Modelación geoquímica de los fluidos del sistema periférico del Volcán Stromboli y su relación con la actividad volcánica reciente

dc.contributor.advisorInguaggiato, Salvatorespa
dc.contributor.advisorCadena Sánchez, Ariel Oswaldospa
dc.contributor.authorCopete Murillo, Iliana Karenspa
dc.date.accessioned2022-02-11T18:57:05Z
dc.date.available2022-02-11T18:57:05Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEl área periférica de la isla de Stromboli cuenta con distintos ambientes naturales idóneos para la evaluación y monitoreo del sistema volcánico activo; en este caso el agua del acuífero termal se caracteriza por presentar temperaturas hasta de 50°C y altas concentraciones de CO2 disuelto como resultado de desgasificación del magma. Estos aspectos permitieron modelar el sistema hidrotermal, evaluar la composición química y la temperatura del sistema geotérmico que alimenta los fluidos superficiales a partir de pozos termales localizados sobre el acuifero. El sistema hidrotermal en general es una mezcla de agua de mar y agua geotérmica en diferentes porcentajes. El estudio de la composición química e isotópica de las aguas de los pozos ha permitido estimar los diferentes porcentajes de mezcla, la temperatura del sistema geotérmico en profundidad y evaluar la interaccion del agua del acuífero con las rocas del reservorio. La temperatura del sistema geotérmico es alrededor de 180°C ±10°C y la composición química de los iones mayores es gobernada por agua de mar modificada con porcentajes de Cl- de 150 meq/l aproximadamente y con altos contenidos de K+ y de HCO3- entre (8 y 13 meq/l respectivamente), debido a procesos de interacción agua/roca y disolución de CO2 en el agua termal. (Texto tomado de la fuente).spa
dc.description.abstractGeochemical modeling of the fluids of the peripheral system of the Stromboli Volcano and its relationship with recent volcanic activity The peripheral area of the island of Stromboli has different natural environments suitable for the evaluation and monitoring of the active volcanic system, in this case the thermal aquifer is characterized by presenting wells that capture water with temperatures up to 50°C and high concentrations of CO2 dissolved as a result of magma degassing. These aspects allowed modeling the hydrothermal system and evaluating the chemical composition and temperature of the geothermal system that feeds the surface fluids. The hydrothermal system in general is a mixture of seawater and geothermal water in different percentages. The study of the chemical and isotopic composition of the water from the wells has made it possible to estimate the different percentages and the temperature of the deep geothermal system, characterizing and evaluating the seawater modified by interaction with the rocks of the reservoir. The temperature of the deep geothermal system is around 180°C ±10°C and the chemical composition of the major ions is governed by modified seawater with Cl- percentages of approximately 150 meq/l and with high K+ and HCO3- contents, (between 8 and 13 meq/l respectively), due to water/rock interaction processes and dissolution of CO2 in the thermal water.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Geologíaspa
dc.description.sponsorshipEl Istituto Nazionale di Geofisica e Vulcanologia (INGV) ,es una de las mayores instituciones europeas de investigación en el campo de las ciencias de la Tierra. Es responsable del estudio de los fenómenos geofísicos y vulcanológicos y de la gestión de las respectivas redes nacionales de monitoreo de fenómenos sísmicos y volcánicos .spa
dc.format.extentxv, 124 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80951
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geologíaspa
dc.relation.referencesAiuppa, A., Moretti, R., Federico, C., Giudice, G., Gurrieri, S., Liuzzo, M., ... & Valenza, M. (2007). Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology, 35(12), 1115-1118.spa
dc.relation.referencesAiuppa, A., Federico, C., Giudice, G., Giuffrida, G., Guida, R., Gurrieri, S., ... & Papale, P. (2009). The 2007 eruption of Stromboli volcano: insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio. Journal of Volcanology and Geothermal Research, 182(3-4), 221-230.spa
dc.relation.referencesAiuppa, A., Bertagnini, A., Métrich, N., Moretti, R., Di Muro, A., Liuzzo, M., & Tamburello, G. (2010). A model of degassing for Stromboli volcano. Earth and Planetary Science Letters, 295(1-2), 195-204.spa
dc.relation.referencesAndré, L., Franceschi, M., Pouchan, P., & Atteia, O. (2005). Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. Journal of Hydrology, 305(1-4), 40-62.spa
dc.relation.referencesAppelo, C. A. J., & Postma, D. (2004). Geochemistry, groundwater and pollution. CRC pressspa
dc.relation.referencesAskri, B. (2015). Hydrochemical processes regulating groundwater quality in the coastal plain of Al Musanaah, Sultanate of Oman. Journal of African Earth Sciences, 106, 87-98.spa
dc.relation.referencesBatista, R. (2019). Interacción fluido-roca, isotopía y modelación geoquímica de zonas geotérmicas del margen este de la Península de Baja California y el norte del Golfo de California.Tesis doctoralspa
dc.relation.referencesBigeleisen, J. (1965). Chemistry of Isotopes: Isotope chemistry has opened new areas of chemical physics, geochemistry, and molecular biology. Science, 147(3657), 463-471.spa
dc.relation.referencesBigeleisen, J., & Wolfsberg, M. (1958). Theoretical and experimental aspects of isotope effects in chemical kinetics: Advances in Chemical Physio, v. 1.spa
dc.relation.referencesBellia, C., Gallardo, A. H., Yasuhara, M., & Kazahaya, K. (2015). Geochemical characterization of groundwater in a volcanic system. Resources, 4(2), 358-377.spa
dc.relation.referencesBurton, M., Allard, P., Mure, F., La Spina, A., 2007. Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science317, 227–230.spa
dc.relation.referencesBurton,M.R., Caltabiano, T., Murè, F., Salerno, G., Randazzo, D., 2009. SO2 flux fromStromboli during the 2007 eruption: results from the FLAME network and traverse measurements. J. Volcanol. Geotherm. Res. 182, 214–220.spa
dc.relation.referencesBricker, O. P., Jones, B. F., & Bowser, C. J. (2003). Mass-balance approach to interpreting weathering reactions in watershed systems. Treatise on geochemistry, 5, 605.spa
dc.relation.referencesBowser, C. J., & Jones, B. F. (2002). Mineralogic controls on the composition of natural waters dominated by silicate hydrolysis. American Journal of Science, 302(7), 582-662.spa
dc.relation.referencesCapasso, G., & Inguaggiato, S. (1998). A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Applied Geochemistry, 13(5), 631-642.spa
dc.relation.referencesCapasso, G., Carapezza, M. L., Federico, C., Inguaggiato, S., & Rizzo, A. (2005). Geochemical monitoring of the 2002–2003 eruption at Stromboli volcano (Italy): precursory changes in the carbon and helium isotopic composition of fumarole gases and thermal waters. Bulletin of volcanology, 68(2), 118-134.spa
dc.relation.referencesCarapezza, M. L., and S. Inguaggiato (2001). Interaction between thermal waters and CO2-rich fluids at Stromboli, in Proceedingsmof the Tenth International Symposium on Water-Rock Interaction, vol. 2, edited by R. Cidu, pp. 791–794, A. A. Balkema, The Netherlands.spa
dc.relation.referencesCarapezza, M. L., Inguaggiato, S., Brusca, L., & Longo, M. (2004). Geochemical precursors of the activity of an open‐conduit volcano: The Stromboli 2002–2003 eruptive events. Geophysical Research Letters, 31(7).spa
dc.relation.referencesChiodini, G., & Cioni, R. (1989). Gas geobarometry for hydrothermal systems and its application to some Italian geothermal areas. Applied geochemistry, 4(5), 465-472.spa
dc.relation.referencesCustodio, E., & Llamas, M. R. (1976). 1983. Hidrología subterránea. Ediciones Omega. Barcelona, 3 Vols, 1-2350.spa
dc.relation.referencesClark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. CRC press.spa
dc.relation.referencesCraig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702-1703.spa
dc.relation.referencesDansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436-468.spa
dc.relation.referencesDelmelle, P., Kusakabe, M., Bernard, A., Fischer, T., De Brouwer, S., & Del Mundo, E. (1998). Geochemical and isotopic evidence for seawater contamination of the hydrothermal system of Taal Volcano, Luzon, the Philippines. Bulletin of volcanology, 59(8), 562-576.spa
dc.relation.referencesDrever, J. I. (1997). The geochemistry of natural waters: surface and groundwater environmentsspa
dc.relation.referencesDrever, J. I. (1988). The geochemistry of natural waters (Vol. 437). Englewood Cliffs: prentice Hall.spa
dc.relation.referencesEllis, A. J. (1957). Chemical equilibrium in magmatic gases. American Journal of Science, 255(6), 416-431.spa
dc.relation.referencesEllis, AI., 1962. Interpretation of gas analysis from the Wairakei hydrothermal area. N.Z. 1. Sci., 5, 434-452.spa
dc.relation.referencesEllis, A. J., & Mahon, W. A. J. (1964). Natural hydrothermal systems and experimental hot-water/rock interactions. Geochimica et Cosmochimica Acta, 28(8), 1323-1357.spa
dc.relation.referencesEllis, A. J., & Mahon, W. A. J. (1967). Natural hydrothermal systems and experimental hot water/rock interactions (Part II). Geochimica et Cosmochimica Acta, 31(4), 519-538.spa
dc.relation.referencesEllis, A. J. (1970). Quantitative interpretation of chemical characteristics of hydrothermal systems. Geothermics, 2, 516-528.spa
dc.relation.referencesFagundo, J.R. (1990). "Evolución química y relacionesempíricas en aguas naturales. 1- Estudio mediante si-mulación química del efecto de la litología". VoluntadHidráulica, Vol. 82, pp. 28-37. La Habanaspa
dc.relation.referencesFavalli, M., Karátson, D., Mazzuoli, R., Pareschi, M. T., & Ventura, G. (2005). Volcanic geomorphology and tectonics of the Aeolian archipelago (Southern Italy) based on integrated DEM data. Bulletin of Volcanology, 68(2), 157-170.spa
dc.relation.referencesFinizola, A., Sortino, F., Lénat, J. F., & Valenza, M. (2002). Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO2 surveys. Journal of Volcanology and Geothermal Research, 116(1-2), 1-18.spa
dc.relation.referencesFinizola, A., Aubert, M., Revil, A., Schütze, C., & Sortino, F. (2009). Importance of structural history in the summit area of Stromboli during the 2002–2003 eruptive crisis inferred from temperature, soil CO2, self-potential, and electrical resistivity tomography. Journal of volcanology and Geothermal Research, 183(3-4), 213-227.spa
dc.relation.referencesFischer, T. P., & Chiodini, G. (2015). Volcanic, magmatic and hydrothermal gases. In The encyclopedia of volcanoes (pp. 779-797). Academic Press.spa
dc.relation.referencesFournier, R. O., & Rowe, J. J. (1966). Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. American Journal of Science, 264(9), 685-697.spa
dc.relation.referencesFournier, R. O., & Truesdell, A. H. (1970). Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, USA. Geothermics, 2, 529-535.spa
dc.relation.referencesFournier, R. O., & Truesdell, A. H. (1973). An empirical Na+ K+ Ca geothermometer for natural waters. Geochimica et Cosmochimica acta, 37(5), 1255-1275.spa
dc.relation.referencesFournier, R. O., White, D. E., & Truesdell, A. H. (1974). Geochemical indicators of subsurface temperature part 1, basic assumptions. Jour. Research US Geol. Survey, 2, 259-262spa
dc.relation.referencesFournier, R. O. (1979). A revised equation for the Na/K geothermometer. Transactions of the Geothermal Resources Council, 3, 221-224.spa
dc.relation.referencesFournier, R. O., & Potter Ii, R. W. (1979). Magnesium correction to the Na- K- Ca chemical geothermometer. Geochimica et Cosmochimica Acta, 43(9), 1543-1550.spa
dc.relation.referencesFournier, R. O., & Truesdell, A. H. (1970). Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, USA. Geothermics, 2, 529-535.spa
dc.relation.referencesFournier, R. O. (1989). Lectures on geochemical interpretation of hydrothermal waters (No. 10). UNU Geothermal Training Programmespa
dc.relation.referencesFrancalanci, L., Lucchi, F., Keller, J., De Astis, G., & Tranne, C. A. (2013). Eruptive, volcano-tectonic and magmatic history of the Stromboli volcano (north-eastern Aeolian archipelago). Geological Society, London, Memoirs, 37(1), 397-471.spa
dc.relation.referencesGasparini, C., Iannaccone, G., Scandone, P., & Scarpa, R. (1982). Seismotectonics of the Calabrian arc. Tectonophysics, 84(2-4), 267-286.spa
dc.relation.referencesGiggenbach, W. F. (1980). Geothermal gas equilibria. Geochimica et Cosmochimica Acta, 44(12), 2021-2032.spa
dc.relation.referencesGiggenbach, W. F. (1986, November). Graphical techniques for the evaluation of water/rock equilibration conditions by use of Na+, K+, Mg2+ and Ca2+ contents of discharge waters. In Proc. 8th New Zealand Geothermal Workshop (pp. 37-44).spa
dc.relation.referencesGiggenbach, W. F. (1987). Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Applied Geochemistry, 2(2), 143-161.spa
dc.relation.referencesGiggenbach, W. F. (1991). Chemical Techniques in Geothermal Explorations. En F. D ́amore, Aplications of Geochemistry in Geothermals Reservoir Development. Roma: United Nations Institute for Training and Research., 119- 144.spa
dc.relation.referencesGimeno, M. J., & Peña, J. (1994). Principios básicos de la modelización geoquímica directa e inversa. Estudios Geológicos, 50(5-6), 359-367spa
dc.relation.referencesGrassa, F., Inguaggiato, S., & Liotta, M. (2008). Fluids Geochemistry of Stromboli. In Learning from Stromboli and its 2002-03 eruptive crisis. AGU.spa
dc.relation.referencesGupta, H. K., & Roy, S. (2006). Geothermal energy: an alternative resource for the 21st century. Elsevierspa
dc.relation.referencesHenley, R. W., & Ellis, A. J. (1983). Geothermal systems ancient and modern: a geochemical review. Earth-science reviews, 19(1), 1-50.spa
dc.relation.referencesHenley, R. W., Truesdell, A. H., Barton, P. B., & Whitney, J. A. (1984). Fluid-mineral equilibria in hydrothermal systems (Vol. 1). Yale: Society of Economic Geologists.spa
dc.relation.referencesHidalgo, M. C., & Cruz-Sanjulián, J. (2001). Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain). Applied Geochemistry, 16(7-8), 745-758.spa
dc.relation.referencesInstituto de hidrogeología, Meteorología y Estudios Ambientales http://www.ideam.gov.co/web/tiempo-y-clima/atmoferaspa
dc.relation.referencesHornig-Kjarsgaard, I., Keller, J., Koberski, U., Stadlbauer, E., Francalanci, L. & Lenhart, R. 1993. Geology, stratigraphy and volcanological evolution of the island of Stromboli, Aeolian arc, Italy. Acta Vulcanologica, 3, 21–68.spa
dc.relation.referencesHorita, J. 2005. Saline waters. En: Aggarwal, P.K., Gat, J.R., Froehlich, K.F. (Eds.), Isotopes in the water cycle: past, present and future of a developing science. Springer, New York, 271–287.spa
dc.relation.referencesCapasso, G., & Inguaggiato, S. (1998). A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Applied Geochemistry, 13(5), 631-642.spa
dc.relation.referencesInguaggiato, S., & Rizzo, A. (2004). Dissolved helium isotope ratios in ground-waters: a new technique based on gas–water re-equilibration and its application to Stromboli volcanic system. Applied Geochemistry, 19(5), 665-673.spa
dc.relation.referencesInguaggiato, S., Mazot, A., & Ohba, T. (2011). Monitoring active volcanoes: The geochemical approach. Annals of Geophysics, 54 (2).spa
dc.relation.referencesInguaggiato, S., Calderone, L., Inguaggiato, C., Mazot, A., Morici, S., & Vita, F. (2012a). Long-time variation of soil CO 2 fluxes at the summit crater of Vulcano (Italy). Bulletin of volcanology, 74(8), 1859-1863.spa
dc.relation.referencesInguaggiato, C., Vita, F., Diliberto, I. S., & Calderone, L. (2016). The role of the aquifer in soil CO2 degassing in volcanic peripheral areas: A case study of Stromboli Island (Italy). Chemical Geology, 469, 110-116.spa
dc.relation.referencesInguaggiato, S., Mazzini, A., Vita, F., & Sciarra, A. (2018). The Arjuno-Welirang Volcanic Complex and the connected Lusi system: geochemical evidence. Marine and Petroleum Geology, 90, 67-76.spa
dc.relation.referencesInguaggiato, S., Vita, F., Cangemi, M., & Calderone, L. (2019). Increasing Summit Degassing at the Stromboli Volcano and Relationships with Volcanic Activity (2016–2018). Geosciences, 9(4), 176.spa
dc.relation.referencesJasim, A., Hemmings, B., Mayer, K., & Scheu, B. (2018). Groundwater flow and volcanic unrest. In Volcanic Unrest (pp. 83-99). Springer, Cham.spa
dc.relation.referencesKanroji, Y., Sato, K., & Tanaka, A. (1978). Chemical nature of thermal water and underground temperature of Atakawa Spa and neighboring area. J. Jpn. Geotherm. Energy Assoc.;(Japan), 15(4).spa
dc.relation.referencesKaringithi, C. W. (2009). Chemical geothermometers for geothermal exploration. Short Course IV on Exploration for Geothermal Resources, 1-22.spa
dc.relation.referencesKennedy, B. M., & van Soest, M. C. (2006). A helium isotope perspective on the Dixie Valley, Nevada, hydrothermal system. Geothermics, 35(1), 26-43.spa
dc.relation.referencesKlassen, J., Aleen, D. M., & Kirtse, D. (2014). Chemical indicators of saltwater intrusion for the Gulf Islands, British Columbia. Final Report, Department of Earth Sciences, Simon Rfaser University.spa
dc.relation.referencesKissling, W. M., & Weir, G. J. (2005). The spatial distribution of the geothermal fields in the Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 145(1-2), 136-150.spa
dc.relation.referencesKlein, F. W., Einarsson, P., & Wyss, M. (1977). The Reykjanes Peninsula, Iceland, earthquake swarm of September 1972 and its tectonic significance. Journal of Geophysical Research, 82(5), 865-888.spa
dc.relation.referencesLiotta, M., Brusca, L., Grassa, F., Inguaggiato, S., Longo, M., & Madonia, P. (2006). Geochemistry of rainfall at Stromboli volcano (Aeolian Islands): Isotopic composition and plume‐rain interaction. Geochemistry, Geophysics, Geosystems, 7(7).spa
dc.relation.referencesLucchi, F. (2013). Stratigraphic methodology for the geological mapping of volcanic areas: insights from the Aeolian archipelago (southern Italy). Geological Society, London, Memoirs, 37(1), 37-53.spa
dc.relation.referencesMahon, W.A.J., 1966, Silica in hot water discharged from drillholes at Wairakei, New Zealand: New Zealand Jour. Sci., v. 9, p. 135-144.spa
dc.relation.referencesMahon, W. A. J., GD, M., & JB, F. (1980). Carbon dioxide: its role in geothermal systems.spa
dc.relation.referencesMarreo, R., (2010). Modelo hidrogeoquímico del acuífero de las cañadas del teide, tenerife, islas canarias, tesis doctoral.spa
dc.relation.referencesMartelli, M., Rizzo, A. L., Renzulli, A., Ridolfi, F., Arienzo, I., & Rosciglione, A. (2014). Noble-gas signature of magmas from a heterogeneous mantle wedge: The case of Stromboli volcano (Aeolian Islands, Italy). Chemical Geology, 368, 39-53.spa
dc.relation.referencesMIE. (1985). Análisis metodológico de las técnicas geoquímicas empleadas en prospección geotérmica. ministerio de industria y energía, 417.spa
dc.relation.referencesMercalli, G. (1907). Vulcani attivi della terra: morfologia--dinamismo--prodotti--distribuzione geografica--cause... U. Hoepli.spa
dc.relation.referencesMoeck, I. S. (2014). Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews, 37, 867-882.spa
dc.relation.referencesMorán Ramírez, J., & Ramos Leal, J. A. (2014). The VISHMOD methodology with hydrochemical modeling in intermountain (karstic) aquifers: case of the Sierra Madre Oriental, Mexico.spa
dc.relation.referencesMorán Ramírez, J. (2016). Modelación hidrogeoquímica en tres ambientes naturales en México: cárstico, volcánico y cuenca sedimentaria.spa
dc.relation.referencesMurray, K., & Wade, P. (1996). Checking anion-cation charge balance of water quality analyses: Limitations of the traditional method for non-potable waters.spa
dc.relation.referencesNajib, S., Fadili, A., Mehdi, K., Riss, J., Makan, A., & Guessir, H. (2016). Salinization process and coastal groundwater quality in Chaouia, Morocco. Journal of African Earth Sciences, 115, 17-31.spa
dc.relation.referencesNicholson, K. (1993). Geothermal Fluids Chemistry and Exploration Techniquesspa
dc.relation.referencesNicholson, K. (2012). Geothermal fluids: chemistry and exploration techniques. Springer Science & Business Mediaspa
dc.relation.referencesordstrom, D. K., & Munoz, J. L. (1986). Geochemical Thermodynamics, 477 pp.spa
dc.relation.referencesNorton, D. L. (1984). Theory of hydrothermal systems. Annual Review of Earth and Planetary Sciences, 12, 155.spa
dc.relation.referencesOzima, M., & Podosek, F. A. (1983). Rare Gas Geochemistry, Cambridge.spa
dc.relation.referencesPalandri, J. L., & Reed, M. H. (2001). Reconstruction of in situ composition of sedimentary formation waters. Geochimica et Cosmochimica Acta, 65(11), 1741-1767.spa
dc.relation.referencesParkhurst, D. L. Appelo. CAJ (1999). User’s Guide to Phreeqc (version 2)–A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. US Department of the Interior. US Geological Survey, Denver.spa
dc.relation.referencesPasquarè, G., Francalanci, L., Garduno, V. H., & Tibaldi, A. (1993). Structure and geologic evolution of the Stromboli volcano, Aeolian Islands, Italy. Acta Vulcanol, 3, 79-89.spa
dc.relation.referencesPichavant, M., Pompilio, M., D’Oriano, C., & Di Carlo, I. (2011). Petrography, mineralogy and geochemistry of a primitive pumice from Stromboli: implications for the deep feeding system. European Journal of Mineralogy, 23(4), 499-517.spa
dc.relation.referencesPiper, A. M. (1944). A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions American Geophysical Union, 25(6), 914-928.spa
dc.relation.referencesPlant, J. A., Whittaker, A., Demetriades, A., De Vivo, B., & Lexa, J. (2003). The geological and tectonic framework of Europe. Geochemical Atlas of Europe. Part, 1.spa
dc.relation.referencesRoy, S., & Gupta, H. (2007). Geothermal Energy: An Alternative Resource for the 21 st Centuryspa
dc.relation.referencesPlummer, N., & Back, W. (1980). The mass balance approach: application to interpreting the chemical evolution of hydrologic systems. American Journal of Science, 280(2), 130-142.spa
dc.relation.referencesPlummer, L. N., Parkhurst, D. L., & Thorstenson, D. C. (1983). Development of reaction models for ground-water systems. Geochimica et cosmochimica Acta, 47(4), 665-685.spa
dc.relation.referencesReed, M., & Spycher, N. (1984). Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochimica et Cosmochimica Acta, 48(7), 1479-1492.spa
dc.relation.referencesRevil A., V. N. (2003). Principles of electrography applied to self‐potential electrokinetic sources and hydrogeological applications. Water Resources Research.spa
dc.relation.referencesRevil, A., Finizola, A., Ricci, T., Delcher, E., Peltier, A., Barde-Cabusson, S., ... & Tsang Hin Sun, E. (2011). Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, self-potential, soil temperature and soil CO2 concentration measurements. Geophysical Journal International, 186(3), 1078-1094spa
dc.relation.referencesRizzo, A. L., Federico, C., Inguaggiato, S., Sollami, A., Tantillo, M., Vita, F., ... & Liuzzo, M. (2015). The 2014 effusive eruption at Stromboli volcano (Italy): Inferences from soil CO2 flux and 3He/4He ratio in thermal waters. Geophysical Research Letters, 42(7), 2235-2243.spa
dc.relation.referencesRosi, M., Pistolesi, M., Bertagnini, A., Landi, P., Pompilio, M., & Di Roberto, A. (2013). Stromboli volcano, Aeolian Islands (Italy): present eruptive activity and hazards. Geological Society, London, Memoirs, 37(1), 473-490.spa
dc.relation.referencesSonney, R., & Vuataz, F. D. (2010). Validation of chemical and isotopic geothermometers from low temperature deep fluids of northern Switzerland. In Proceedings World Geothermal Congress (Vol. 14, No. 1423, pp. 1-12). International Geothermal Association.spa
dc.relation.referencesSpycher, N., Peiffer, L., Sonnenthal, E. L., Saldi, G., Reed, M. H., & Kennedy, B. M. (2014). Integrated multicomponent solute geothermometry. Geothermics, 51, 113-123.spa
dc.relation.referencesStandard Methods (1992) Standard Methods for the Examinatiul1 of Water (lftd We slewater 18th edn.) American Public Health Association.spa
dc.relation.referencesTamburello, G., Aiuppa, A., Kantzas, E. P., McGonigle, A. J. S., & Ripepe, M. (2012). Passive vs. active degassing modes at an open-vent volcano (Stromboli, Italy). Earth and Planetary Science Letters, 359, 106-116.spa
dc.relation.referencesTibaldi, A. (2010). A new geological map of Stromboli volcano (Tyrrhenian Sea, Italy) based on application of lithostratigraphic and unconformity-bounded stratigraphic (UBS) units. GSA Spec. Pap, 464, 33-49.spa
dc.relation.referencesVaselli, O., Tassi, F., Duarte, E., Fernandez, E., Poreda, R. J., & Huertas, A. D. (2010). Evolution of fluid geochemistry at the Turrialba volcano (Costa Rica) from 1998 to 2008. Bulletin of Volcanology, 72(4), 397-410.spa
dc.relation.referencesVerma, M. P. (2008). Qrtzgeotherm: An ActiveX component for the quartz solubility geothermometer. Computers & Geosciences, 34(12), 1918-1925spa
dc.relation.referencesVita, F., Inguaggiato, S., Bobrowski, N., Calderone, L., Galle, B., Parello, F., 2012. Continuous SO2 flux measurements at Vulcano Island, Italy. Ann. Geophys. 55, 301–308.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.lembSeismic zoneseng
dc.subject.lembZonas de actividad sísmicaspa
dc.subject.lembIntrusions (Geology)eng
dc.subject.lembIntrusiones (Geología)spa
dc.subject.lembGeology, structuraleng
dc.subject.lembGeotecniaspa
dc.subject.proposalStrombolispa
dc.subject.proposalStromboliita
dc.subject.proposalAcuífero termalspa
dc.subject.proposalMezclasspa
dc.subject.proposalGases disueltosspa
dc.subject.proposalIsótoposspa
dc.subject.proposalIntrusión marinaspa
dc.subject.proposalThermal aquifereng
dc.subject.proposalMixtureseng
dc.subject.proposalDissolved gaseseng
dc.subject.proposalIsotopeseng
dc.subject.proposalMarine intrusioneng
dc.titleModelación geoquímica de los fluidos del sistema periférico del Volcán Stromboli y su relación con la actividad volcánica recientespa
dc.title.translatedGeochemical modeling of the fluids of the peripheral system of the Stromboli Volcano and its relationship with recent volcanic activityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.contentWorkflowspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameIstituto Nazionale di Geofisica e Vulcanologia (INGV) ,Italiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
35852447.2021 .pdf
Tamaño:
13.48 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Geología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: