa
dc.relation.referencesS. Perica and E. Foufoula-Georgiou. Linkage of scaling and thermodynamic parameters of rainfall: Results from midlatitude mesoscale convective systems. Journal of Geophysical Research, 101:D3:7431–7448, 1996.spa
dc.relation.referencesO. Peters and J. Neelin. Critical phenomena in atmospheric precipitation. Nature Physics, 2:393–396, 2006.spa
dc.relation.referencesO. Peters and J. Neelin. Atmospheric convection as a continuous phase transition: further evidence. International Journal of Modern Physics B, 23(28-29):5453–5465, 2009.spa
dc.relation.referencesG. Poveda and Ó. Mesa. Feedbacks between hydrological processes in tropical South America and large-scale ocean-atmospheric phenomena. Journal of Climate, 10(10):2690–2702, 1997.spa
dc.relation.referencesC. Puente. A new approach to hydrologic modeling: derived distribution revisited. Journal of Hydrology, 187:65–80, 1995.spa
dc.relation.referencesC. Puente and C. Obregon. A deterministic geometric representation of temporal rainfall: results for a storm in Boston. Journal of Water Resources Research, 32:2825–2839, 1996.spa
dc.relation.referencesC. Puente and B. Sivakumar. Modeling geophysical complexity: a case for geometric determinism. Hydrology and Earth System Sciences, 11(2):721–724, 2007. doi: 10.5194/hess-11-721-2007.spa
dc.relation.referencesC. Puente, O. Robayo, M. Díaz, and B. Sivakumar. A fractal-multifractal approach to groundwater contamination. 1. Modeling conservative tracers at the Borden site. Stochastic Environmental Research and Risk Assessment, 15(5):357–371, 2001. doi: 10.1007/PL00009791.spa
dc.relation.referencesD. Randall. Why are cumulus updrafts narrow? Class Material, 2006.spa
dc.relation.referencesD. Raymond and X. Zeng. Modelling tropical atmospheric convection in the context of the weak temperature gradient approximation. Quarterly Journal of the Royal Meteorological Society, 131(608):1301–1320, 2005. doi: 10.1256/qj.03.97.spa
dc.relation.referencesD. Raymond, S. Sessions, A. Sobel, and Z. Fuchs. The mechanics of gross moist stability. Journal of Advances in Modeling Earth Systems, 1(3), 2009. doi: 10.3894/JAMES.2009. 1.9.spa
dc.relation.referencesI. Rodríguez-Iturbe. Exploring complexity in the structure of rainfall. Advances in Water Resources, 14(4):162–167, 1991.spa
dc.relation.referencesI. Rodríguez-Iturbe, V. Gupta, and E. Waymire. Scale considerations in the modeling of temporal rainfall. Water Resources Research, 20(11):1611–1619, 1984.spa
dc.relation.referencesI. Rodríguez-Iturbe, B. de Power, and J. Valdés. Rectangular pulses point process models for rainfall: analysis of empirical data. Journal of Geophysical Research: Atmosphere, 92 (D8):9645–9656, 1987.spa
dc.relation.referencesS. Roux, A. Arnéodo, and N. Decoster. A wavelet-based method for multifractal image analysis. III. Applications to high-resolution satellite images of cloud structure. The European Physical Journal B - Condensed Matter and Complex Systems, 15(4):765–786, 2000. doi: 10.1007/s100510051180.spa
dc.relation.referencesS. Roux, V. Venugopal, K. Fienberg, A. Arneodo, and E. Foufoula-Georgiou. Evidence for inherent nonlinearity in temporal rainfall. Advances in Water Resources, 32(1):41–48, 2009. doi: http://dx.doi.org/10.1016/j.advwatres.2008.09.007.spa
dc.relation.referencesG. Rushbrooke. On the thermodynamics of the critical region for the Ising problem. The Journal of Chemical Physics, 39(3):842–843, 1963. doi: 10.1063/1.1734338.spa
dc.relation.referencesA. Santos. Implementación de un modelo de autómata celular para el pronóstico de la precipitación espacial. Caso de estudio ciudad de Bogotá (Colombia). Tesis de Maestría. Universidad Nacional de Colombia, Bogotá, 2011.spa
dc.relation.referencesE. Sarachik and M. Cane. The El Niño-Southern Oscillation Phenomenon. Cambridge University Press, Cambridge, UK, 2010. ISBN 9780521847865.spa
dc.relation.referencesD. Schertzer and S. Lovejoy. Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processe. Geophysical Research, 92(D8):9693—9714, 1987a.spa
dc.relation.referencesZ. She, E. Aurell, and U. Frisch. The inviscid burgers equation with initial data of brownian type. Communications in Mathematical Physics, 148(3):623–641, 1992. doi: 10.1007/ BF02096551.spa
dc.relation.referencesJ. Smith and A. Karr. Parameter estimation for a model of space-time rainfall. Water Resources Research, 21(8):1251–1257, 1985. doi: 10.1029/WR021i008p01251.spa
dc.relation.referencesS. Soong and Y. Ogura. response of tradewind cumuli to large-scale processes. Journal of the Atmospheric Sciences, 37(9):2035–2050, 1980. doi: 10.1175/1520-0469(1980)037⟨2035: ROTCTL⟩2.0.CO;2.spa
dc.relation.referencesS. Soong and W. Tao. Response of deep tropical cumulus clouds to mesoscale processes. Journal of the Atmospheric Sciences, 37(9):2016–2034, 1980.spa
dc.relation.referencesD. Sornette. Critical Phenomena in Natural Sciences, Chaos, Fractals, Self-organization and Disorder: Concepts and Tools. Springer Series in Synergetics, 2004.spa
dc.relation.referencesS. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Perseus Books Publishing, 1994.spa
dc.relation.referencesC. Sui, K. Lau, W. Tao, and J. Simpson. The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium Climate. Journal of the Atmospheric Sciences, 51 (5):711–728, 1994. doi: 10.1175/1520-0469(1994)051⟨0711:TTWAEC⟩2.0.CO;2.spa
dc.relation.referencesY. Tessier, S. Lovejoy, P. Hubert, D. Schertzer, and S. Pecknold. Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. Journal of Geo- physical Research: Atmospheres, 101(D21):26427–26440, 1996. doi: 10.1029/96JD01799.spa
dc.relation.referencesH. Touchette. The large deviation approach to statistical mechanics. Physics Reports, 478 (1):1–69, 2009. doi: https://doi.org/10.1016/j.physrep.2009.05.002.spa
dc.relation.referencesA. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237(641):37–72, 1952.spa
dc.relation.referencesT. Ursell. Cahn–hilliard kinetics and spinodal decomposition in a diffuse system. Technical notes, 2007.spa
dc.relation.referencesD. Veneziano and P. Furcolo. Multifractality of rainfall and scaling of intensity-duration- frequency curves. Water Resources Research, 38(12):42–1–42–12, 2002. doi: 10.1029/ 2001WR000372.spa
dc.relation.referencesD. Veneziano, A. Langousis, and P. Furcolo. Multifractality and rainfall extremes: A review. Water Resources Research, 42(6), 2006. doi: 10.1029/2005WR004716.spa
dc.relation.referencesV. Venugopal, E. Foufoula-Georgiou, and V. Sapozhnikov. Evidence of dynamic scaling in space–time rainfall. Journal of Geophysical Research: Atmospheres, 104(D24):31599– 31610, 1999. doi: 10.1029/1999JD900437.spa
dc.relation.referencesT. Vicsek and F. Family. Dynamic scaling for aggregation of clusters. Physical Review Letters, 52(19):1669–1672, 1984. doi: 10.1103/PhysRevLett.52.1669.spa
dc.relation.referencesS. Vieira. Modelación de la precipitación convectiva en el Océano Pacífico colombiano. Tesis de Maestría, Universidad Nacional de Colombia, Medellín, 2006.spa
dc.relation.referencesJ. Wallace and P. Hobbs. Atmospheric science: an introductory survey. Elsevier, 2006.spa
dc.relation.referencesE. Waymire and V. Gupta. The mathematical structure of rainfall representations: 3. Some applications of the point process theory to rainfall processes. Water Resources Research, 17(5):1287–1294, 1981a. doi: 10.1029/WR017i005p01287.spa
dc.relation.referencesE. Waymire and V. Gupta. The mathematical structure of rainfall representations: 1. A review of the stochastic rainfall models. Water Resources Research, 17(5):1261–1272, 1981b. doi: 10.1029/WR017i005p01261.spa
dc.relation.referencesE. Waymire and V. Gupta. The mathematical structure of rainfall representations: 2. A review of the theory of point processes. Water Resources Research, 17(5):1273–1285, 1981c. doi: 10.1029/WR017i005p01273.spa
dc.relation.referencesE. Waymire, V. Gupta, and I. Rodríguez-Iturbe. A spectral theory of rainfall intensity at the meso-β scale. Water Resources Research, 20(10):1453–1465, 1984. doi: 10.1029/ WR020i010p01453.spa
dc.relation.referencesB. Widom. Equation of state in the neighborhood of the critical point. The Journal of Chemical Physics, 43(11):3898–3905, 1965. doi: 10.1063/1.1696618.spa
dc.relation.referencesD. Wilks. Multisite generalization of a daily stochastic precipitation generation model. Journal of Hydrology, 210(1):178–191, 1998. doi: https://doi.org/10.1016/S0022-1694(98) 00186-3.spa
dc.relation.referencesA. Wing and K. Emanuel. Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. Journal of Advances in Modeling Earth Systems, 6(1):59–74, 2014. doi: 10.1002/2013MS000269.spa
dc.relation.referencesT. Witten and L. Sander. Diffusion-limited aggregation, a kinetic critical phenomenon. Physical Review Letters, 47(19):1400–1403, 1981. doi: 10.1103/PhysRevLett.47.1400.spa
dc.relation.referencesM. Yanai, S. Esbensen, and J. Chu. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. Journal of the Atmospheric Sciences, 30(4):611–627, 1973. doi: 10.1175/1520-0469(1973)030⟨0611:DOBPOT⟩2.0.CO;2.spa
dc.relation.referencesK. Zybin and V. Sirota. Multifractal structure of fully developed turbulence. Physical Review E, 88(4), 2013.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalConvección tropicalspa
dc.subject.proposalRainfalleng
dc.subject.proposalTropical convectioneng
dc.subject.proposalFractalesspa
dc.subject.proposalFractalseng
dc.subject.proposalMultifractalesspa
dc.subject.proposalFenómenos críticosspa
dc.subject.proposalMultifractalseng
dc.subject.proposalFormación de patronesspa
dc.subject.proposalCritical phenomenaeng
dc.subject.proposalPatterns formationeng
dc.subject.proposalScalingeng
dc.titleLooking for a physical basis of rainfall multifractalityspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79883126.2019.pdf
Tamaño:
44.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: