Desarrollo de una bebida elaborada a partir de hojas de mortiño (Vaccinium meridionale) deshidratadas

dc.contributor.advisorRojano, Benjamin Alberto
dc.contributor.advisorAlzate Arbeláez, Andrés Felipe
dc.contributor.authorVelez Villada, Angie Dahiana
dc.contributor.researchgroupQuímica de Los Productos Naturales y Los Alimentosspa
dc.date.accessioned2024-10-18T18:59:24Z
dc.date.available2024-10-18T18:59:24Z
dc.date.issued2024
dc.descriptionIlustracionesspa
dc.description.abstractEl consumo de frutos de Vaccinium meridionale ha incrementado por su alto contenido de metabolitos bioactivos, sin embargo, esto incrementa el volumen de subproductos como las hojas de poda. Estas hojas son ricas en compuestos antioxidantes como catequinas y ácidos fenólicos, con propiedades antinflamatorias, retardantes de la oxidación lipídica y la contaminación microbiana. No obstante, para desarrollar un producto de calidad a partir de este subproducto, es de gran relevancia optimizar los procesos de secado y extractivos para obtener un extracto rico en antioxidantes. En este trabajo, se deshidrataron hojas de V. meridionale mediante secado por microondas (440, 660 y 800W) y convectivo (40 y 60°C); los datos de secado se ajustaron a modelos semi-empiricos. Se evalúo el contenido de metabolitos antioxidantes (fenoles y flavonoides totales) y la capacidad antioxidante (ABTS, DPPH y FRAP). Se optimizaron las metodologías de ultrasonido y agitación, en cuanto a metabolitos antioxidantes. El extracto con mejores características se incluyó en una bebida, se evaluaron sus parámetros fisicoquímicos y capacidad antioxidante. La condición de mayor conservación de los metabolitos y capacidad antioxidantes fue microondas a una potencia de 600W. Las condiciones óptimas de extracción fueron 70 min a 72°C en ultrasonido, y 138 min a 72°C en agitación. La bebida cumplió con un aporte del 10% del valor ORAC recomendado y no presentó aspectos sensoriales objetables. La obtención del extracto y su inclusión en una bebida representa una alternativa innovadora y viable para la utilización de este subproducto generando un producto con un alto valor agregado que podría industrializarse. (Tomado de la fuente)spa
dc.description.abstractThe consumption of fruits of Vaccinium meridionale has increased due to its high content of bioactive metabolites, however, this increases the volume of byproducts such as pruning leaves. These leaves are rich in antioxidant compounds such as catechins and phenolic acids, with anti-inflammatory properties, retardants of lipid oxidation and microbial contamination. However, in order to develop a quality product from this byproduct, it is very important to optimize drying and extractive processes to obtain an extract rich in antioxidants. In this work, sheets of V. meridionale were dehydrated by microwave drying (440, 660 and 800W) and convective (40 and 60°C); drying data were adjusted to semi empirical models. The content of antioxidant metabolites (total phenols and flavonoids) and antioxidant capacity (ABTS, DPPH and FRAP) were evaluated. Ultrasound and agitation methodologies were optimized for antioxidant metabolites. The extract with better characteristics was included in a drink, its physicochemical parameters and antioxidant capacity were evaluated. The condition of greater conservation of metabolites and antioxidant capacity was microwave at a power of 600W. Optimum extraction conditions were 70 min at 72°C in ultrasound, and 138 min at 72°C in agitation. The drink met a 10% contribution of the recommended ORAC value and did not present objectionable sensory aspects. Obtaining the extract and its inclusion in a drink represents an innovative and viable alternative for the use of this by-product generating a product with a high added value that could be industrialised.eng
dc.description.curricularareaAgro Ingeniería Y Alimentos.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencia y Tecnología de Alimentosspa
dc.description.researchareaProductos Naturales y Antioxidantesspa
dc.format.extent87 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86993
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAGRONET. (2021a). Productores asociados les sacan más provecho a los cultivos de agraz. https://agronet.gov.co/Noticias/Paginas/Productores-asociados-les-sacan-más-provecho-a-los cultivos-de-agraz.aspxspa
dc.relation.referencesAGRONET. (2021b). Reporte: área, producción y rendimiento nacional por cultivo. https://agronet.gov.co/estadistica/Paginas/home.aspx?cod=1spa
dc.relation.referencesAlam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152. https://doi.org/10.1016/j.jsps.2012.05.002spa
dc.relation.referencesAlean, J., Chejne, F., Ramírez, S., Rincón, E., Alzate-Arbelaez, A. F., & Rojano, B. (2022). Proposal of a method to evaluate the in-situ oxidation of polyphenolic during the cocoa drying. Drying Technology, 40(3), 559–570. https://doi.org/10.1080/07373937.2020.1817933spa
dc.relation.referencesAltay, K., Hayaloglu, A. A., & Dirim, S. N. (2019). Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods. Heat and Mass Transfer, 55(8), 2173–2184. https://doi.org/10.1007/s00231-019-02570-9spa
dc.relation.referencesAlzate-Arbeláez, A. F., Dorta, E., López-Alarcón, C., Cortés, F. B., & Rojano, B. A. (2019). Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chemistry, 294, 503–517. https://doi.org/10.1016/j.foodchem.2019.05.085spa
dc.relation.referencesAmarowicz, R., & Pegg, R. B. (2019). Natural antioxidants of plant origin. In Advances in Food and Nutrition Research (Vol. 90, pp. 1–81). Academic Press Inc. https://doi.org/10.1016/bs.afnr.2019.02.011spa
dc.relation.referencesArango-Varela, S. S., Luzardo-Ocampo, I., & Maldonado-Celis, M. E. (2022). Andean berry (Vaccinium meridionale Swartz) juice, in combination with Aspirin, displayed antiproliferative and pro-apoptotic mechanisms in vitro while exhibiting protective effects against AOM induced colorectal cancer in vivo. Food Research International, 157(March 2021), 111244. https://doi.org/10.1016/j.foodres.2022.111244spa
dc.relation.referencesAugustyniak, A., Bartosz, G., Čipak, A., Duburs, G., Horáková, L., Łuczaj, W., Majekova, M., Odysseos, A. D., Rackova, L., Skrzydlewska, E., Stefek, M., Štrosová, M., Tirzitis, G., Venskutonis, P. R., Viskupicova, J., Vraka, P. S., & Žarković, N. (2010). Natural and synthetic antioxidants: An updated overview. Free Radical Research, 44(10), 1216–1262. https://doi.org/10.3109/10715762.2010.508495spa
dc.relation.referencesAybastıer, Ö., Işık, E., Şahin, S., & Demir, C. (2013). Optimization of ultrasonic-assisted extraction of antioxidant compounds from blackberry leaves using response surface methodology. Industrial Crops and Products, 44, 558–565. https://doi.org/10.1016/j.indcrop.2012.09.022spa
dc.relation.referencesBallard, C. R., & Maróstica, M. R. (2019). Health Benefits of Flavonoids. In Bioactive Compounds (pp. 185–201). Elsevier. https://doi.org/10.1016/B978-0-12-814774-0.00010-4spa
dc.relation.referencesBastos, A. V. S., Amaral, A. M., Gomes, F. H. F., Xavier, W., & Resende, O. (2019). Drying Kinetics of Cecropia pachystachya Leaves. Floresta e Ambiente, 26(3). https://doi.org/10.1590/2179- 8087.042218spa
dc.relation.referencesBenzie, I. F. F. (1996). An automated, specific, spectrophotometric method for measuring ascorbic acid in plasma (EFTSA). Clinical Biochemistry, 29(2), 111–116. https://doi.org/https://doi.org/10.1016/0009-9120(95)02013-6spa
dc.relation.referencesBertelli, A., Biagi, M., Corsini, M., Baini, G., Cappellucci, G., & Miraldi, E. (2021). Polyphenols: From Theory to Practice. Foods, 10(11), 2595. https://doi.org/10.3390/foods10112595spa
dc.relation.referencesBhuyan, D. J., Vuong, Q. V., Chalmers, A. C., van Altena, I. A., Bowyer, M. C., & Scarlett, C. J. (2017). Development of the ultrasonic conditions as an advanced technique for extraction of phenolic compounds from Eucalyptus robusta. Separation Science and Technology, 52(1), 100–112. https://doi.org/10.1080/01496395.2016.1250777spa
dc.relation.referencesBinici, H. İ., Şat, İ. G., & Aoudeh, E. (2021). The effect of different drying methods on nutritional composition and antioxidant activity of purslane (Portulaca oleracea). TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 45(5), 680–689. https://doi.org/10.3906/tar-2012-60spa
dc.relation.referencesBizuayehu, D., Atlabachew, M., & Ali, M. T. (2016). Determination of some selected secondary metabolites and their invitro antioxidant activity in commercially available Ethiopian tea (Camellia sinensis). SpringerPlus, 5(1), 412. https://doi.org/10.1186/s40064-016-2056-1spa
dc.relation.referencesBorda-Yepes, V. H., Chejne, F., Daza-Olivella, L. V., Alzate-Arbelaez, A. F., Rojano, B. A., & Raghavan, V. G. S. (2019). Effect of microwave and infrared drying over polyphenol content in Vaccinium meridionale (Swartz) dry leaves. Journal of Food Process Engineering, 42(1), e12939. https://doi.org/10.1111/jfpe.12939spa
dc.relation.referencesBrand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5spa
dc.relation.referencesCalderón Oliver, M., & Ponce Alquicira, E. (2021). Environmentally Friendly Techniques and Their Comparison in the Extraction of Natural Antioxidants from Green Tea, Rosemary, Clove, and Oregano. Molecules, 26(7), 1869. https://doi.org/10.3390/molecules26071869spa
dc.relation.referencesBuelga-Santo, C., & González-Paramás, A. M. (2016). Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants (E. J. Vandamme & J. L. Revuelta, Eds.; 1st ed., pp. 469–471). Wiley-VHC.spa
dc.relation.referencesCarrín, M. E., & Crapiste, G. H. (2008). Convective drying of foods. In Advances in Food Dehydration. https://doi.org/10.1201/9781420052534.ch5spa
dc.relation.referencesCastro, A. M., Mayorga, E. Y., & Moreno, F. L. (2018). Mathematical modelling of convective drying of fruits: A review. Journal of Food Engineering, 223, 152–167. https://doi.org/10.1016/j.jfoodeng.2017.12.012spa
dc.relation.referencesCelis, M. E. M., Tobón, Y. N. F., Agudeio, C., Arango, S. S., & Rojano, B. (2017). Andean berry (vaccinium meridionale swartz). Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition, 2(July 2018), 869–881. https://doi.org/10.1002/9781119158042.ch40spa
dc.relation.referencesChahbani, A., Zouari, N., Elhatmi, H., Jridi, M., & Fakhfakh, N. (2023). Microwave drying of garlic (Allium sativum L.) leaves: kinetics modelling and changes in phenolic compounds profile. Heat and Mass Transfer. https://doi.org/10.1007/s00231-023-03359-7spa
dc.relation.referencesChaves, J. O., de Souza, M. C., da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P. C., Machado, A. P. da F., Forster-Carneiro, T., Vázquez-Espinosa, M., González-de-Peredo, A. V., Barbero, G. F., & Rostagno, M. A. (2020). Extraction of Flavonoids From Natural Sources Using Modern Techniques. Frontiers in Chemistry, 8(September). https://doi.org/10.3389/fchem.2020.507887spa
dc.relation.referencesChen, X., Ding, J., Ji, D., He, S., & Ma, H. (2020). Optimization of ultrasonic‐assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. Journal of Food Science, 85(6), 1742–1751. https://doi.org/10.1111/1750-3841.15111spa
dc.relation.referencesCorantioquia. (2003). Conozcamos y usemos el mortiño (Vol. 3).spa
dc.relation.referencesCorrêa, P. C., Botelho, F. M., Oliveira, G. H. H., Goneli, A. L. D., Resende, O., & Campos, S. D. C. (2011). Mathematical modeling of the drying process of corn ears. Acta Scientiarum. Agronomy, 33(4). https://doi.org/10.4025/actasciagron.v33i4.7079spa
dc.relation.referencesCraft, B. D., Kerrihard, A. L., Amarowicz, R., & Pegg, R. B. (2012). Phenol-Based Antioxidants and the In Vitro Methods Used for Their Assessment. Comprehensive Reviews in Food Science and Food Safety, 11(2), 148–173. https://doi.org/10.1111/j.1541-4337.2011.00173.xspa
dc.relation.referencesCutrim, C. S., & Cortez, M. A. S. (2018a). A review on polyphenols: Classification, beneficial effects and their application in dairy products. International Journal of Dairy Technology, 71(3), 564– 578. https://doi.org/10.1111/1471-0307.12515spa
dc.relation.referencesDa Porto, C., & Natolino, A. (2018). Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chemistry, 258, 137–143. https://doi.org/10.1016/j.foodchem.2018.03.059spa
dc.relation.referencesDadalı, G., Kılıç Apar, D., & Özbek, B. (2007). Microwave Drying Kinetics of Okra. Drying Technology, 25(5), 917–924. https://doi.org/10.1080/07373930701372254spa
dc.relation.referencesDang, T. T., Van Vuong, Q., Schreider, M. J., Bowyer, M. C., Van Altena, I. A., & Scarlett, C. J. (2017). Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. Journal of Applied Phycology, 29(6), 3161–3173. https://doi.org/10.1007/s10811-017-1162-yspa
dc.relation.referencesDavid, D., Alzate, A. F., Rojano, B., Copete-Pertuz, L. S., Echeverry, R., Gutierrez, J., & Zapata Vahos, I. C. (2022). Extraction and characterization of phenolic compounds with antioxidant and antimicrobial activity from avocado seed (Persea americana mill). Bionatura, 7(4). https://doi.org/10.21931/RB/2022.07.04.51spa
dc.relation.referencesDemiray, E., Seker, A., & Tulek, Y. (2017). Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat and Mass Transfer, 53(5), 1817–1827. https://doi.org/10.1007/s00231-016-1943-xspa
dc.relation.referencesDerringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219.spa
dc.relation.referencesDini, I. (2019). An overview of functional beverages. Functional and Medicinal Beverages, 1–40.spa
dc.relation.referencesDoymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 53(1), 25– 35. https://doi.org/10.1007/s00231-016-1791-8spa
dc.relation.referencesDoymaz, İ., & Karasu, S. (2018). Effect of air temperature on drying kinetics, colour changes and total phenolic content of sage leaves ( Salvia officinalis). Quality Assurance and Safety of Crops & Foods, 10(3), 269–276. https://doi.org/10.3920/QAS2017.1257spa
dc.relation.referencesEdenharder, R., von Petersdorff, I., & Rauscher, R. (1993). Antimutagenic effects of flavonoids, chalcones and structurally related compounds on the activity of 2-amino-3-methylimidazo[4,5- f] quinoline (IQ) and other heterocyclic amine mutagens from cooked food. Mutation Research, 287(2), 261–274. https://doi.org/10.1016/0027-5107(93)90019-Cspa
dc.relation.referencesErbay, Z., & Icier, F. (2010). A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Critical Reviews in Food Science and Nutrition, 50(5), 441–464. https://doi.org/10.1080/10408390802437063spa
dc.relation.referencesFan, F. Y., Sang, L. X., Jiang, M., & McPhee, D. J. (2017). Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules, 22(3). https://doi.org/10.3390/molecules22030484spa
dc.relation.referencesFang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols - A review. Trends in Food Science and Technology, 21(10), 510–523. https://doi.org/10.1016/j.tifs.2010.08.003spa
dc.relation.referencesFernandes, R. P. P., Trindade, M. A., Tonin, F. G., Lima, C. G., Pugine, S. M. P., Munekata, P. E. S., Lorenzo, J. M., & de Melo, M. P. (2016). Evaluation of antioxidant capacity of 13 plant extracts by three different methods: cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. Journal of Food Science and Technology, 53(1), 451–460. https://doi.org/10.1007/s13197-015-1994-xspa
dc.relation.referencesFlieger, J., Flieger, W., & Baj, J. (2021). Antioxidants : Classification , Natural Sources , Activity / Capacity. Materials, 14(4135), 1–54.spa
dc.relation.referencesGarcía, C. Leonardo., & Ligarreto, G. Adolfo. (2014). Effect of fruit size on the growth and development of Andean blueberry (Vaccinium meridionale Swartz) seedlings from four locations in the Colombian Andes. Agronomia Colombiana, 32(1), 14–21. https://doi.org/10.15446/agron.colomb.v32n1.38714spa
dc.relation.referencesGarzón, G. A., Medina, J. L., Montana, T. L., Sánchez, M., Novoa, C. F., & Gutiérrez, L. (2021). Utilization of Vaccinium meridionale S. pomace as an eco‐friendly and functional colorant in Greek‐style yogurt. Journal of Food Science, 86(9), 3896–3908. https://doi.org/10.1111/1750- 3841.15872spa
dc.relation.referencesGarzón, G. A., Narváez, C. E., Riedl, K. M., & Schwartz, S. J. (2010). Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry, 122(4), 980–986. https://doi.org/10.1016/j.foodchem.2010.03.017spa
dc.relation.referencesGaukel, V., Siebert, T., & Erle, U. (2017). Microwave-assisted drying. In The Microwave Processing of Foods: Second Edition (Second Edi). Elsevier Ltd. https://doi.org/10.1016/B978-0-08- 100528-6.00008-5spa
dc.relation.referencesGinwala, R., Bhavsar, R., Chigbu, D. G. I., Jain, P., & Khan, Z. K. (2019). Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti Inflammatory Activity of Apigenin. Antioxidants, 8(2). https://doi.org/10.3390/ANTIOX8020035spa
dc.relation.referencesGonzález, L. K., Rugeles, L. N., & Magnitskiy, S. (2018). Effect of different sources of nitrogen on the vegetative growth of andean blueberry (Vaccinium meridionale swartz). Agronomia Colombiana, 36(1), 58–67. https://doi.org/10.15446/agron.colomb.v36n1.69304spa
dc.relation.referencesGulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94(3), 651–715. https://doi.org/10.1007/s00204-020-02689-3spa
dc.relation.referencesHamrouni-Sellami, I., Rahali, F. Z., Rebey, I. B., Bourgou, S., Limam, F., & Marzouk, B. (2013). Total Phenolics, Flavonoids, and Antioxidant Activity of Sage (Salvia officinalis L.) Plants as Affected by Different Drying Methods. Food and Bioprocess Technology, 6(3), 806–817. https://doi.org/10.1007/s11947-012-0877-7spa
dc.relation.referencesHihat, S., Remini, H., & Madani, K. (2017). Effect of oven and microwave drying on phenolic compounds and antioxidant capacity of coriander leaves. International Food Research Journal, 24(2), 503–509.spa
dc.relation.referencesHuang, X., Dou, J., Li, D., & Wang, L. (2018). Effects of superfine grinding on properties of sugar beet pulp powders. LWT, 87, 203–209. https://doi.org/10.1016/j.lwt.2017.08.067spa
dc.relation.referencesInyang, U. E., Oboh, I. O., & Etuk, B. R. (2018). Kinetic Models for Drying Techniques—Food Materials. Advances in Chemical Engineering and Science, 08(02), 27–48. https://doi.org/10.4236/aces.2018.82003spa
dc.relation.referencesJiang, L., Xu, Q.-X., Qiao, M., Ma, F.-F., Thakur, K., & Wei, Z.-J. (2017). Effect of superfine grinding on properties of Vaccinium bracteatum Thunb leaves powder. Food Science and Biotechnology, 26(6), 1571–1578. https://doi.org/10.1007/s10068-017-0126-yspa
dc.relation.referencesJovanović, A. A., Đorđević, V. B., Zdunić, G. M., Pljevljakušić, D. S., Šavikin, K. P., Gođevac, D. M., & Bugarski, B. M. (2017). Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Separation and Purification Technology, 179, 369–380. https://doi.org/10.1016/j.seppur.2017.01.055spa
dc.relation.referencesKhaing Hnin, K., Zhang, M., Mujumdar, A. S., & Zhu, Y. (2019). Emerging food drying technologies with energy-saving characteristics: A review. Drying Technology, 37(12), 1465– 1480. https://doi.org/10.1080/07373937.2018.1510417spa
dc.relation.referencesKhodja, Y. K., Dahmoune, F., Bachir bey, M., Madani, K., & Khettal, B. (2020). Conventional method and microwave drying kinetics of Laurus nobilis leaves: effects on phenolic compounds and antioxidant activity. Brazilian Journal of Food Technology, 23, 1–10. https://doi.org/10.1590/1981-6723.21419spa
dc.relation.referencesKopustinskiene, D. M., Jakstas, V., Savickas, A., & Bernatoniene, J. (2020). Flavonoids as Anticancer Agents. Nutrients, 12(2). https://doi.org/10.3390/NU12020457spa
dc.relation.referencesKumar, S., & Pandey, A. K. (2013). Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal, 2013, 1–16. https://doi.org/10.1155/2013/162750spa
dc.relation.referencesLai, S., Cui, Q., Sun, Y., Liu, R., & Niu, Y. (2024). Effects of Particle Size Distribution on the Physicochemical, Functional, and Structural Properties of Alfalfa Leaf Powder. Agriculture, 14(4), 634. https://doi.org/10.3390/agriculture14040634spa
dc.relation.referencesLee, L.-S., Lee, N., Kim, Y., Lee, C.-H., Hong, S., Jeon, Y.-W., & Kim, Y.-E. (2013). Optimization of Ultrasonic Extraction of Phenolic Antioxidants from Green Tea Using Response Surface Methodology. Molecules, 18(11), 13530–13545. https://doi.org/10.3390/molecules181113530spa
dc.relation.referencesLiu, J., Li, X., Yang, Y., Wei, H., Xue, L., Zhao, M., & Cai, J. (2021). Optimization of combined microwave and hot air drying technology for purple cabbage by Response Surface Methodology (RSM). Food Science and Nutrition, 9(8), 4568–4577. https://doi.org/10.1002/fsn3.2444spa
dc.relation.referencesLopera, Y. E., Gaviria, C., & Rojano, B. (2009). Fermentación alcohólica del zumo de mortiño (Vaccinium Meridionale Sw). Simposio internacional de producción de alcoholes y levaduras.spa
dc.relation.referencesLópez, G. G., Brousse, M. M., & Linares, A. R. (2023). Kinetic modelling of total phenolic compounds from Ilex paraguariensis (St. Hil.) leaves: Conventional and ultrasound assisted extraction. Food and Bioproducts Processing, 139, 75–88. https://doi.org/10.1016/j.fbp.2023.03.003spa
dc.relation.referencesMaleš, I., Pedisić, S., Zorić, Z., Elez-Garofulić, I., Repajić, M., You, L., Vladimir-Knežević, S., Butorac, D., & Dragović-Uzelac, V. (2022). The medicinal and aromatic plants as ingredients in functional beverage production. Journal of Functional Foods, 96, 105210. https://doi.org/10.1016/j.jff.2022.105210spa
dc.relation.referencesManach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727spa
dc.relation.referencesMarinova, D., Ribarova, F., & Atanassova, M. (2005). Total Phenolics and Total Flavonoids in Bulgarian Fruits and Vegetables. 255–260.spa
dc.relation.referencesMbegbu, N. N., Nwajinka, C. O., & Amaefule, D. O. (2021). Thin layer drying models and characteristics of scent leaves (Ocimum gratissimum) and lemon basil leaves (Ocimum africanum). Heliyon, 7(1), e05945. https://doi.org/10.1016/j.heliyon.2021.e05945spa
dc.relation.referencesMedina-Cano, C. I., Lobo Arias, M., Castaño Colorado, Á. A., & Cardona, L. E. (2015). Análisis del desarrollo de plantas de mortiño (Vaccinium meridionale Swart.) bajo dos sistemas de propagación: clonal y sexual. Ciencia & Tecnología Agropecuaria, 16(1), 65–77. https://doi.org/10.21930/rcta.vol16_num1_art:390spa
dc.relation.referencesMedina-Jaramillo, C., Quintero-Pimiento, C., Gómez-Hoyos, C., Zuluaga-Gallego, R., & López Córdoba, A. (2020). Alginate-edible coatings for application on wild andean blueberries (Vaccinium meridionale swartz): Effect of the addition of nanofibrils isolated from cocoa by products. Polymers, 12(4). https://doi.org/10.3390/POLYM12040824spa
dc.relation.referencesMello, P. A., Barin, J. S., & Guarnieri, R. A. (2014). Microwave Heating. In Microwave-Assisted Sample Preparation for Trace Element Determination. Elsevier. https://doi.org/10.1016/B978- 0-444-59420-4.00002-7spa
dc.relation.referencesMishra, R. R., & Sharma, A. K. (2016). Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78–97. https://doi.org/10.1016/j.compositesa.2015.10.035spa
dc.relation.referencesMorante- Carriel, J., Agnieszka Obrebska, A., Bru-Martínez, R., Carranza Patiño, M., Pico-Saltos, R., & Nieto Rodriguez, E. (2014). Distribución, localización e inhibidores de las polifenol oxidasas en frutos y vegetales usados como alimento distribution, location and inhibitors of polyphenol oxidases in fruits and vegetables used as food. Ciencia y Tecnología, 7(1).spa
dc.relation.referencesMordor Intelligence. (2024a). Tamaño del mercado de agua embotellada y análisis de participación tendencias de crecimiento y pronósticos (2024-2029). https://www.mordorintelligence.com/es/industry-reports/bottled-water-marketspa
dc.relation.referencesMordor Intelligence. (2024b). Tamaño del mercado de bebidas funcionales y análisis de participación tendencias de crecimiento y pronósticos (2024-2029) . Tamaño del mercado de bebidas funcionales y análisis de participación tendencias de crecimiento y pronósticos (2024- 2029) Source: https://www.mordorintelligence.com/es/industry-reports/functional-beverage marketspa
dc.relation.referencesNaczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054(1–2), 95–111. https://doi.org/10.1016/j.chroma.2004.08.059spa
dc.relation.referencesNatarajan, S. B., Chandran, S. P., Khan, S. H., Natarajan, P., & Rengarajan, K. (2019). Versatile Health Benefits of Catechin from Green Tea (Camellia sinensis). Current Nutrition & Food Science, 15(1), 3–10. https://doi.org/10.2174/1573401313666171003150503spa
dc.relation.referencesNguyen, Q.-V., Doan, M.-D., Bui Thi, B.-H., Nguyen, M.-T., Tran Minh, D., Nguyen, A.-D., Le, T.-M., Nguyen, T.-H., Nguyen, T.-D., Tran, V.-C., & Hoang, V.-C. (2023). The effect of drying methods on chlorophyll, polyphenol, flavonoids, phenolic compounds contents, color and sensory properties, and in vitro antioxidant and anti-diabetic activities of dried wild guava leaves. Drying Technology, 41(8), 1291–1302. https://doi.org/10.1080/07373937.2022.2145305spa
dc.relation.referencesOkwunodulu, I. N., Obioma, V. N., Okwunodulu, F. U., Ndife, J., & Wabali, V. (2023). Functional combo juice drink from ginger, garlic turmeric and pine apple juice blends: Bioactive compounds, anti-oxidant activity, physicochemical elucidation and their sensorial expectations. Food Chemistry Advances, 3(July), 100391. https://doi.org/10.1016/j.focha.2023.100391spa
dc.relation.referencesONU. (2015). Objetivos y metas de desarrollo sostenible - Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/spa
dc.relation.referencesOnyebuchi, C., & Kavaz, D. (2020). Effect of extraction temperature and solvent type on the bioactive potential of Ocimum gratissimum L. extracts. Scientific Reports, 10(1), 21760. https://doi.org/10.1038/s41598-020-78847-5spa
dc.relation.referencesOrphanides, A., Goulas, V., & Gekas, V. (2016). Drying Technologies: Vehicle to High-Quality Herbs. Food Engineering Reviews, 8(2), 164–180. https://doi.org/10.1007/s12393-015-9128-9spa
dc.relation.referencesOu, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. Journal of Agricultural and Food Chemistry, 49(10), 4619–4626. https://doi.org/10.1021/jf010586ospa
dc.relation.referencesPalma, A., Díaz, M. J., Ruiz-Montoya, M., Morales, E., & Giráldez, I. (2021). Ultrasound extraction optimization for bioactive molecules from Eucalyptus globulus leaves through antioxidant activity. Ultrasonics Sonochemistry, 76, 105654. https://doi.org/10.1016/j.ultsonch.2021.105654spa
dc.relation.referencesPanche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41spa
dc.relation.referencesPereira, L. M. S., Milan, T. M., & Tapia-Blácido, D. R. (2021). Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass and Bioenergy, 151, 106166. https://doi.org/10.1016/j.biombioe.2021.106166spa
dc.relation.referencesPinho, E., Grootveld, M., Soares, G., & Henriques, M. (2014). Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydrate Polymers, 101(1), 121–135. https://doi.org/10.1016/j.carbpol.2013.08.078spa
dc.relation.referencesPolaris Market Research. (2022). Natural Antioxidants Market Size Global Report, 2022 - 2030. https://www.polarismarketresearch.com/industry-analysis/global-natural-antioxidants-marketspa
dc.relation.referencesPotisate, Y., Science, S. P.-A.-P. J. of, & 2015, U. (2015). Microwave drying of Moringa oleifera (Lam.) leaves: drying characteristics and quality aspects. Asia-Pacific Journal of Science and Technology, 20(1), 12–25.spa
dc.relation.referencesPuttalingappa, Y. J., Natarajan, V., Varghese, T., & Naik, M. (2022). Effect of microwave‐assisted vacuum drying on the drying kinetics and quality parameters of Moringa oleifera leaves. Journal of Food Process Engineering, 45(8). https://doi.org/10.1111/jfpe.14054spa
dc.relation.referencesRababah, T. M., Alhamad, M., Al-Mahasneh, M., Ereifej, K., Andrade, J., Altarifi, B., Almajwal, A., & Yang, W. (2015). Effects of drying process on total phenolics, antioxidant activity and flavonoid contents of common mediterranean herbs. International Journal of Agricultural and Biological Engineering, 8(2), 145–150.spa
dc.relation.referencesRajha, H. N., Darra, N. El, Hobaika, Z., Boussetta, N., Vorobiev, E., Maroun, R. G., & Louka, N. (2014). Extraction of Total Phenolic Compounds, Flavonoids, Anthocyanins and Tannins from Grape Byproducts by Response Surface Methodology. Influence of Solid-Liquid Ratio, Particle Size, Time, Temperature and Solvent Mixtures on the Optimization Process. Food and Nutrition Sciences, 05(04), 397–409. https://doi.org/10.4236/fns.2014.54048spa
dc.relation.referencesRe, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3spa
dc.relation.referencesRoca, M., Chen, K., & Pérez-Gálvez, A. (2016). Chlorophylls. In Handbook on Natural Pigments in Food and Beverages (pp. 125–158). Elsevier. https://doi.org/10.1016/B978-0-08-100371- 8.00006-3spa
dc.relation.referencesRocha, R. P., Melo, E. C., & Radünz, L. L. (2011). Influence of drying process on the quality of medicinal plants: A review. Journal of Medicinal Plant Research, 5(33), 7076–7084. https://doi.org/10.5897/JMPRx11.001spa
dc.relation.referencesRoutray, W., Orsat, V., & Gariepy, Y. (2014). Effect of Different Drying Methods on the Microwave Extraction of Phenolic Components and Antioxidant Activity of Highbush Blueberry Leaves. Drying Technology, 32(16), 1888–1904. https://doi.org/10.1080/07373937.2014.919002spa
dc.relation.referencesSantos, C. H. K., Baqueta, M. R., Coqueiro, A., Dias, M. I., Barros, L., Barreiro, M. F., Ferreira, I. C. F. R., Gonçalves, O. H., Bona, E., da Silva, M. V., & Leimann, F. V. (2018). Systematic study on the extraction of antioxidants from pinhão (Araucaria angustifolia (bertol.) Kuntze) coat. Food Chemistry, 261, 216–223. https://doi.org/10.1016/j.foodchem.2018.04.057spa
dc.relation.referencesSantos-Sánchez, N. F., Salas-Coronado, R., Villanueva-Cañongo, C., & Hernández-Carlos, B. (2019). Antioxidant Compounds and Their Antioxidant Mechanism. Antioxidants, March. https://doi.org/10.5772/intechopen.85270spa
dc.relation.referencesSarimeseli, A. (2011). Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Conversion and Management, 52(2), 1449–1453. https://doi.org/10.1016/j.enconman.2010.10.007spa
dc.relation.referencesSelahvarzi, A., Ramezan, Y., Sanjabi, M. R., Namdar, B., Akbarmivehie, M., Mirsaeedghazi, H., & Azarikia, F. (2022). Optimization of ultrasonic-assisted extraction of phenolic compounds from pomegranate and orange peels and their antioxidant activity in a functional drink: Antioxidant effect of optimized pomegranate and orange peel extracts in the functional drink. Food Bioscience, 49(June), 101918. https://doi.org/10.1016/j.fbio.2022.101918spa
dc.relation.referencesShen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383(August 2021), 132531. https://doi.org/10.1016/j.foodchem.2022.132531spa
dc.relation.referencesSingleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144 LP – 158.spa
dc.relation.referencesSirichan, T., Kijpatanasilp, I., Asadatorn, N., & Assatarakul, K. (2022). Optimization of ultrasound extraction of functional compound from makiang seed by response surface methodology and antimicrobial activity of optimized extract with its application in orange juice. Ultrasonics Sonochemistry, 83. https://doi.org/10.1016/j.ultsonch.2022.105916spa
dc.relation.referencesSokhansanj, S., & Jayas, D. S. (2014). Drying of foodstuffs. Handbook of Industrial Drying, Fourth Edition, 521–544. https://doi.org/10.1201/b17208spa
dc.relation.referencesSridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A., Vo, D.-V. N., & Prabhakar, S. (2021). Techniques and modeling of polyphenol extraction from food: a review. Environmental Chemistry Letters, 19(4), 3409–3443. https://doi.org/10.1007/s10311-021-01217-8spa
dc.relation.referencesStatista Research Department. (2024). Functional water - statistics & facts. https://www.statista.com/topics/3306/functional-water/#statisticChapterspa
dc.relation.referencesȘtefănescu, R., Laczkó-Zöld, E., Ősz, B. E., & Vari, C. E. (2023). An Updated Systematic Review of Vaccinium myrtillus Leaves: Phytochemistry and Pharmacology. Pharmaceutics, 15(1), 1– 23. https://doi.org/10.3390/pharmaceutics15010016spa
dc.relation.referencesThamkaew, G., Sjöholm, I., & Galindo, F. G. (2021). A review of drying methods for improving the quality of dried herbs. Critical Reviews in Food Science and Nutrition, 61(11), 1763–1786. https://doi.org/10.1080/10408398.2020.1765309spa
dc.relation.referencesThirumurugan, D., Cholarajan, A., Raja, S. S. S., & Vijayakumar, R. (2018). An Introductory Chapter: Secondary Metabolites. In Secondary Metabolites - Sources and Applications. InTech. https://doi.org/10.5772/intechopen.79766spa
dc.relation.referencesValadez-Carmona, L., Plazola-Jacinto, C. P., Hernández-Ortega, M., Hernández-Navarro, M. D., Villarreal, F., Necoechea-Mondragón, H., Ortiz-Moreno, A., & Ceballos-Reyes, G. (2017). Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative Food Science & Emerging Technologies, 41, 378–386. https://doi.org/10.1016/j.ifset.2017.04.012spa
dc.relation.referencesValenzuela V., C., & Pérez M., P. (2016). Actualización en el uso de antioxidantes naturales derivados de frutas y verduras para prolongar la vida útil de la carne y productos cárneos. Revista Chilena de Nutricion, 43(2), 188–195. https://doi.org/10.4067/S0717- 75182016000200012spa
dc.relation.referencesVrancheva, R., Ivanov, I., Badjakov, I., Dincheva, I., Georgiev, V., & Pavlov, A. (2020). Optimization of polyphenols extraction process with antioxidant properties from wild Vaccinium myrtillus L. (bilberry) and Vaccinium vitis-idaea L. (lingonberry) leaves. Food Science and Applied Biotechnology, 3(2), 149–156. https://doi.org/10.30721/fsab2020.v3.i2.98spa
dc.relation.referencesWu, H., Chai, Z., Hutabarat, R. P., Zeng, Q., Niu, L., Li, D., Yu, H., & Huang, W. (2019). Blueberry leaves from 73 different cultivars in southeastern China as nutraceutical supplements rich in antioxidants. Food Research International, 122, 548–560. https://doi.org/10.1016/j.foodres.2019.05.015spa
dc.relation.referencesXiao, W., Zhang, Y., Fan, C., & Han, L. (2017). A method for producing superfine black tea powder with enhanced infusion and dispersion property. Food Chemistry, 214, 242–247. https://doi.org/10.1016/j.foodchem.2016.07.096spa
dc.relation.referencesYap, J. Y., Hii, C. L., Ong, S. P., Lim, K. H., Abas, F., & Pin, K. Y. (2020). Effects of drying on total polyphenols content and antioxidant properties of Carica papaya leaves. Journal of the Science of Food and Agriculture, 100(7), 2932–2937. https://doi.org/10.1002/jsfa.10320spa
dc.relation.referencesYilmaz, P., Demirhan, E., & Özbek, B. (2021). Microwave drying effect on drying characteristic and energy consumption of Ficus carica Linn leaves. Journal of Food Process Engineering, 44(10), 1–21. https://doi.org/10.1111/jfpe.13831spa
dc.relation.referencesYoussef, K. M., & Mokhtar, S. M. (2014). Effect of Drying Methods on the Antioxidant Capacity, Color and Phytochemicals of Portulaca oleracea L. Leaves. Journal of Nutrition & Food Sciences, 04(06). https://doi.org/10.4172/2155-9600.1000322spa
dc.relation.referencesZapata, I. C., Sepúlveda-Valencia, U., & Rojano, B. A. (2015). Efecto del tiempo de almacenamiento sobre las propiedades fisicoquímicas, probióticas y antioxidantes de yogurt saborizado con mortiño (Vaccinium meridionale Sw). Informacion Tecnologica, 26(2), 17–28. https://doi.org/10.4067/S0718-07642015000200004spa
dc.relation.referencesZapata-Vahos, I. C., Villacorta, V., Maldonado, M. E., Castro Restrepo, D., & Rojano, B. (2015a). Antioxidant and cytotoxic activity of black and green tea from Vaccinium meridionale Swartz leaves. Journal of Medicinal Plants Research, 9(13), 445–453. https://doi.org/10.5897/JMPR2014.5744spa
dc.relation.referencesZeb, A. (2021). Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis. In Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis. https://doi.org/10.1007/978-3- 030-74768-8spa
dc.relation.referencesZhang, Y., Li, R., Shang, G., Zhu, H., Mahmood, N., & Liu, Y. (2021). Mechanical grinding alters physicochemical, structural, and functional properties of tobacco (Nicotiana tabacum L.) leaf powders. Industrial Crops and Products, 173, 114149. https://doi.org/10.1016/j.indcrop.2021.114149spa
dc.relation.referencesZhao, G., Zhang, R., Dong, L., Huang, F., Tang, X., Wei, Z., & Zhang, M. (2018). Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT, 87, 450–456. https://doi.org/10.1016/j.lwt.2017.09.016spa
dc.relation.referencesZulkifli, S. A., Abd Gani, S. S., Zaidan, U. H., & Halmi, M. I. E. (2020). Optimization of Total Phenolic and Flavonoid Contents of Defatted Pitaya (Hylocereus polyrhizus) Seed Extract and Its Antioxidant Properties. Molecules, 25(4), 787. https://doi.org/10.3390/molecules25040787spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería química::663 - Tecnología de bebidasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.lembindustria de bebidas
dc.subject.lembFrutas deshidratadas
dc.subject.lembDesarrollo de productos
dc.subject.lembDeshidratación de frutas
dc.subject.lembProductos naturales
dc.subject.proposalmicroondasspa
dc.subject.proposalpolifenolesspa
dc.subject.proposalultrasonidospa
dc.subject.proposalagrazspa
dc.subject.proposalextracciónspa
dc.subject.proposalmicrowaveseng
dc.subject.proposalultrasoundeng
dc.subject.proposalextractioneng
dc.subject.proposalpolyphenolseng
dc.subject.proposalagrazeng
dc.titleDesarrollo de una bebida elaborada a partir de hojas de mortiño (Vaccinium meridionale) deshidratadasspa
dc.title.translatedDevelopment of a beverage made from dehydrated mortiño (Vaccinium meridionale) leaveseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026161108.2024.pdf
Tamaño:
2.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: