Analysis of the directional distribution of the wave energy during different climate conditions

dc.contributor.advisorOsorio Arias, Andrés Fernando
dc.contributor.advisorMontoya Ramírez, Rubén Darío
dc.contributor.authorAyala Cruz, Franklin Farid
dc.contributor.orcidAyala Cruz, Franklin Farid [0000-0002-2590-6285]spa
dc.contributor.researchgroupOceanicos Grupo de Oceanografía E Ingeniería Costera de la Universidad Nacionalspa
dc.contributor.supervisorBabanin, Alexander
dc.date.accessioned2024-07-16T19:25:39Z
dc.date.available2024-07-16T19:25:39Z
dc.date.issued2024
dc.descriptionIlustraciones, gráficasspa
dc.description.abstractThe directional wave spectra during hurricane conditions are not well represented by numerical wave models, limiting their capability for extreme waves hindcasting and forecasting purposes. This research intends to conduct, using WAVEWATCH III, a sensitivity analysis of the wind input term packages ST3/4/6 to identify the response of the hurricane-generated wave spectra to the most critical parameters of each parameterization. In addition, modifications in the directional spreading functions of the current observation-based source terms are evaluated during a regular storm case in the Caribbean Sea and Gulf of Mexico. BETAMAX, ZALP, and ZWND are the most sensitive parameters from ST3/ST4, and SINWS for ST6; however, their impact is not relevant in the directional space and do not unambiguously point out the physical mechanisms that solve the underestimation/overestimation of swell/wind sea waves. Narrower $\cos^2$ and $\cos^4$ distributions in the atmospheric input, and a bimodal spreading function for the dissipation rate, show an enhancement of the energy around the main wave propagation direction. These inclusions exhibit a good agreement with wave integral and 2D spectra buoy measurements during wind sea-dominated conditions, and their performance is better than the default directional functions during the most energetic periods of the simulation. (Tomado de la fuente)eng
dc.description.abstractLos espectros direccionales de oleaje durante condiciones de huracán no están bien repre- sentados por modelos numéricos de oleaje como WAVEWATCH III, limitando su capacidad para el hindcast y pronóstico de oleaje extremo. Esta investigacíon tiene la intencion de llevar a cabo un análisis de sensibilidad de los términos de entrada del viento usando el modelo numérico WAVEWACTH III en los paquetes de física del oleaje ST3/4/6 para identificar la respuesta de los espectros de oleaje generados por huracanes a cambios en el valor de los parámetros más críticos de cada parametrización. Además, se evalúan modificaciones en las funciones de dispersión direccional de los actuales términos fuente basados en observaciones durante un caso de tormenta regular en el Mar Caribe y el Golfo de México. BETAMAX, ZALP y ZWND son los parámetros más sensibles de ST3/ST4, y SINWS para ST6; sin embargo, su impacto no es relevante en el espacio direccional y no señala de manera inequívoca los mecanismos físicos que resuelven la subestimación/sobrestimación del oleaje local/de fondo. Distribuciones más estrechas de cos2 y cos4 en la entrada atmosférica, y una función de dispersión bimodal para la tasa de disipación, muestran un aumento de la energía alrededor de la dirección principal de propagación de las olas. Estas incorporaciones exhiben una buena concordancia con las mediciones de boyas de parámetros integrales y espectros de oleaje 2D durante condiciones dominadas por el mar de viento, y su rendimiento es mejor que las funciones direccionales predeterminadas durante los periodos más energéticos de la simulación.eng
dc.description.curricularareaMedio Ambiente.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.researchareaModelación de oleajespa
dc.format.extent130 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86472
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAmante, C. and Eakins, B. W. (2009). ETOPO1 Global Relief Model converted to PanMap layer format. NOAA-National Geophysical Data Center, PANGAEAspa
dc.relation.referencesArdhuin, F., Chapron, B., and Collard, F. (2009). Observation of swell dissipation across oceans. Geophysical Research Letters, 36(6):1–5spa
dc.relation.referencesArdhuin, F. and Boyer, A. L. (2006). Modélisation numérique de l'état de la mer: validation des formes spectrales. Annual of Navigation, 54:55-71spa
dc.relation.referencesArdhuin, F. and Jenkins, A. D. (2006). On the interaction of surface waves and upper ocean turbulence. Journal of Physical Oceanography, 36(3):551–557.spa
dc.relation.referencesArdhuin, F., Rogers, E., Babanin, A. V., Filipot, J. F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J. M., Aouf, L., and Collard, F. (2010). Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. Journal of Physical Oceanography, 40(9):1917–1941.spa
dc.relation.referencesBabanin, A. (2011). Breaking and Dissipation of Ocean Surface Waves. Cambridge University Press. 480 pp.spa
dc.relation.referencesBabanin, A. and Young, I. R. (2005). Two-phase behaviour of the spectral dissipation of wind waves. In Proc. Ocean Waves Measurement and Analysis, Fifth International Symposium WAVES 2005, Madrid, Spain. ASCE. Paper number 51.spa
dc.relation.referencesBabanin, A. V. and Soloviev, Y. P. (1998). Variability of directional spectra of wind-generated waves, studied by means of wave staff arrays. Marine and Freshwater Research, 49(2):89-101.spa
dc.relation.referencesBabanin, A. V., Tsagareli, K. N., Young, I. R., and Walker, D. J. (2010). Numerical investigation of spectral evolution of wind waves. Part II: Dissipation term and evolution tests. Journal of Physical Oceanography, 40(4):667-683.spa
dc.relation.referencesBattjes, J. A. and Janssen, J. (1978). Energy loss and wave set-up due to breaking of random waves. In Proc. 16th Congerence on Coastal Engineering, pages 569-587, Hamburg, Germany. ASCE.spa
dc.relation.referencesBelcher, S. E. and Hunt, J. C. R. (1993). Turbulent shear flow over slowly moving waves. Journal of Fluid Mechanics, 251:109-148.spa
dc.relation.referencesBeyramzadeh, M., Siadatmousavi, S. M., and Derkani, M. H. (2021). Calibration and skill assessment of two input and dissipation parameterizations in WAVEWATCH-III model forced with ERA5 winds with application to Persian Gulf and Gulf of Oman. Ocean Engineering, 219:108445.spa
dc.relation.referencesBi, F., Song, J., Wu, K., and Xu, Y. (2015). Evaluation of the simulation capability of the Wavewatch III model for Pacific Ocean wave. Acta Oceanologica Sinica, 34(9):43-57.spa
dc.relation.referencesBooij, N., Ris, R. C., and Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4):7649-7666.spa
dc.relation.referencesCampos, R. M., Alves, J. H., Soares, C. G., Guimaraes, L. G., and Parente, C. E. (2018). Extreme wind-wave modeling and analysis in the south atlantic ocean. Ocean Modelling,124:75-93.spa
dc.relation.referencesCavaleri, L., Alves, J.-H., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., Herbers, T., Hwang, P., Janssen, P., Janssen, T., Lavrenov, I., Magne, R., Monbaliu, J., Onorato, M., Polnikov, V., Resio, D., Rogers, W., Sheremet, A., McKee Smith, J., Tolman, H., van Vledder, G., Wolf, J., and Young, I. (2007). Wave modelling - the state of the art. Progress in Oceanography, 75:603-674.spa
dc.relation.referencesChalikov, D. (1995). The parameterization of the wave boundary layer. Journal of Physical Oceanography, 25(6):1333-1349.spa
dc.relation.referencesCharnock, H. (1955). Wind stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81(350):639-640.spa
dc.relation.referencesChawla, A. and Tolman, H. (2007). Automated grid generation for WAVEWATCH III. Technical note 254, NOAA/NWS/NCEP/OMB. 71 pp.spa
dc.relation.referencesde Farias, E. G. G., Lorenzzetti, J. A., and Chapron, B. (2012). Swell and wind-sea distributions over the mid-latitude and tropical north atlantic for the period 2002-2008. International Journal of Oceanography, 2012:306723.spa
dc.relation.referencesDonelan, M. and Pierson Jr, W. (1987). Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. Journal of Geophysical Research: Oceans, 92(C5):4971-5029.spa
dc.relation.referencesDonelan, M. A. (1999). Wind-induced growth and attenuation of laboratory waves. In Sajjadi, S. G., Thomas, N. H., and Hunt, J. C. R., editors, Wind-over-Wave Couplings: Perspectives and Prospects, pages 183-194. Oxford University Press.spa
dc.relation.referencesDonelan, M. A., Babanin, A. V., Young, I. R., and Banner, M. L. (2006). Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input. Journal of Physical Oceanography, 36(8):1672-1689.spa
dc.relation.referencesECMWF (2023). IFS Documentation CY48R1 - Part VII: ECMWF Wave Model. ECMWFspa
dc.relation.referencesFan, Y., Ginis, I., Hara, T., Wright, C. W., and Walsh, E. J. (2009). Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. Journal of Physical Oceanography, 39(9):2097-2116.spa
dc.relation.referencesFan, Y. and Rogers, W. E. (2016). Drag cofficient comparisons between observed and model simulated directional wave spectra under hurricane conditions. Ocean Modelling, 102:1-13.spa
dc.relation.referencesFranklin, J. L. and Brown, D. P. (2006). Tropical Cyclone Report Hurricane Emily. Technical report, National Hurricane Center.spa
dc.relation.referencesGrant, W. D. and Madsen, O. S. (1979). Combined wave and current interaction with a rough bottom. Journal of Geophysical Research: Oceans, 84(C4):1797-1808.spa
dc.relation.referencesHanson, J. L., Tracy, B. A., Tolman, H. L., and Scott, R. D. (2009). Pacific hindcast performance of three numerical wave models. Journal of Atmospheric and Oceanic Technology, 26(8):1614-1633.spa
dc.relation.referencesHasselmann, K. (1974). On the spectral dissipation of ocean waves due to white capping. Boundary-Layer Meteorology, 6(1):107-127.spa
dc.relation.referencesHasselmann, S., Hasselmann, K., Allender, J. H., and Barnett, T. P. (1985). Computations and parametrizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parametrizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15:1378-1391.spa
dc.relation.referencesHersbach, H., Bell, B., Berrisford, P., Hor anyi, A., Sabater, J. M., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., and Dee, D. (2019). Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, 159:17-24.spa
dc.relation.referencesHolthuijsen, L. H. (2007). Waves in Oceanic and Coastal Waters. Cambridge University Press. 387 pp.spa
dc.relation.referencesHolthuijsen, L. H., Powell, M. D., and Pietrzak, J. D. (2012). Wind and waves in extreme hurricanes. Journal of Geophysical Research: Oceans, 117.spa
dc.relation.referencesHwang, P. A. (2011). A note on the ocean surface roughness spectrum. Journal of Atmospheric and Oceanic Technology, 28(3):436-443.spa
dc.relation.referencesJanssen, P. A. E. M. (1982). Quasilinear approximation for the spectrum of wind-generated water waves. Journal of Fluid Mechanics, 117:493-506.spa
dc.relation.referencesJanssen, P. A. E. M. (1989). Wave-induced stress and the drag of air flow over sea waves. Journal of Physical Oceanography, 19(6):745-754.spa
dc.relation.referencesJanssen, P. A. E. M. (1991). Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of Physical Oceanography, 21(1):1631-1642.spa
dc.relation.referencesJanssen, P. A. E. M. (2004). The Interaction of Ocean Waves and Wind. Cambridge University Press. 300 pp.spa
dc.relation.referencesJeffreys, H. (1924). On the formation of water waves by wind. Proc. of the Royal Society of London. Ser. A, 107(742):189-206.spa
dc.relation.referencesJeffreys, H. (1925). On the formation of water waves by wind (second paper). Proc. of the Royal Society of London. Ser. A, 110(754):241-247.spa
dc.relation.referencesJury, M. (2017). Characteristics and meteorology of atlantic swells reaching the caribbean. Journal of Coastal Research, 34spa
dc.relation.referencesKahma, K. K. and Calkoen, C. (1992). Reconciling discrepancies in the observed growth of wind-generated waves. Journal of Physical Oceanography, 22(12):1389-1405.spa
dc.relation.referencesKahma, K. K. and Calkoen, C. J. (1994). Chapter II.8 Growth curve observations. In Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P. A. E. M., editors, Dynamics and Modelling of Ocean Waves, pages 174-182. Cambridge University Press.spa
dc.relation.referencesKalantzi, G. D., Gommenginger, C., and Srokosz, M. (2009). Assessing the performance of the dissipation parameterizations in WAVEWATCH III using collocated altimetry data. Journal of Physical Oceanography, 39(11):2800-2819.spa
dc.relation.referencesKalourazi, M. Y., Siadatmousavi, S. M., Yeganeh-Bakhtiary, A., and Jose, F. (2021). WAVEWATCH-III source terms evaluation for optimizing hurricane wave modeling: A case study of Hurricane Ivan. Oceanologia, 63(2):194-213spa
dc.relation.referencesKomen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P.A. E. M. (1994). Dynamics and Modelling of Ocean Waves. Cambridge University Press. 532 pp.spa
dc.relation.referencesKomen, G. J., Hasselmann, S., and Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14(8):1271-1285.spa
dc.relation.referencesKudryavtsev, V. N., Makin, V. K., and Meirink, J. F. (2001). Simplified model of the air flow above waves. Boundary-Layer Meteorology, 100(1):63{90.spa
dc.relation.referencesKumar, R., Lemos, G., Semedo, A., and Alsaaq, F. (2022). Parameterization-driven uncertainties in single-forcing, single-model wave climate projections from a CMIP6-derived dynamic ensemble. Climate, 10(4):51.spa
dc.relation.referencesLandsea, C. W. and Franklin, J. L. (2013). Atlantic hurricane database uncertainty and presentation of a new database format. Monthly Weather Review, 141(10):3576-3592.spa
dc.relation.referencesLangodan, S., Cavaleri, L., Benetazzo, A., Bertotti, L., Dasari, H. P., and Hoteit, I. (2023). The peculiar wind and wave climatology of the arabian gulf. Ocean Engineering, 290:116158.spa
dc.relation.referencesLee, B.-C., Fan, Y.-M., Chuang, L., and Kao, C. (2009). Parametric sensitivity analysis of the wavewatch iii model. Terrestrial Atmospheric and Oceanic Sciences - TERR ATMOS OCEAN SCI, 20.spa
dc.relation.referencesLeonard, B. (1991). The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering, 88(1):17-74.spa
dc.relation.referencesLi, J. G. and Saulter, A. (2014). Unified global and regional wave model on a multi-resolution grid. Ocean Dynamics, 64(11):1657-1670.spa
dc.relation.referencesLin, S., Sheng, J., and Xing, J. (2020). Performance evaluation of parameterizations for wind input and wave dissipation in the spectral wave model for the Northwest Atlantic Ocean. Atmosphere - Ocean, 58(4):258-286.spa
dc.relation.referencesLiu, Q., Babanin, A., Fan, Y., and Zieger, S. (2017). Numerical simulations of ocean surface waves under hurricane conditions: assessment of existing model permormance. Ocean Modelling, 118:73-93.spa
dc.relation.referencesLiu, Q., Babanin, A. V., Rogers, W. E., Zieger, S., Young, I. R., Bidlot, J. R., Durrant, T., Ewans, K., Guan, C., Kirezci, C., Lemos, G., MacHutchon, K., Moon, I. J., Rapizo, H., Ribal, A., Semedo, A., and Wang, J. (2021). Global wave hindcasts using the observation-based source terms: Description and validation. Journal of Advances in Modeling Earth Systems, 13(8):e2021MS002493.spa
dc.relation.referencesLiu, Q., Rogers, W. E., Babanin, A. V., Young, I. R., Romero, L., Zieger, S., Qiao, F., and Guan, C. (2019). Observation-based source terms in the third-generation wave model wavewatch iii: Updates and verification. Journal of Physical Oceanography, 49:489-517.spa
dc.relation.referencesLonguet-Higgins, M. S., Cartwrigth, D. E., and Smith, N. D. (1963). Observations of the directional spectrum of sea waves using the motions of a floating buoy. In Ocean Wave Spectra: Proceedings of a conference, pages 111-136, New Jersey, USA. Prentice Hall.spa
dc.relation.referencesMiles, J. W. (1957). On the generation of surface waves by shear flows. Journal of Fluid Mechanics, 3(2):185-204.spa
dc.relation.referencesMiles, J. W. (1959). On the generation of surface waves by shear flows. Part 2. Journal of Fluid Mechanics, 6(4):568-582.spa
dc.relation.referencesMiles, J. W. (1960). On the generation of surface waves by turbulent shear flows. Journal of Fluid Mechanics, 7(3):469-478.spa
dc.relation.referencesMontoya, R. D., Arias, A. O., Royero, J. C., and Ocampo-Torres, F. J. (2013). A wave parameters and directional spectrum analysis for extreme winds. Ocean Engineering, 67:100-118.spa
dc.relation.referencesMontoya, R. D., Menendez, M., and Osorio, A. F. (2018). Exploring changes in caribbean hurricane-induced wave heights. Ocean Engineering, 163:126-135.spa
dc.relation.referencesMoon, I.-J., Ginis, I., Hara, T., Tolman, H. L., Wright, C. W., and Walsh, E. J. (2003). Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. Journal of Physical Oceanography, 33(8):1680-1706.spa
dc.relation.referencesMycoo, M., Wairiu, M., Campbell, D., Duvat, V., Golbuu, Y., Maharaj, S., Nalau, J., Nunn, P., Pinnegar, J., and Warrick, O. (2022). Small islands. In P ortner, H. O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., L oschke, S., M oller, V., Okem, A., and Rama, B., editors, Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, pages 2043-2121. Cambridge University Press.spa
dc.relation.referencesPeirson, W. L., Garcia, A. W., and Pells, S. E. (2003). Water wave attenuation due to opposing wind. Journal of Fluid Mechanics, 487:345-365.spa
dc.relation.referencesPhillips, O. M. (1957). On the generation of waves by turbulent wind. Journal of Fluid Mechanics, 2(5):417-445spa
dc.relation.referencesPhillips, O. M. (1985). Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. Journal of Fluid Mechanics, 156:505-531.spa
dc.relation.referencesPianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., and Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling and Software, 79:214-232spa
dc.relation.referencesPlant, W. J. (1982). A relationship between wind stress and wave slope. Journal of Geophysical Research, 87(C3):1961-1967.spa
dc.relation.referencesPortilla-Yandún, J., Cavaleri, L., and Van Vledder, G. P. (2015). Wave spectra partitioning and long-term statistical distribution. Ocean Modelling, 96:148-160. Waves and coastal, regional and global processes.spa
dc.relation.referencesQian, C., Jiang, H., Wang, X., and Ge, C. (2019). Climatology of wind-seas and swells in the china seas from wave hindcast. Journal of Ocean University of China, 19.spa
dc.relation.referencesQiao, W., Song, J., He, H., and Li, F. (2019). Application of different wind field models and wave boundary layer model to typhoon waves numerical simulation in wavewatch iii model. Tellus, Series A: Dynamic Meteorology and Oceanography, 71:1-20.spa
dc.relation.referencesRascle, N. and Ardhuin, F. (2013). A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Modelling, 70:174-188.spa
dc.relation.referencesRogers, W. E., Babanin, A. V., and Wang, D. W. (2012). Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations. Journal of Atmospheric and Oceanic Technology, 29(9):1329-1346.spa
dc.relation.referencesShabani, B., Babanin, A. V., and Baldock, T. E. (2016). Observations of the directional distribution of the wind energy input function over swell waves. Journal of Geophysical Research: Oceans, 121(2):1174-1193spa
dc.relation.referencesSnyder, R. L., Dobson, F. W., Elliott, J. A., and Long, R. B. (1981). Array measurements of atmospheric pressure fluctuations above surface gravity waves. Journal of Fluid Mechanics, 102:1-59.spa
dc.relation.referencesSnyder, R. L., Thacker, W. C., Hasselmann, K., Hasselmann, S., and Barzel, G. (1993). Implementation of an efficient scheme for calculating nonlinear transfer from wave-wave interactions. Journal of Geophysical Research: Oceans, 98(C8):14507-14525.spa
dc.relation.referencesSoran, M. B., Amarouche, K., and Akpinar, A. (2022). Spatial calibration of WAVEWATCH III model against satellite observations using different input and dissipation parameterizations in the Black Sea. Ocean Engineering, 257:111627.spa
dc.relation.referencesStopa, J. E., Ardhuin, F., Babanin, A., and Zieger, S. (2016). Comparison and validation of physical wave parameterizations in spectral wave models. Ocean Modelling, 103:2-17.spa
dc.relation.referencesStopa, J. E., Cheung, K. F., Tolman, H. L., and Chawla, A. (2013). Patterns and cycles in the climate forecast system reanalysis wind and wave data. Ocean Modelling, 70:207-220.spa
dc.relation.referencesTeixeira, M. A. C. and Belcher, S. E. (2002). On the distortion of turbulence by a progressive surface wave. Journal of Fluid Mechanics, 458:229-267.spa
dc.relation.referencesTerwey, W. D. and Montgomery, M. T. (2008). Secondary eyewall formation in two idealized, full-physics modeled hurricanes. Journal of Geophysical Research: Atmospheres, 113(D12112).spa
dc.relation.referencesThe WAVEWATCH III Development Group (WW3DG) (2019). User manual and system documentation of WAVEWATCH III version 6.07. Technical note 333, NOAA/NWS/NCEP/MMAB. 465 pp. + Appendices.spa
dc.relation.referencesThomas, T. J. and Dwarakish, G. (2015). Numerical wave modelling - A review. Aquatic Procedia, 4:443-448.spa
dc.relation.referencesTolman, H. L. (1991). A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. Journal of Physical Oceanography, 21(6):782-797.spa
dc.relation.referencesTolman, H. L. (2002). Validation of WAVEWATCH III version 1.15 for a global domain. Technical note 213, NOAA / NWS / NCEP / OMB. 33 pp.spa
dc.relation.referencesTolman, H. L. and Chalikov, D. (1996). Source terms in a third-generation wind wave model. Journal of Physical Oceanography, 26(11):2497-2518spa
dc.relation.referencesTsagareli, K. (2009). Numerical investigation of wind input and spectral dissipation in evolution of wind waves. Ph.d. thesis, University of Adelaide, Adelaide, Australia.spa
dc.relation.referencesTsagareli, K. N., Babanin, A. V., Walker, D. J., and Young, I. R. (2010). Numerical investigation of spectral evolution of wind waves. Part I: Wind-input source function. Journal of Physical Oceanography, 40(4):656-666.spa
dc.relation.referencesUmesh, P. A. and Behera, M. R. (2020). Performance evaluation of input-dissipation parameterizations in WAVEWATCH III and comparison of wave hindcast with nested WAVEWATCHIII-SWAN in the Indian Seas. Ocean Engineering, 202:106959.spa
dc.relation.referencesvan der Westhuyseen, A. (2007). Advances in the spectral modelling of wind waves in the nearshore. Ph.d. thesis, Delft University of Technology, Delft, Netherlandsspa
dc.relation.referencesWalsh, E. J., Vandemark, D., Wright, C. W., Swift, R. N., Scott, J. F., and Hines, D. E. (1999). Measuring directional wave spectra and wind speed with a scanning radar altimeter. In IEEE 1999 International Geoscience and Remote Sensing Symposium (IGARSS), volume 3, pages 1860{1862, Hamburg, Germany. IEEE.spa
dc.relation.referencesWAMDIG (1988). The WAM Model - A third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12):1775-1810.spa
dc.relation.referencesWright, C. W., Walsh, E. J., Vandemark, D., Krabill, W. B., Garcia, A. W., Houston, S. H., Powell, M. D., Black, P. G., and Marks, F. D. (2001). Hurricane directional wave spectrum spatial variation in the open ocean. Journal of Physical Oceanography, 31(8 PART 2):2472-2488.spa
dc.relation.referencesWu, J. (1982). Wind-stress coefficients over sea surface from breeze to hurricane. Journal of Geophysical Research: Oceans, 87(C12):9704-9706spa
dc.relation.referencesWu, J., Popinet, S., and Deike, L. (2022). Revisiting wind wave growth with fully coupled direct numerical simulations. Journal of Fluid Mechanics, 951:A18.spa
dc.relation.referencesXu, F., Perrie, W., Toulany, B., and Smith, P. C. (2007). Wind-generated waves in Hurricane Juan. Ocean Modelling, 16(3-4):188-205.spa
dc.relation.referencesYang, H., Liang, B., and Shao, Z. (2022). Study on the influence range of tropical cyclones on ocean waves. Ocean Engineering, 266:112864.spa
dc.relation.referencesYoung, I. R. (1994). On the measurement of directional wave spectra. Applied Ocean Research, 16(5):283-294.spa
dc.relation.referencesYoung, I. R. (2006). Directional spectra of hurricane wind waves. Journal of Geophysical Research: Oceans, 111(8):1-14.spa
dc.relation.referencesYoung, I. R. and Babanin, A. V. (2006). Spectral distribution of energy dissipation of wind-generated waves due to dominant wave breaking. Journal of Physical Oceanography, 36(3):376-394.spa
dc.relation.referencesZieger, S., Babanin, A. V., Rogers, W. E., and Young, I. R. (2015). Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modelling, 96:2-25spa
dc.relation.referencesZieger, S., Greenslade, D., and Kepert, J. D. (2018). Wave ensemble forecast system for tropical cyclones in the Australian region. Ocean Dynamics, 68(4-5):603-625.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.lembOleaje de tempestad - América
dc.subject.lembHuracanes - Investigaciones
dc.subject.lembMeteorología - Investigaciones
dc.subject.proposalspectral wave modellingeng
dc.subject.proposalwind inputeng
dc.subject.proposalwhitecapping dissipationeng
dc.subject.proposaldirectional spreadingeng
dc.subject.proposaldirectional spectrumeng
dc.subject.proposalhurricane waveseng
dc.subject.proposalmódelacion espectral del oleajespa
dc.subject.proposalentrada energía por vientospa
dc.subject.proposaldisipación por whitecappingspa
dc.subject.proposalespectro direccionalspa
dc.subject.proposaloleaje extremospa
dc.subject.proposaldistribución direccionalspa
dc.titleAnalysis of the directional distribution of the wave energy during different climate conditionseng
dc.title.translatedAnálisis de la distribución direccional de la energía del oleaje durante diferentes condiciones climáticasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1214743394.2024.pdf
Tamaño:
112.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: