Model buiding in a U(1) extension to the Standard Model with flavor and astrophysics phenomenology
dc.contributor.advisor | Castillo Ramírez, Andrés Fernando | |
dc.contributor.advisor | Milanés Carreño, Diego Alejandro | |
dc.contributor.author | Gómez Cruz, Nicolás | |
dc.contributor.researchgroup | Grupo Fenix | spa |
dc.date.accessioned | 2023-12-11T15:34:53Z | |
dc.date.available | 2023-12-11T15:34:53Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones | spa |
dc.description.abstract | Esta tesis propone un marco teórico basado en un bosón gauge U(1$ leptofílico y un candidato fermiónico de materia oscura autointeractuante que se acopla a él, ofreciendo una extensión potencial al Modelo Estándar. El modelo es capaz de explicar anomalías recientes en la física del sabor, como la $g-2$ del muón y los branching ratios R ( D(*) ) de los mesones B, así como problemas de estructura a pequeña escala de la materia oscura fría, como el problema del core-cusp. Investigamos el espacio de parámetros disponible en el que este modelo puede dar cuenta de estos observables. Para obtener una pista de los principales parámetros del modelo, ajustamos las predicciones teóricas de un fermión de materia oscura autointeractuante, considerando todos los canales s, t y u, con los datos observados de galaxias y cúmulos. Encontramos que este último caso es consistente con otros modelos de la literatura, pero en general, el nuestro no puede dar cuenta simultáneamente de ambos conjuntos de observables, requiriendo así un alejamiento del minimalismo. (Texto tomado de la fuente) | spa |
dc.description.abstract | This thesis proposes a theoretical framework based on a leptophilic $U(1)$ gauge boson and a fermionic self-interacting dark matter candidate that couples to it, offering a potential extension to the standard model. The model is capable of explaining recent anomalies in flavor physics, such as the muon $g-2$ and $R_{D^{(*)}}$ branching ratios of $B$ mesons, as well as small-scale structure problems of cold dark matter, such as the core-cusp problem. We investigate the available parameter space in which this model can account for these observables. To obtain a hint of the main parameters of the model, we fit the theoretical predictions of a self-interacting dark matter fermion, considering all $s, t$ and $u$ channels, with observed data from galaxies and clusters. We find that this later case is consistent with other models of the literature, but overall, ours can not account simultaneously for both sets of observables, requiring thereby a departure from minimalism. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.researcharea | Física de partículas, astrofísica de partículas | spa |
dc.format.extent | xiv, 78 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85064 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
dc.relation.references | B. Abi and et. al., “Measurement of the positive muon anomalous magnetic moment to 0.46 ppm,” Physical Review Letters, vol. 126, 4 2021 | spa |
dc.relation.references | Belle Collaboration, “Measurement of the τ lepton polarization and R (D) in the decay B → D∗τ−ντ,′′ Ph y si c al Revi ewLet t er s, vol . 118, 52017. | spa |
dc.relation.references | LHCb Collaboration, “Search for lepton-universality violation in B + → K +l +l − decays,” Physical Review Letters, vol. 122, 5 2019 | spa |
dc.relation.references | R. Cheaib, “Overview of R(D) and R(D*),” in 20th Conference on Flavor Physics and CP Violation , 7 2022 | spa |
dc.relation.references | LHCb collaboration, “Measurement of lepton universality parameters in B + → K +ℓ+ℓ− and B 0 → K 0ℓ+ℓ− decays,” 12 2022 | spa |
dc.relation.references | L. Collaboration, “Measurement of the ratios of branching fractions R(D∗) and R(D0),” 2 2023. | spa |
dc.relation.references | B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “Constraints on primordial black holes,” Reports on Progress in Physics, vol. 84, p. 116902, nov 2021 | spa |
dc.relation.references | J. S. Bullock and M. Boylan-Kolchin, “Small-scale challenges to the ΛCDM paradigm,” Annual Review of Astronomy and Astrophysics, vol. 55, pp. 343–387, 8 2017 | spa |
dc.relation.references | S. Tulin, H.-B. Yu, and K. M. Zurek, “Beyond collisionless dark matter: Particle physics dynamics for dark matter halo structure,” 2 2013 | spa |
dc.relation.references | I. de Martino, S. S. Chakrabarty, V. Cesare, A. Gallo, L. Ostorero, and A. Diaferio, “Dark matters on the scale of galaxies,” 7 2020 | spa |
dc.relation.references | P. Salucci, “The distribution of dark matter in galaxies,” Astronomy and Astrophysics Review, vol. 27, 12 2019 | spa |
dc.relation.references | B. Moore, “Evidence against dissipationless dark matter from observations of galaxy haloes,” Letter to Nature, vol. 370, pp. 629–631, 1994 | spa |
dc.relation.references | B. Moore, T. Quinn, F. Governato, J. Stadel, and G. Lake, “Cold collapse and the core catastrophe,” 1999 | spa |
dc.relation.references | M. S. Pawlowski, B. Famaey, D. Merritt, and P. Kroupa, “On the persistence of two small-scale problems in Λ CDM,” The Astrophysical Journal, vol. 815, p. 19, dec 2015 | spa |
dc.relation.references | J. S. Bullock, A. V. Kravtsov, and D. H. Weinberg, “Reionization and the abundance of galactic satellites,” The Astrophysical Journal, vol. 539, p. 517, aug 2000 | spa |
dc.relation.references | E. J. Tollerud, M. Boylan-Kolchin, and J. S. Bullock, “M31 satellite masses compared to ΛCDM subhaloes,” , vol. 440, pp. 3511–3519, June 2014 | spa |
dc.relation.references | S. Tulin, H.-B. Yu, and K. M. Zurek, “Resonant dark forces and small scale structure,” 10 2012 | spa |
dc.relation.references | E. Carlson, M. Machacek, and L. Hall, “Self-interacting dark matter,” The Astrophysical Journal, vol. 398, pp. 43–52, 1992 | spa |
dc.relation.references | D. N. Spergel and P. J. Steinhardt, “Observational evidence for self-interacting cold dark matter,” Phys.Rev.Lett., pp. 3760–3763, 2000 | spa |
dc.relation.references | O. D. Elbert, J. S. Bullock, S. Garrison-Kimmel, M. Rocha, J. Oñorbe, and A. H. Peter, “Core formation in dwarf haloes with self-interacting dark matter: No fine-tuning necessary,” Monthly Notices of the Royal Astronomical Society, vol. 453, pp. 29–37, 7 2015 | spa |
dc.relation.references | J. Zavala, M. Vogelsberger, and M. G. Walker, “Constraining self-interacting dark matter with the milky way’s dwarf spheroidals,” 2 2013 | spa |
dc.relation.references | S. Tulin and H. B. Yu, “Dark matter self-interactions and small scale structure,” Physics Reports, vol. 730, pp. 1–57, 11 2017 | spa |
dc.relation.references | P. Ko and Y. Tang, “Self-interacting scalar dark matter with local Z3 symmetry,” Journal of Cosmology and Astroparticle Physics, vol. 2014 | spa |
dc.relation.references | A. Kamada, K. Kaneta, K. Yanagi, and H. B. Yu, “Self-interacting dark matter and muon (g − 2) in a gauged U (1)Lμ−Lτ model,” Journal of High Energy Physics, vol. 2018, 6 2018 | spa |
dc.relation.references | K. Kainulainen, K. Tuominen, and V. Vaskonen, “Self-interacting dark matter and cosmology of a light scalar mediator,” Physical Review D, vol. 93, 1 2016 | spa |
dc.relation.references | M. Duch, B. Grzadkowski, and D. Huang, “Strongly self-interacting vector dark matter via freeze-in,” J. High Energ. Phys., vol. 2018, no. 20 | spa |
dc.relation.references | Z.-L. Han and W. Wang, “Z portal dark matter in B L scotogenic dirac model,” Eur. Phys. J. C, vol. 78, p. 839, 2018 | spa |
dc.relation.references | M. Duerr, K. Schmidt-Hoberg, and S. Wild, “Self-interacting dark matter with a stable vector mediator,” Journal of Cosmology and Astroparticle Physics, vol. 2018, 9 | spa |
dc.relation.references | J. Heeck and A. Thapa, “Explaining lepton-flavor non-universality and self-interacting dark matter with Lμ − Lτ ,” Eur. Phys. J. C, vol. 82, no. 6, p. 480, 2022 | spa |
dc.relation.references | K. K. Boddy, J. L. Feng, M. Kaplinghat, and T. M. Tait, “Self-interacting dark matter from a non-abelian hidden sector,” Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 89, 6 2014 | spa |
dc.relation.references | S. H. Oh, D. A. Hunter, E. Brinks, B. G. Elmegreen, A. Schruba, F. Walter, M. P. Rupen, L. M. Young, C. E. Simpson, M. C. Johnson, K. A. Herrmann, D. Ficut-Vicas, P. Cigan, V. Heesen, T. Ashley, and H. X. Zhang, “High-resolution mass models of dwarf galaxies from little things,” Astronomical Journal, vol. 149, 6 2015 | spa |
dc.relation.references | Y. Amhis, S. Banerjee, E. Ben-Haim, and et al., “Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018,” Eur. Phys. J. C, vol. 81, p. 226, 2021 | spa |
dc.relation.references | M. Blanke, A. Crivellin, S. D. Boer, M. Moscati, U. Nierste, Ivan NišandŽi ́c, and T. Kita- hara, “Impact of polarization observables and Bc → τν on new physics explanations of the b → cτν anomaly,” Physical Review D, vol. 99, 4 2019 | spa |
dc.relation.references | C. Cornella, D. A. Faroughy, J. Fuentes-Martín, G. Isidori, and M. Neubert, “Reading the footprints of the B-meson flavor anomalies,” Journal of High Energy Physics, vol. 2021, 8 2021 | spa |
dc.relation.references | D. Buttazzo, A. Greljo, G. Isidori, and D. Marzocca, “B-physics anomalies: a guide to combined explanations,” Journal of High Energy Physics, vol. 2017, 11 | spa |
dc.relation.references | J. Davighi, M. Kirk, and M. Nardecchia, “Anomalies and accidental symmetries: charging the scalar leptoquark under LμLτ,” J. High Energ. Phys., vol. 2020, no. 111, 2020 | spa |
dc.relation.references | I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, and N. Košnik, “Physics of leptoquarks in precision experiments and at particle colliders,” 3 2016 | spa |
dc.relation.references | B. Diaz, M. Schmaltz, and Y.-M. Zhong, “The leptoquark hunter’s guide: Pair produc- tion,” 6 2017 | spa |
dc.relation.references | R. Alonso, P. Cox, C. Han, and T. T. Yanagida, “Flavoured B − L local symmetry and anomalous rare B decays,” 5 2017 | spa |
dc.relation.references | B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias, and J. Virto, “Patterns of new physics in b → sl +l transitions in the light of recent data,” Journal of High Energy Physics, vol. 2018, 1 2018 | spa |
dc.relation.references | A. Datta, J. Kumar, and D. London, “The b anomalies and new physics in b → se+e ,” Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, vol. 797, 10 2019 | spa |
dc.relation.references | A. Biswas, S. Choubey, and S. Khan, “Galactic gamma ray excess and dark matter phenomenology in a U (1)B L model,” Journal of High Energy Physics, vol. 2016, 8 | spa |
dc.relation.references | S. Patra, S. Rao, N. Sahoo, and N. Sahu, “Gauged U (1)LμLτ model in light of muon g 2 anomaly, neutrino mass and dark matter phenomenology,” Nuclear Physics B, vol. 917, pp. 317–336, 4 2017 | spa |
dc.relation.references | D. W. Amaral, D. G. Cerdeño, P. Foldenauer, and E. Reid, “Solar neutrino probes of the muon anomalous magnetic moment in the gauged U (1)LμLτ ,” Journal of High Energy Physics, 12 2020 | spa |
dc.relation.references | B. C. Allanach, J. Davighi, and S. Melville, “An anomaly-free atlas: charting the space of flavour-dependent gauged U (1) extensions of the standard model,” Journal of High Energy Physics, 2 2019 | spa |
dc.relation.references | S. Bifani, S. Descotes-Genon, A. R. Vidal, and M.-H. Schune, “Review of lepton universality tests in B decays,” 9 2018 | spa |
dc.relation.references | X. Fan, T. G. Myers, B. A. D. Sukra, and G. Gabrielse, “Measurement of the electron magnetic moment,” Phys. Rev. Lett., vol. 130, p. 071801, Feb 2023 | spa |
dc.relation.references | T. Aoyama and et.al., “The anomalous magnetic moment of the muon in the standard model,” Physics Reports, vol. 887, pp. 1–166, 12 2020 | spa |
dc.relation.references | The Muon g − 2 Collaboration, “Measurement of the positive muon anomalous mag- netic moment to 0.20ppm,” 2023 | spa |
dc.relation.references | L. D. Luzio, A. Masiero, P. Paradisi, and M. Passera, “New physics behind the new muon g-2 puzzle?,” Physics Letters, Section B: Nuclear, Elementary Particle and High- Energy Physics, vol. 829, 6 2022 | spa |
dc.relation.references | P. Athron, C. Balázs, D. H. Jacob, W. Kotlarski, D. Stöckinger, and H. Stöckinger-Kim, “New physics explanations of a in light of the fnal muon g 2 measurement,” Journal of High Energy Physics, vol. 2021, 9 | spa |
dc.relation.references | A. Kamada and H. B. Yu, “Coherent propagation of pev neutrinos and the dip in the neutrino spectrum at icecube,” Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 92, 12 2015 | spa |
dc.relation.references | W. Altmannshofer, S. Gori, M. Pospelov, and I. Yavin, “Neutrino trident production: A powerful probe of new physics with neutrino beams,” Physical Review Letters, vol. 113, 8 2014 | spa |
dc.relation.references | M. Bauer, P. Foldenauer, and J. Jaeckel, “Hunting all the hidden photons,” J. High Energ. Phys., vol. 2018, no. 94, 2018 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 530 - Física | spa |
dc.subject.lemb | Fenomenología | spa |
dc.subject.lemb | Phenomenology | eng |
dc.subject.lemb | Astrofísica | spa |
dc.subject.lemb | Astrophysics | eng |
dc.subject.proposal | Flavor physics | eng |
dc.subject.proposal | Dark matter | eng |
dc.subject.proposal | Cosmology | eng |
dc.subject.proposal | Model building | eng |
dc.subject.proposal | Física del sabor | spa |
dc.subject.proposal | Materia oscua | spa |
dc.subject.proposal | Cosmología | spa |
dc.subject.proposal | Física más allá del Modelo Estándar | spa |
dc.subject.proposal | Physics beyond the Standard Model | eng |
dc.title | Model buiding in a U(1) extension to the Standard Model with flavor and astrophysics phenomenology | eng |
dc.title.translated | Modelamiento en una extensión U(1) al Modelo Estándar con fenomenología de física del sabor y astrofísica. | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032493007.2023.pdf
- Tamaño:
- 1.77 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: