Síntesis y caracterización de recubrimientos compuestos de Ni-P-VC depositados mediante niquelado químico sobre fundición nodular Austemperizada

dc.contributor.advisorOrtiz Godoy, Nicolás
dc.contributor.authorOrtiz Godoy, Nicolás
dc.contributor.cvlacNicolas Ortiz Godoyspa
dc.contributor.googlescholarNicolas Ortiz Godoyspa
dc.contributor.orcid0000000344684603spa
dc.contributor.researchgateNicolas Ortiz Godoyspa
dc.contributor.researchgroupAnálisis de falla, integridad y superficies AFISspa
dc.date.accessioned2023-01-17T13:51:40Z
dc.date.available2023-01-17T13:51:40Z
dc.date.issued2023-01-16
dc.descriptionIlustraciones, fotografías a blanco y negro, fotografías a color,spa
dc.description.abstractLas piezas de ingeniería usadas en la industria automotriz como ejes, cardanes, bielas, cigüeñales, engranajes y calipers, entre otros, son fabricados en material ADI, estas piezas están sometidas principalmente a condiciones de desgaste y corrosión. El objetivo principal de esta investigación es alargar la vida útil de componentes de ingeniería de material ADI, mediante la mejora de la resistencia al desgaste y a la corrosión del sustrato, al implementar recubrimientos compuestos de Ni-P-VC usando la técnica de niquelado químico. El material ADI fue obtenido mediante la aplicación de un tratamiento térmico de Austempering en una fundición nodular grado 2, y los recubrimientos fueron obtenidos mediante la técnica de niquelado químico compuesto, realizando la coprecipitación de las partículas de VC mediante un procedimiento de bajo impacto ambiental, variando el tiempo de inmersión en el baño químico para obtener distintos espesores de recubrimiento. El sustrato y los recubrimientos fueron caracterizados estructuralmente mediante difracción de rayos X (XRD), morfológicamente mediante microscopia óptica y microscopia electrónica de barrido (SEM), rugosidad de los recubrimientos mediante interferometría, química elemental mediante (EDS) y espectroscopia de emisión óptica, la dureza mediante dureza HRC y microdureza HV, desgaste mediante Pin On Disk, adherencia mediante Scratch y electroquímica mediante EIS y TAFEL. Se encontró que los recubrimientos tienen una dureza de hasta 1013.9 ± 10 HV, presentando superficies homogéneas. Los recubrimientos con un tiempo mayor de inmersión obtuvieron un porcentaje mayor de partículas de VC y un espesor de 35 µm los cuales presentan una mejor resistencia al desgaste y a la corrosión, mejorando la resistencia al desgaste y corrosión del sustrato de material ADI en un 4772 % y 259 % respectivamente, con una tasa de desgaste de 3,14〖x10〗^(-8) 〖mm〗^3⁄Nmm y potencial de corrosión de -22 V. (Texto tomado de la fuente)spa
dc.description.abstractThe engineering parts used in the automotive industry such as axles, cardan shafts, connecting rods, crankshafts, gears and calipers, among others, are manufactured in ADI material, these parts are mainly subjected to wear and corrosion conditions. The main objective of this research is to extend the service life of engineering components made of ADI material, by improving the wear and corrosion resistance of the substrate, by implementing Ni-P-VC composite coatings using the electroless nickel plating technique. The ADI material was obtained by applying an Austempering heat treatment on a grade 2 nodular cast iron, and the coatings were obtained using the composite electroless nickel plating technique, performing the co-precipitation of VC particles using a low environmental impact procedure, varying the immersion time in the chemical bath to obtain different coating thicknesses. The substrate and coatings were characterized structurally by X-ray diffraction (XRD), morphologically by optical microscopy and scanning electron microscopy (SEM), roughness of the coatings by interferometry, elemental chemistry by (EDS) and optical emission spectroscopy, hardness by hardness HRC and microhardness HV, wear by Pin On Disk, adhesion by Scratch and electrochemistry by EIS and TAFEL. The coatings were found to have hardness up to 1013.9 ±10 HV, with homogeneous surfaces. The coatings with longer immersion time obtained a higher percentage of VC particles and a thickness of 35 µm present better wear and corrosion resistance, improving the wear and corrosion resistance of the 4772 % y 259 % respectively, with a wear rate of 3,14〖x10〗^(-8) 〖mm〗^3⁄Nmm and corrosion potential of -22 V.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.methodsPara el desarrollo de este trabajo se tienen en cuenta todas las variables de entrada que afectan directamente los resultados en este trabajo, las cuales son: La composición del recubrimiento, Ni-P y Ni-P-VC, y el espesor de los recubrimientos. Por lo tanto, este es un diseño factorial con dos factores de variación. Se debe establecer el error experimental y el grado de confiabilidad para elegir así la cantidad de repeticiones necesarias al realizar cada experimentación, para lo cual es necesario realizar una prueba piloto o realizar una búsqueda bibliográfica que permita determinar este parámetro [77]. Al realizar la revisión bibliográfica, de artículos y tesis en los que se realizaran procedimientos en los cuales se tienen deposición de recubrimientos mediante niquelado químico, utilizaron un número de repeticiones de los ensayos de entre 3 y 5 veces [35], [94], [45], [52], [95].spa
dc.description.researchareaIngeniería de superficiesspa
dc.format.extentxviii, 95 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82975
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.references[1] A. Muñoz Mizuno and M. Plaza Vega, “Estado actual de la corrosión en Colombia,” Barranquilla, 2015.spa
dc.relation.references[2] M. Schlesinger and M. Paunovic, Modern electro-plating, vol. 5, no. 4. 2010. doi: 10.1016/s0016-0032(24)90740-x.spa
dc.relation.references[3] P. B. Chikali and V. D. Shinde, “Analysis of machinability in ductile iron casting,” Mater Today Proc, vol. 27, pp. 584–588, 2019, doi: 10.1016/j.matpr.2019.12.064.spa
dc.relation.references[4] L. Collini and A. Pirondi, “Microstructure-based RVE modeling of the failure behavior and LCF resistance of ductile cast iron,” Procedia Structural Integrity, vol. 24, no. 2019, pp. 324–336, 2019, doi: 10.1016/j.prostr.2020.02.030.spa
dc.relation.references[5] J. Lacaze, J. Sertucha, and L. Magnusson Åberg, “Microstructure of as-cast ferritic-pearlitic nodular cast irons,” ISIJ International, vol. 56, no. 9, pp. 1606–1615, 2016, doi: 10.2355/isijinternational.ISIJINT-2016-108.spa
dc.relation.references[6] American Society for Testing And Materials, “ASTM A536 Ductile Iron Castings,” vol. 84, no. Reapproved. pp. 1–5, 1999.spa
dc.relation.references[7] F. Concli, “Austempered Ductile Iron (ADI) for gears: Contact and bending fatigue behavior,” Procedia Structural Integrity, vol. 8, pp. 14–23, 2018.spa
dc.relation.references[8] D. Eraslan et al., “Machinability evaluations of austempered ductile iron and cast steel with similar mechanical properties under eco-friendly milling conditions,” Journal of Materials Research and Technology, vol. 11, no. 2238–7854, pp. 1443–1456, 2021, doi: 10.1016/j.jmrt.2021.01.123.spa
dc.relation.references[9] Y. J. Kim, H. Shin, H. Park, and J. D. Lim, “Investigation into mechanical properties of austempered ductile cast iron (ADI) in accordance with austempering temperature,” Mater Lett, vol. 62, no. 3, pp. 357–360, 2008, doi: 10.1016/j.matlet.2007.05.028.spa
dc.relation.references[10] G. Vidyathee and K. K. Singh, “Thin Wall Austempered Ductile Iron: A Best Replaceable Material To Steel And Aluminum,” International Journal of Mechanical Engineering and Robotics Research, vol. 3, no. 3, pp. 465–473, 2014.spa
dc.relation.references[11] C. H. Hsu and M. L. Chen, “Corrosion behavior of nickel alloyed and austempered ductile irons in 3.5% sodium chloride,” Corros Sci, vol. 52, no. 9, pp. 2945–2949, 2010, doi: 10.1016/j.corsci.2010.05.006.spa
dc.relation.references[12] O. J. Akinribide, S. O. Akinwamide, O. O. Ajibola, B. A. Obadele, S. O. oluwagbenga Olusunle, and P. A. Olubambi, “Corrosion behavior of ductile and austempered ductile cast iron in 0.01M and 0.05M NaCl Environments.,” Procedia Manuf, vol. 30, pp. 167–172, 2019, doi: 10.1016/j.promfg.2019.02.024.spa
dc.relation.references[13] A. Thakur, S. Gharde, and B. Kandasubramanian, “Electroless nickel fabrication on surface modified magnesium substrates,” Defence Technology, vol. 15, no. 4, pp. 636–644, 2019, doi: 10.1016/j.dt.2019.04.006.spa
dc.relation.references[14] R. Parkinson, “Properties and applications of electroless nickel,” 2001.spa
dc.relation.references[15] D. G. Agredo Diaz et al., “Effect of a Ni-P coating on the corrosion resistance of an additive manufacturing carbon steel immersed in a 0.1 M NaCl solution,” Mater Lett, vol. 275, p. 128159, 2020, doi: 10.1016/j.matlet.2020.128159.spa
dc.relation.references[16] N. Biswas, R. K. Baranwal, G. Majumdar, and D. Brabazon, “Review of duplex electroless coatings and their properties,” Advances in Materials and Processing Technologies, vol. 4, no. 3, pp. 448–465, 2018, doi: 10.1080/2374068X.2018.1457298.spa
dc.relation.references[17] C. H. Hsu, J. K. Lu, and R. J. Tsai, “Effects of low-temperature coating process on mechanical behaviors of ADI,” Materials Science and Engineering A, vol. 398, no. 1–2, pp. 282–290, 2005, doi: 10.1016/j.msea.2005.03.092.spa
dc.relation.references[18] P. Sahoo and S. Kalyan Das, “Tribology of electroless nickel coatings - A review,” Mater Des, vol. 32, no. 4, pp. 1760–1775, 2011, doi: 10.1016/j.matdes.2010.11.013.spa
dc.relation.references[19] J. N. Balaraju, T. S. N. Sankara, and S. K. Seshadri, “Electroless Ni–P composite coatings,” J Appl Electrochem, vol. 33, no. 9, pp. 807–816, 2003, doi: 10.1023/A:1025572410205.spa
dc.relation.references[20] S. Jothi, R. Muraliraja, T. R. Tamilarasan, S. Udayakumar, and A. Selvakumar, “Electroless Composite Coatings,” in Electroless Nickel Plating, 2019, pp. 359–409. doi: 10.1201/9780429466274-9.spa
dc.relation.references[21] M. Czagány and P. Baumli, “Effect of surfactants on the behavior of the Ni-P bath and on the formation of electroless Ni-P-TiC composite coatings,” Surf Coat Technol, vol. 361, no. December 2018, pp. 42–49, 2019, doi: 10.1016/j.surfcoat.2019.01.046.spa
dc.relation.references[22] D. Bartkowski, A. Młynarczak, A. Piasecki, B. Dudziak, M. Gościański, and A. Bartkowska, “Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding,” Opt Laser Technol, vol. 68, no. Complete, pp. 191–201, 2015, doi: 10.1016/j.optlastec.2014.12.005.spa
dc.relation.references[23] T. E. Abioye, P. K. Farayibi, D. G. McCartney, and A. T. Clare, “Effect of carbide dissolution on the corrosion performance of tungsten carbide reinforced Inconel 625 wire laser coating,” J Mater Process Technol, vol. 231, pp. 89–99, 2016, doi: 10.1016/j.jmatprotec.2015.12.023.spa
dc.relation.references[24] G. Herranz, A. Romero, V. de Castro, and G. P. Rodríguez, “Processing of AISI M2 high speed steel reinforced with vanadium carbide by solar sintering,” Mater Des, vol. 54, pp. 934–946, 2014, doi: 10.1016/j.matdes.2013.09.027.spa
dc.relation.references[25] Z. Zhang, T. Yu, and R. Kovacevic, “Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC,” Appl Surf Sci, vol. 410, pp. 225–240, 2017, doi: 10.1016/j.apsusc.2017.03.137.spa
dc.relation.references[26] Q. Wu, W. Li, N. Zhong, W. Gang, and W. Haishan, “Microstructure and wear behavior of laser cladding VC–Cr7C3 ceramic coating on steel substrate,” Mater Des, vol. 49, pp. 10–18, 2013, doi: 10.1016/j.matdes.2013.01.067.spa
dc.relation.references[27] F. Ye et al., “Microstructure, microhardness and wear resistance of VC p /Fe surface composites fabricated in situ,” Appl Surf Sci, vol. 280, pp. 297–303, 2013, doi: 10.1016/j.apsusc.2013.04.152.spa
dc.relation.references[28] A. Brenner and G. Riddell, “Nickel plating on steel by chemical reduction,” J Res Natl Bur Stand (1934), pp. 31–34, 1946, [Online]. Available: http://dx.doi.org/10.6028/jres.037.019spa
dc.relation.references[29] Y. Shacham-Diamand, T. Osaka, Y. Okinaka, A. Sugiyama, and V. Dubin, “30 Years of electroless plating for semiconductor and polymer micro-systems,” Microelectron Eng, vol. 132, pp. 35–45, 2015, doi: 10.1016/j.mee.2014.09.003.spa
dc.relation.references[30] J. Sudagar, J. Lian, and W. Sha, “Electroless nickel, alloy, composite and nano coatings - A critical review,” J Alloys Compd, vol. 571, pp. 183–204, 2013, doi: 10.1016/j.jallcom.2013.03.107.spa
dc.relation.references[31] P. L. Berrío Herrera y Cairo, “Desarrollo y caracterización de un recubrimiento por niquelado químico sobre aluminio Paula Lidia Berrio Herrera y Cairo,” UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, 2017.spa
dc.relation.references[32] R. Tenno, K. Kantola, and H. Koivo, “ELECTROLESS NICKEL PLATING: BATH CONTROL,” IFAC-Papers OnLine, no. 1, p. 6, 2004.spa
dc.relation.references[33] P. Sahoo, “Friction performance optimization of electroless Ni-P coatings using the Taguchi method,” J Phys D Appl Phys, vol. 41, no. 9, 2008, doi: 10.1088/0022-3727/41/9/095305.spa
dc.relation.references[34] W. Shang et al., “Deposition mechanism of electroless nickel plating of composite coatings on magnesium alloy,” Chem Eng Sci, vol. 207, pp. 1299–1308, 2019, doi: 10.1016/j.ces.2019.07.048.spa
dc.relation.references[35] I. Ohno, “Electrochemistry of electroless plating,” Materials Science and Engineering A, vol. 146, no. 1–2, pp. 33–49, 1991, doi: 10.1016/0921-5093(91)90266-P.spa
dc.relation.references[36] J. A. Morales Soto, J. C. Rosas Islas, and E. Suarez Juarez, “Obtención y caracterización de sistemas proyección térmica níquel químico sobre aceros de bajo carbono,” Universidad Autónoma de México, 2013. doi: 10.1017/CBO9781107415324.004.spa
dc.relation.references[37] V. F. Makarov, Y. v. Prusov, and I. O. Lebedeva, “Electroless deposition of nickel coatings with high phosphorus content,” Russian Journal of Applied Chemistry, vol. 78, no. 1, pp. 82–84, 2005, doi: 10.1007/s11167-005-0235-x.spa
dc.relation.references[38] T. S. N. Sankara Narayanan, I. Baskaran, K. Krishnaveni, and S. Parthiban, “Deposition of electroless Ni-P graded coatings and evaluation of their corrosion resistance,” Surf Coat Technol, vol. 200, no. 11, pp. 3438–3445, 2006, doi: 10.1016/j.surfcoat.2004.10.014.spa
dc.relation.references[39] C. A. Loto, “Electroless Niquel Plating,” in Electroless Nickel Plating - A Review, 2016, pp. 177–186.spa
dc.relation.references[40] O. S. I. Fayomi, I. G. Akande, and A. A. Sode, “Corrosion Prevention of Metals via Electroless Nickel Coating: A review,” J Phys Conf Ser, vol. 1378, no. 2, 2019, doi: 10.1088/1742-6596/1378/2/022063.spa
dc.relation.references[41] ASTM, “Standard specification for autocatalytic (electroless) nickel-phosphorus coatings on metal,” Annual Book of ASTM Standards, pp. 1–14, 2015, doi: 10.1520/B0733-15.2.spa
dc.relation.references[42] I. C. Park and S. J. Kim, “Effect of pH of the sulfuric acid bath on cavitation erosion behavior in natural seawater of electroless nickel plating coating,” Appl Surf Sci, vol. 483, no. March, pp. 194–204, 2019, doi: 10.1016/j.apsusc.2019.03.277.spa
dc.relation.references[43] W. Shang et al., “Deposition mechanism of electroless nickel plating of composite coatings on magnesium alloy,” Chem Eng Sci, vol. 207, pp. 1299–1308, 2019, doi: 10.1016/j.ces.2019.07.048.spa
dc.relation.references[44] M. Meng, A. Leech, and H. Le, “Mechanical properties and tribological behaviour of electroless Ni–P–Cu coatings on corrosion-resistant alloys under ultrahigh contact stress with sprayed nanoparticles,” Tribol Int, vol. 139, no. April, pp. 59–66, 2019, doi: 10.1016/j.triboint.2019.06.031.spa
dc.relation.references[45] B. Panja and P. Sahoo, “Wear Behavior of Electroless Ni-P Coatings in Brine Solution and Optimization of Coating Parameters,” Procedia Technology, vol. 14, pp. 173–180, 2014, doi: 10.1016/j.protcy.2014.08.023.spa
dc.relation.references[46] L. L. Lobanova, E. v. Batalova, and Yu. P. Khranilov, “Reagent techniques for nickel recovery from spent electroless nickel-plating solutions,” Russian Journal of Applied Chemistry, vol. 81, no. 2, pp. 202–206, 2008, doi: 10.1134/s1070427208020080.spa
dc.relation.references[47] L. Bonin, V. Vitry, and F. Delaunois, “The tin stabilization effect on the microstructure, corrosion and wear resistance of electroless NiB coatings,” Surf Coat Technol, vol. 357, no. August 2018, pp. 353–363, 2019, doi: 10.1016/j.surfcoat.2018.10.011.spa
dc.relation.references[48] M. Palaniappa and S. K. Seshadri, “Friction and wear behavior of electroless Ni-P and Ni-W-P alloy coatings,” Wear, vol. 265, no. 5–6, pp. 735–740, 2008, doi: 10.1016/j.wear.2008.01.002.spa
dc.relation.references[49] Z. Huang, T. T. Nguyen, Y. Zhou, and G. Qi, “A low temperature electroless nickel plating chemistry,” Surf Coat Technol, vol. 372, no. May, pp. 160–165, 2019, doi: 10.1016/j.surfcoat.2019.05.019.spa
dc.relation.references[50] D. Mohanty, T. K. Barman, and P. Sahoo, “Characterisation and corrosion study of electroless Nickel-Boron coating reinforced with alumina nanoparticles,” Mater Today Proc, no. xxxx, pp. 1–5, 2019, doi: 10.1016/j.matpr.2019.07.216.spa
dc.relation.references[51] A. Akyol, H. Algul, M. Uysal, H. Akbulut, and A. Alp, “A novel approach for wear and corrosion resistance in the electroless Ni-P-W alloy with CNFs co-depositions,” Appl Surf Sci, vol. 453, no. December 2017, pp. 482–492, 2018, doi: 10.1016/j.apsusc.2018.05.152.spa
dc.relation.references[52] D. Dong, X. H. Chen, W. T. Xiao, G. B. Yang, and P. Y. Zhang, “Preparation and properties of electroless Ni-P-SiO 2 composite coatings,” Appl Surf Sci, vol. 255, no. 15, pp. 7051–7055, 2009, doi: 10.1016/j.apsusc.2009.03.039.spa
dc.relation.references[53] J. Li, D. Wang, H. Cai, A. Wang, and J. Zhang, “Competitive deposition of electroless Ni-W-P coatings on mild steel via a dual-complexant plating bath composed of sodium citrate and lactic acid,” Surf Coat Technol, vol. 279, no. 5, pp. 9–15, 2015, doi: 10.1016/j.surfcoat.2015.08.017.spa
dc.relation.references[54] L. Zhong, X. Zhang, S. Chen, Y. Xu, H. Wu, and J. Wang, “Fe-W-C thermodynamics and in situ preparation of tungsten carbide-reinforced iron-based surface composites by solid-phase diffusion,” Int J Refract Metals Hard Mater, vol. 57, pp. 42–49, 2016, doi: 10.1016/j.ijrmhm.2016.02.001.spa
dc.relation.references[55] H. L. Wang, L. Y. Liu, Y. Dou, W. Z. Zhang, and W. F. Jiang, “Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy,” Appl Surf Sci, vol. 286, pp. 319–327, 2013, doi: 10.1016/j.apsusc.2013.09.079.spa
dc.relation.references[56] G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Aplications. Orlando: American Electroplaters and Surface Finishers Society, 1990.spa
dc.relation.references[57] D. R. Dhakal, G. Gyawali, Y. K. Kshetri, J. H. Choi, and S. W. Lee, “Microstructural and electrochemical corrosion properties of electroless Ni-P-TaC composite coating,” Surf Coat Technol, vol. 381, no. November 2019, p. 125135, 2020, doi: 10.1016/j.surfcoat.2019.125135.spa
dc.relation.references[58] Y. Jin et al., “Structural and phase transformation behaviour of electroless Ni-W-Cr-P alloy coatings on stainless steel,” Inorganic Materials, vol. 46, no. 6, pp. 631–638, 2010, doi: 10.1134/S0020168510060130.spa
dc.relation.references[59] E. Valova et al., “Electroless deposited Ni-Re-P, Ni-W-P and Ni-Re-W-P alloys,” J Appl Electrochem, vol. 31, no. 12, pp. 1367–1372, 2001, doi: 10.1023/A:1013862729960.spa
dc.relation.references[60] S. Tian, W. Sun, Y. Liu, Y. Jia, and Y. Xiao, “Effect of Na2WO4 Concentration on the Microstructure and Corrosion Behavior of Ni-W-P Ternary Alloy Coatings,” Materials Research, vol. 24, no. 4, 2021, doi: 10.1590/1980-5373-mr-2020-0580.spa
dc.relation.references[61] N. Guglielmi, “Kinetics of the deposition of inert particles from electrolytic baths,” J Electrochem Soc, vol. 119, p. 1009, 1972.spa
dc.relation.references[62] P. Liu and Y. Zhu, “Interaction Between Fine Diamond Particles in Electroless Nickel Solutions,” J Dispers Sci Technol, vol. 36, no. 8, pp. 1170–1177, 2015, doi: 10.1080/01932691.2014.960525.spa
dc.relation.references[63] V. Krishnakumar and R. Elansezhian, “Dispersion stability of zinc oxide nanoparticles in an electroless bath with various surfactants,” Mater Today Proc, no. xxxx, pp. 1–5, 2021, doi: 10.1016/j.matpr.2021.05.467.spa
dc.relation.references[64] P. Liu, Y. Zhu, G. Zhong, X. Zhao, S. Wang, and S. Yang, “Influence of inorganic coating over diamond particles on interaction force and dispersability in electroless solution,” Powder Technol, vol. 342, pp. 899–906, 2019, doi: 10.1016/j.powtec.2018.10.059.spa
dc.relation.references[65] S. Kundu, S. K. Das, and P. Sahoo, “Friction and wear behavior of electroless Ni-P-W coating exposed to elevated temperature,” Surfaces and Interfaces, vol. 14, no. December 2018, pp. 192–207, 2019, doi: 10.1016/j.surfin.2018.12.007.spa
dc.relation.references[66] D. Ahmadkhaniha, F. Eriksson, P. Leisner, and C. Zanella, “Effect of SiC particle size and heat-treatment on microhardness and corrosion resistance of NiP electrodeposited coatings,” J Alloys Compd, vol. 769, pp. 1080–1087, 2018, doi: https://doi.org/10.1016/j.jallcom.2018.08.013.spa
dc.relation.references[67] C. Falton, Iron casting handbook. Iron Casting Society, 1981.spa
dc.relation.references[68] S. K. Allen, C. S. Barrett, A. O. Benscoter, and M. B. Bever, ASM Handbook Volume 9 Metallography and Microstructures, vol. 2. 2001. doi: 10.1016/S0026-0576(03)90166-8.spa
dc.relation.references[69] G. Castro, “Fundiciones,” Facultad de Ingeniería Universidad de Buenos Aires, Buenos Aires, 2009.spa
dc.relation.references[70] K. Y. Benyounis, O. M. A. Fakron, J. H. Abboud, A. G. Olabi, and M. J. S. Hashmi, “Surface melting of nodular cast iron by Nd-YAG laser and TIG,” J Mater Process Technol, vol. 170, no. 1–2, pp. 127–132, 2005, doi: 10.1016/j.jmatprotec.2005.04.108.spa
dc.relation.references[71] K. F. Alabeedi, J. H. Abboud, and K. Y. Benyounis, “Microstructure and erosion resistance enhancement of nodular cast iron by laser melting,” Wear, vol. 266, no. 9–10, pp. 925–933, 2009, doi: 10.1016/j.wear.2008.12.015.spa
dc.relation.references[72] H. Yan, A. Wang, Z. Xiong, K. Xu, and Z. Huang, “Microstructure and wear resistance of composite layers on a ductile iron with multicarbide by laser surface alloying,” Appl Surf Sci, vol. 256, no. 23, pp. 7001–7009, 2010, doi: 10.1016/j.apsusc.2010.05.015.spa
dc.relation.references[73] F. J. Rodríguez, P. M. Dardati, L. A. Godoy, and D. J. Celentano, “Evaluación de propiedades elásticas de la fundición nodular empleando micromecánica computacional,” Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, vol. 31, no. 2, pp. 91–105, 2015, doi: 10.1016/j.rimni.2014.01.003.spa
dc.relation.references[74] J. M. Velez Restrepo, “Austemperado de la fundición nodular: fundamentos y tecnología,” Universidad Nacional de Colombia sede Medellín, 2001.spa
dc.relation.references[75] H. Sierra Restrepo and J. Ortega González, “Temperatura de transición de la fundición nodular austemperada no aleada,” Revista Universidad EAFIT, vol. 40, no. 134, pp. 80–89, 2004.spa
dc.relation.references[76] ASTM, Standard Specification for Austempered Ductile Iron Castings, vol. 83. 1999, pp. 4–9. doi: 10.1520/A0897.spa
dc.relation.references[77] B. Wang, G. C. Barber, F. Qiu, Q. Zou, and H. Yang, “A review: Phase transformation and wear mechanisms of single-step and dual-step austempered ductile irons,” Journal of Materials Research and Technology, vol. 9, no. 1, pp. 1054–1069, 2020, doi: 10.1016/j.jmrt.2019.10.074.spa
dc.relation.references[78] Standard Specification for Austempered Ductile Iron Castings, vol. 83. 1999, p. 8.spa
dc.relation.references[79] M. Bahmani, R. Elliott, and N. Varahram, “Austempered ductile iron: a competitive alternative for forged induction-hardened steel crankshafts,” International Journal of Cast Metals Research, vol. 9, no. 5, pp. 249–257, Jan. 1997, doi: 10.1080/13640461.1997.11819666.spa
dc.relation.references[80] J. Lefevre and K. L. Hayrynen, “Austempered materials for powertrain applications,” J Mater Eng Perform, vol. 22, no. 7, pp. 1914–1922, 2013, doi: 10.1007/s11665-013-0557-4.spa
dc.relation.references[81] L. H. Larumbe, E. H. Delgado, M. Alvarez-Vera, and P. P. Villanueva, “Forming process using austempered ductile iron (ADI) in an automotive Pitman arm,” International Journal of Advanced Manufacturing Technology, vol. 91, no. 1–4, pp. 569–575, 2017, doi: 10.1007/s00170-016-9771-1.spa
dc.relation.references[82] Y. Du, X. Gao, X. Wang, X. Wang, Y. Ge, and B. Jiang, “Tribological behavior of austempered ductile iron (ADI) obtained at different austempering temperatures,” Wear, vol. 456–457, no. April, p. 203396, 2020, doi: 10.1016/j.wear.2020.203396.spa
dc.relation.references[83] R. Upadhyaya, K. K. Singh, R. Kumar, and M. S. Chandran, “Study on the Effect of Austempering Temperature on the Structure-Properties of Thin Wall Austempered Ductile Iron,” Mater Today Proc, vol. 5, no. 5, pp. 13472–13477, 2018, doi: 10.1016/j.matpr.2018.02.342.spa
dc.relation.references[84] J. R. Keough, “Austempered Ductile Iron (ADI) – A Green Alternative,” American Foundry Society, vol. 119, no. 11–126, pp. 591–599, 2011.spa
dc.relation.references[85] C. H. Hsu, K. L. Chen, and J. H. Lu, “Effects of electroless nickel interlayer on surface properties of CrN arc-coated austempered ductile iron,” Surf Coat Technol, vol. 203, no. 5–7, pp. 868–871, 2008, doi: 10.1016/j.surfcoat.2008.05.031.spa
dc.relation.references[86] C. H. Hsu, K. H. Huang, Y. T. Chen, and W. Y. Ho, “The effect of electroless Ni-P interlayer on corrosion behavior of TiN-coated austempered ductile iron,” Thin Solid Films, vol. 529, pp. 34–38, 2013, doi: 10.1016/j.tsf.2012.05.050.spa
dc.relation.references[87] O. O. Ige, O. J. Olawale, K. M. Oluwasegun, S. Aribo, B. A. Obadele, and P. A. Olubambi, “Corrosion Behaviour of Austempered Ductile Iron Produced by Forced Air Quenching Method in a Simulated Mine Water,” Procedia Manuf, vol. 7, pp. 579–583, 2017, doi: 10.1016/j.promfg.2016.12.084.spa
dc.relation.references[88] M. Pooja, V. Vijeesh, A. O. Surendranathan, K. R. Udupa, and K. G. Samuel, “Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry,” International Journal of Engineering, Science and Technology, vol. 8, no. 3, p. 7, 2016, doi: 10.4314/ijest.v8i3.2.spa
dc.relation.references[89] A. D. Sosa, C. S. Rosales, R. E. Boeri, and S. N. Simison, “Corrosion mechanisms in ADI parts,” International Journal of Cast Metals Research, vol. 29, no. 1–2, pp. 106–111, 2016, doi: 10.1080/13640461.2015.1106784.spa
dc.relation.references[90] C. E. Arroyave, “La corrosión de las economías,” EL TIEMPO, pp. 1–6, 1991.spa
dc.relation.references[91] L. Pereira, M. R. Belle, W. M. Pasini, and V. K. de Barcellos, “Determination of the process window of Austemper treatment to obtain ADI through neural network simulation,” pp. 1547–1553, 2018, doi: 10.5151/1516-392x-31701.spa
dc.relation.references[92] J. F. Janowak and R. B. Gundlach, “Development of a ductile iron for a commercial Austempering,” Trans Am Foundrymen’s Soc, vol. 91, p. 377, 1983.spa
dc.relation.references[93] D. Moore, T. N. Rouns, and K. B. Roundman, “Structure and properties of Austempered ductile iron,” Trans Am Foundrymen’s Soc, vol. 93, p. 705, 1985.spa
dc.relation.references[94] S. Sarkar, R. K. Baranwal, C. Biswas, G. Majumdar, and J. Haider, “Optimization of process parameters for electroless Ni-Co-P coating deposition to maximize micro-hardness,” Mater Res Express, vol. 6, no. 4, 2019, doi: 10.1088/2053-1591/aafc47.spa
dc.relation.references[95] F. E. Mariani, G. S. Takeya, A. N. Lombardi, C. A. Picone, and L. C. Casteletti, “Wear and corrosion resistance of Nb-V carbide layers produced in vermicular cast iron using TRD treatments,” Surf Coat Technol, vol. 397, p. 126050, 2020, doi: 10.1016/j.surfcoat.2020.126050.spa
dc.relation.references[96] M. Peet and H. K. D. H. Bhadeshia, “https://www.factsage.com/,” Department of Materials Science and Metallurgy.spa
dc.relation.references[97] N. Ortiz, G. Agredo, A. Barba, J. J. Olaya, R. Valdez, and R. González, “Estudio Microestructural de Fundiciones Nodulares Sometidas a Tratamiento de Austempering.”spa
dc.relation.references[98] Z. H. Huang, Y. J. Zhou, and T. T. Nguyen, “Study of nickel matrix composite coatings deposited from electroless plating bath loaded with TiB 2 , ZrB 2 and TiC particles for improved wear and corrosion resistance,” Surf Coat Technol, vol. 364, no. August 2018, pp. 323–329, 2019, doi: 10.1016/j.surfcoat.2019.01.060.spa
dc.relation.references[99] M. Czagány and P. Baumli, “Effect of surfactants on the behavior of the Ni-P bath and on the formation of electroless Ni-P-TiC composite coatings,” Surf Coat Technol, vol. 361, no. November 2018, pp. 42–49, 2019, doi: 10.1016/j.surfcoat.2019.01.046.spa
dc.relation.references[100] A. Sharma and A. K. Singh, “Electroless Ni-P and Ni-P-Al2O3 nanocomposite coatings and their corrosion and wear resistance,” J Mater Eng Perform, vol. 22, no. 1, pp. 176–183, 2013, doi: 10.1007/s11665-012-0224-1.spa
dc.relation.references[101] H. Macías, “Recubrimientos nanoestructurados de Ti-W-Si-N depositados mediante la técnica de co-sputtering magnetrón reactivo,” 2020.spa
dc.relation.references[102] J. Epp, “X-ray diffraction (XRD) techniques for materials characterization,” in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, 2016, pp. 81–124.spa
dc.relation.references[103] W. Conshohocken, “G99 Standard Test Method for Wear Testing with a Pin-on-Disk,” in ASTM, vol. v, pp. 1–5.spa
dc.relation.references[104] M. Hanief and M. S. Charoo, “Archard ’ s wear law revisited to measure accurate wear coefficient considering actual sliding velocity,” Mater Today Proc, vol. 47, pp. 5598–5600, 2021.spa
dc.relation.references[105] H. Ju, S. He, L. Yu, I. Asempah, and J. Xu, “The improvement of oxidation resistance , mechanical and tribological properties of W 2 N films by doping silicon,” Surf Coat Technol, vol. 317, pp. 158–165, 2017.spa
dc.relation.references[106] ASM Metals, Handbook Volume 13, Corrosion. 1992.spa
dc.relation.references[107] U. P. Morales, E. V. López, and C. O. Otálora, “Aspectos básicos en la interpretación de diagramas de impedancia electroquímica,” Revista de ingeniería DYNA, vol. 162, pp. 13–19, 2010.spa
dc.relation.references[108] ASTM International, “Standard Specification for Ductile Iron Castings,” Current, vol. 83, no. Reapproved. pp. 4–9, 2019. doi: 10.1520/A0842-11A.2.spa
dc.relation.references[109] J. Zhang, N. Zhang, M. Zhang, D. Zeng, Q. Song, and L. Lu, “Microstructure and mechanical properties of austempered ductile iron with different strength grades,” Material Letters, vol. 119, pp. 47–50, 2014, doi: http://dx.doi.org/10.1016/j.matlet.2013.12.086.spa
dc.relation.references[110] A. Ramalho and J. C. Miranda, “Friction and wear of electroless NiP and NiP + PTFE coatings,” Wear, vol. 259, no. 7–12, pp. 828–834, 2005, doi: 10.1016/j.wear.2005.02.052.spa
dc.relation.references[111] C. Hernández, H. Francisco, and U. Ordoñes, “Rolling contact fatigue wear of nitriding austempered ductile rolling contact fatigue wear of nitriding austempered ductile iron ( ADI ) -ADI discs,” Conference: Congresso Brasileiro de Engenharia Mecânica, no. November 2001, p. 9, 2001.spa
dc.relation.references[112] G. T. Sudha, B. Stalin, B. Ravichandran, and M. Balasubramanian, “Mechanical Properties, Characterization and Wear Behavior of Powder Metallurgy Composites - A Review,” Mater Today Proc, 2020.spa
dc.relation.references[113] Z. hou LI, Z. yong CHEN, S. sha LIU, F. ZHENG, and A. gan DAI, “Corrosion and wear properties of electroless Ni-P plating layer on AZ91D magnesium alloy,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 18, no. 4, pp. 819–824, 2008, doi: 10.1016/S1003-6326(08)60142-9.spa
dc.relation.references[114] T. S. N. Sankara Narayanan, I. Baskaran, K. Krishnaveni, and S. Parthiban, “Deposition of electroless Ni-P graded coatings and evaluation of their corrosion resistance,” Surf Coat Technol, vol. 200, no. 11, pp. 3438–3445, 2006, doi: 10.1016/j.surfcoat.2004.10.014.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembDeterioración de materialesspa
dc.subject.lembMaterials - deteriorationeng
dc.subject.proposalAustemperingeng
dc.subject.proposalAustemperadospa
dc.subject.proposalcodeposiciónspa
dc.subject.proposalniquelado químico compuestospa
dc.subject.proposalmaterial ADIspa
dc.subject.proposalresistencia al desgastespa
dc.titleSíntesis y caracterización de recubrimientos compuestos de Ni-P-VC depositados mediante niquelado químico sobre fundición nodular Austemperizadaspa
dc.title.translatedSynthesis and characterization of Ni-P-VC composite coatings deposited by electroless nickel plating on Austempered nodular cast iron.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Síntesis y caracterización de recubrimientos compuestos de Ni-P-VC.pdf
Tamaño:
4.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingenieria - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: