Model buiding in a U(1) extension to the Standard Model with flavor and astrophysics phenomenology

dc.contributor.advisorCastillo Ramírez, Andrés Fernando
dc.contributor.advisorMilanés Carreño, Diego Alejandro
dc.contributor.authorGómez Cruz, Nicolás
dc.contributor.researchgroupGrupo Fenixspa
dc.date.accessioned2023-12-11T15:34:53Z
dc.date.available2023-12-11T15:34:53Z
dc.date.issued2023
dc.descriptionilustracionesspa
dc.description.abstractEsta tesis propone un marco teórico basado en un bosón gauge U(1$ leptofílico y un candidato fermiónico de materia oscura autointeractuante que se acopla a él, ofreciendo una extensión potencial al Modelo Estándar. El modelo es capaz de explicar anomalías recientes en la física del sabor, como la $g-2$ del muón y los branching ratios R ( D(*) ) de los mesones B, así como problemas de estructura a pequeña escala de la materia oscura fría, como el problema del core-cusp. Investigamos el espacio de parámetros disponible en el que este modelo puede dar cuenta de estos observables. Para obtener una pista de los principales parámetros del modelo, ajustamos las predicciones teóricas de un fermión de materia oscura autointeractuante, considerando todos los canales s, t y u, con los datos observados de galaxias y cúmulos. Encontramos que este último caso es consistente con otros modelos de la literatura, pero en general, el nuestro no puede dar cuenta simultáneamente de ambos conjuntos de observables, requiriendo así un alejamiento del minimalismo. (Texto tomado de la fuente)spa
dc.description.abstractThis thesis proposes a theoretical framework based on a leptophilic $U(1)$ gauge boson and a fermionic self-interacting dark matter candidate that couples to it, offering a potential extension to the standard model. The model is capable of explaining recent anomalies in flavor physics, such as the muon $g-2$ and $R_{D^{(*)}}$ branching ratios of $B$ mesons, as well as small-scale structure problems of cold dark matter, such as the core-cusp problem. We investigate the available parameter space in which this model can account for these observables. To obtain a hint of the main parameters of the model, we fit the theoretical predictions of a self-interacting dark matter fermion, considering all $s, t$ and $u$ channels, with observed data from galaxies and clusters. We find that this later case is consistent with other models of the literature, but overall, ours can not account simultaneously for both sets of observables, requiring thereby a departure from minimalism.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaFísica de partículas, astrofísica de partículasspa
dc.format.extentxiv, 78 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85064
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesB. Abi and et. al., “Measurement of the positive muon anomalous magnetic moment to 0.46 ppm,” Physical Review Letters, vol. 126, 4 2021spa
dc.relation.referencesBelle Collaboration, “Measurement of the τ lepton polarization and R (D) in the decay B → D∗τ−ντ,′′ Ph y si c al Revi ewLet t er s, vol . 118, 52017.spa
dc.relation.referencesLHCb Collaboration, “Search for lepton-universality violation in B + → K +l +l − decays,” Physical Review Letters, vol. 122, 5 2019spa
dc.relation.referencesR. Cheaib, “Overview of R(D) and R(D*),” in 20th Conference on Flavor Physics and CP Violation , 7 2022spa
dc.relation.referencesLHCb collaboration, “Measurement of lepton universality parameters in B + → K +ℓ+ℓ− and B 0 → K 0ℓ+ℓ− decays,” 12 2022spa
dc.relation.referencesL. Collaboration, “Measurement of the ratios of branching fractions R(D∗) and R(D0),” 2 2023.spa
dc.relation.referencesB. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “Constraints on primordial black holes,” Reports on Progress in Physics, vol. 84, p. 116902, nov 2021spa
dc.relation.referencesJ. S. Bullock and M. Boylan-Kolchin, “Small-scale challenges to the ΛCDM paradigm,” Annual Review of Astronomy and Astrophysics, vol. 55, pp. 343–387, 8 2017spa
dc.relation.referencesS. Tulin, H.-B. Yu, and K. M. Zurek, “Beyond collisionless dark matter: Particle physics dynamics for dark matter halo structure,” 2 2013spa
dc.relation.referencesI. de Martino, S. S. Chakrabarty, V. Cesare, A. Gallo, L. Ostorero, and A. Diaferio, “Dark matters on the scale of galaxies,” 7 2020spa
dc.relation.referencesP. Salucci, “The distribution of dark matter in galaxies,” Astronomy and Astrophysics Review, vol. 27, 12 2019spa
dc.relation.referencesB. Moore, “Evidence against dissipationless dark matter from observations of galaxy haloes,” Letter to Nature, vol. 370, pp. 629–631, 1994spa
dc.relation.referencesB. Moore, T. Quinn, F. Governato, J. Stadel, and G. Lake, “Cold collapse and the core catastrophe,” 1999spa
dc.relation.referencesM. S. Pawlowski, B. Famaey, D. Merritt, and P. Kroupa, “On the persistence of two small-scale problems in Λ CDM,” The Astrophysical Journal, vol. 815, p. 19, dec 2015spa
dc.relation.referencesJ. S. Bullock, A. V. Kravtsov, and D. H. Weinberg, “Reionization and the abundance of galactic satellites,” The Astrophysical Journal, vol. 539, p. 517, aug 2000spa
dc.relation.referencesE. J. Tollerud, M. Boylan-Kolchin, and J. S. Bullock, “M31 satellite masses compared to ΛCDM subhaloes,” , vol. 440, pp. 3511–3519, June 2014spa
dc.relation.referencesS. Tulin, H.-B. Yu, and K. M. Zurek, “Resonant dark forces and small scale structure,” 10 2012spa
dc.relation.referencesE. Carlson, M. Machacek, and L. Hall, “Self-interacting dark matter,” The Astrophysical Journal, vol. 398, pp. 43–52, 1992spa
dc.relation.referencesD. N. Spergel and P. J. Steinhardt, “Observational evidence for self-interacting cold dark matter,” Phys.Rev.Lett., pp. 3760–3763, 2000spa
dc.relation.referencesO. D. Elbert, J. S. Bullock, S. Garrison-Kimmel, M. Rocha, J. Oñorbe, and A. H. Peter, “Core formation in dwarf haloes with self-interacting dark matter: No fine-tuning necessary,” Monthly Notices of the Royal Astronomical Society, vol. 453, pp. 29–37, 7 2015spa
dc.relation.referencesJ. Zavala, M. Vogelsberger, and M. G. Walker, “Constraining self-interacting dark matter with the milky way’s dwarf spheroidals,” 2 2013spa
dc.relation.referencesS. Tulin and H. B. Yu, “Dark matter self-interactions and small scale structure,” Physics Reports, vol. 730, pp. 1–57, 11 2017spa
dc.relation.referencesP. Ko and Y. Tang, “Self-interacting scalar dark matter with local Z3 symmetry,” Journal of Cosmology and Astroparticle Physics, vol. 2014spa
dc.relation.referencesA. Kamada, K. Kaneta, K. Yanagi, and H. B. Yu, “Self-interacting dark matter and muon (g − 2) in a gauged U (1)Lμ−Lτ model,” Journal of High Energy Physics, vol. 2018, 6 2018spa
dc.relation.referencesK. Kainulainen, K. Tuominen, and V. Vaskonen, “Self-interacting dark matter and cosmology of a light scalar mediator,” Physical Review D, vol. 93, 1 2016spa
dc.relation.referencesM. Duch, B. Grzadkowski, and D. Huang, “Strongly self-interacting vector dark matter via freeze-in,” J. High Energ. Phys., vol. 2018, no. 20spa
dc.relation.referencesZ.-L. Han and W. Wang, “Z portal dark matter in B L scotogenic dirac model,” Eur. Phys. J. C, vol. 78, p. 839, 2018spa
dc.relation.referencesM. Duerr, K. Schmidt-Hoberg, and S. Wild, “Self-interacting dark matter with a stable vector mediator,” Journal of Cosmology and Astroparticle Physics, vol. 2018, 9spa
dc.relation.referencesJ. Heeck and A. Thapa, “Explaining lepton-flavor non-universality and self-interacting dark matter with Lμ − Lτ ,” Eur. Phys. J. C, vol. 82, no. 6, p. 480, 2022spa
dc.relation.referencesK. K. Boddy, J. L. Feng, M. Kaplinghat, and T. M. Tait, “Self-interacting dark matter from a non-abelian hidden sector,” Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 89, 6 2014spa
dc.relation.referencesS. H. Oh, D. A. Hunter, E. Brinks, B. G. Elmegreen, A. Schruba, F. Walter, M. P. Rupen, L. M. Young, C. E. Simpson, M. C. Johnson, K. A. Herrmann, D. Ficut-Vicas, P. Cigan, V. Heesen, T. Ashley, and H. X. Zhang, “High-resolution mass models of dwarf galaxies from little things,” Astronomical Journal, vol. 149, 6 2015spa
dc.relation.referencesY. Amhis, S. Banerjee, E. Ben-Haim, and et al., “Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018,” Eur. Phys. J. C, vol. 81, p. 226, 2021spa
dc.relation.referencesM. Blanke, A. Crivellin, S. D. Boer, M. Moscati, U. Nierste, Ivan NišandŽi ́c, and T. Kita- hara, “Impact of polarization observables and Bc → τν on new physics explanations of the b → cτν anomaly,” Physical Review D, vol. 99, 4 2019spa
dc.relation.referencesC. Cornella, D. A. Faroughy, J. Fuentes-Martín, G. Isidori, and M. Neubert, “Reading the footprints of the B-meson flavor anomalies,” Journal of High Energy Physics, vol. 2021, 8 2021spa
dc.relation.referencesD. Buttazzo, A. Greljo, G. Isidori, and D. Marzocca, “B-physics anomalies: a guide to combined explanations,” Journal of High Energy Physics, vol. 2017, 11spa
dc.relation.referencesJ. Davighi, M. Kirk, and M. Nardecchia, “Anomalies and accidental symmetries: charging the scalar leptoquark under LμLτ,” J. High Energ. Phys., vol. 2020, no. 111, 2020spa
dc.relation.referencesI. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, and N. Košnik, “Physics of leptoquarks in precision experiments and at particle colliders,” 3 2016spa
dc.relation.referencesB. Diaz, M. Schmaltz, and Y.-M. Zhong, “The leptoquark hunter’s guide: Pair produc- tion,” 6 2017spa
dc.relation.referencesR. Alonso, P. Cox, C. Han, and T. T. Yanagida, “Flavoured B − L local symmetry and anomalous rare B decays,” 5 2017spa
dc.relation.referencesB. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias, and J. Virto, “Patterns of new physics in b → sl +l transitions in the light of recent data,” Journal of High Energy Physics, vol. 2018, 1 2018spa
dc.relation.referencesA. Datta, J. Kumar, and D. London, “The b anomalies and new physics in b → se+e ,” Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, vol. 797, 10 2019spa
dc.relation.referencesA. Biswas, S. Choubey, and S. Khan, “Galactic gamma ray excess and dark matter phenomenology in a U (1)B L model,” Journal of High Energy Physics, vol. 2016, 8spa
dc.relation.referencesS. Patra, S. Rao, N. Sahoo, and N. Sahu, “Gauged U (1)LμLτ model in light of muon g 2 anomaly, neutrino mass and dark matter phenomenology,” Nuclear Physics B, vol. 917, pp. 317–336, 4 2017spa
dc.relation.referencesD. W. Amaral, D. G. Cerdeño, P. Foldenauer, and E. Reid, “Solar neutrino probes of the muon anomalous magnetic moment in the gauged U (1)LμLτ ,” Journal of High Energy Physics, 12 2020spa
dc.relation.referencesB. C. Allanach, J. Davighi, and S. Melville, “An anomaly-free atlas: charting the space of flavour-dependent gauged U (1) extensions of the standard model,” Journal of High Energy Physics, 2 2019spa
dc.relation.referencesS. Bifani, S. Descotes-Genon, A. R. Vidal, and M.-H. Schune, “Review of lepton universality tests in B decays,” 9 2018spa
dc.relation.referencesX. Fan, T. G. Myers, B. A. D. Sukra, and G. Gabrielse, “Measurement of the electron magnetic moment,” Phys. Rev. Lett., vol. 130, p. 071801, Feb 2023spa
dc.relation.referencesT. Aoyama and et.al., “The anomalous magnetic moment of the muon in the standard model,” Physics Reports, vol. 887, pp. 1–166, 12 2020spa
dc.relation.referencesThe Muon g − 2 Collaboration, “Measurement of the positive muon anomalous mag- netic moment to 0.20ppm,” 2023spa
dc.relation.referencesL. D. Luzio, A. Masiero, P. Paradisi, and M. Passera, “New physics behind the new muon g-2 puzzle?,” Physics Letters, Section B: Nuclear, Elementary Particle and High- Energy Physics, vol. 829, 6 2022spa
dc.relation.referencesP. Athron, C. Balázs, D. H. Jacob, W. Kotlarski, D. Stöckinger, and H. Stöckinger-Kim, “New physics explanations of a in light of the fnal muon g 2 measurement,” Journal of High Energy Physics, vol. 2021, 9spa
dc.relation.referencesA. Kamada and H. B. Yu, “Coherent propagation of pev neutrinos and the dip in the neutrino spectrum at icecube,” Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 92, 12 2015spa
dc.relation.referencesW. Altmannshofer, S. Gori, M. Pospelov, and I. Yavin, “Neutrino trident production: A powerful probe of new physics with neutrino beams,” Physical Review Letters, vol. 113, 8 2014spa
dc.relation.referencesM. Bauer, P. Foldenauer, and J. Jaeckel, “Hunting all the hidden photons,” J. High Energ. Phys., vol. 2018, no. 94, 2018spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembFenomenologíaspa
dc.subject.lembPhenomenologyeng
dc.subject.lembAstrofísicaspa
dc.subject.lembAstrophysicseng
dc.subject.proposalFlavor physicseng
dc.subject.proposalDark mattereng
dc.subject.proposalCosmologyeng
dc.subject.proposalModel buildingeng
dc.subject.proposalFísica del saborspa
dc.subject.proposalMateria oscuaspa
dc.subject.proposalCosmologíaspa
dc.subject.proposalFísica más allá del Modelo Estándarspa
dc.subject.proposalPhysics beyond the Standard Modeleng
dc.titleModel buiding in a U(1) extension to the Standard Model with flavor and astrophysics phenomenologyeng
dc.title.translatedModelamiento en una extensión U(1) al Modelo Estándar con fenomenología de física del sabor y astrofísica.spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032493007.2023.pdf
Tamaño:
1.77 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: