Intensificación de la eficiencia energética para un sistema energético multidominio por intervención directa en su dinámica

dc.contributor.advisorHernández Riveros, Jesús Antonio
dc.contributor.authorAmador Soto, Gerardo José
dc.contributor.orcidAmador Soto, Gerardo Jose [0009000197374812]spa
dc.contributor.researchgroupGrupo de Investigación en Inteligencia Computacionalspa
dc.date.accessioned2024-07-05T16:15:58Z
dc.date.available2024-07-05T16:15:58Z
dc.date.issued2024
dc.descriptionIlustracionesspa
dc.description.abstractEl uso eficiente de la energía es actualmente un objetivo global para mejorar la calidad de vida y promover el progreso económico y social. Los sistemas dinámicos de múltiples dominios energéticos integran diversas formas de energía (mecánica, eléctrica, térmica, neumática y química) para satisfacer variadas necesidades de producción y consumo. Estos sistemas complejos, presentes en equipos y maquinaria de todo tipo, se caracterizan por sus múltiples componentes altamente interrelacionados. Tradicionalmente, el análisis de estos sistemas bajo un enfoque reduccionista motivado por la simplificación propendió a la omisión de sus dinámicas internas, limitando el desarrollo de nuevas estrategias operativas basadas en su naturaleza dinámica y compleja. Este trabajo propone una estrategia para intensificar la eficiencia energética de estos sistemas, considerando su manifestación física real. Mediante una estructura de control inteligente basada exclusivamente en comportamiento medible, se evalúa y proponen nuevas trayectorias de comportamiento disponibles bajo condicionantes de operación sujetas a influencias del entorno. Los resultados demuestran la efectividad del método al lograr con precisión los objetivos operativos deseados, utilizando menos energía de la fuente de inyección de potencia del sistema.spa
dc.description.abstractEfficient energy use is currently a global objective to improve quality of life and promote economic and social progress. Dynamic multi-domain energy systems integrate various forms of energy (mechanical, electrical, thermal, pneumatic, and chemical) to meet diverse production and consumption needs. These complex systems, present in equipment and machinery of all types, are characterized by their multiple highly interrelated components. Traditionally, the analysis of these systems under a reductionist approach motivated by simplification tended to omit their internal dynamics, limiting the development of new operational strategies based on their dynamic and complex nature. This work proposes a strategy to intensify the energy efficiency of these systems, considering their real physical manifestation. Through an intelligent control structure based exclusively on measurable behavior, new available behavioral trajectories are evaluated and proposed under operating conditions subject to environmental influences. The results demonstrate the effectiveness of the method by accurately achieving the desired operational objectives while using less energy from the system's power injection source.eng
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaEficiencia Energéticaspa
dc.format.extent103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86405
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAjitha, A. R., & Radhika, S. (2023). A Comprehensive Review of Demand Response Strategies and Role of Emergent Technologies for a Sustainable Home Energy Management Systems. International Journal of Ambient Energy, 1–55. https://doi.org/10.1080/01430750.2023.2233522spa
dc.relation.referencesAndrei Morch, Marialaura Di Somma, Christina Papadimitriou, Hanne Sæle, Valeria Palladino, Jesús Fraile Ardanuy, Giuseppe Conti, Mosè Rossi, & Gabriele Comodi. (2023). Technologies enabling evolution of Integrated Local Energy Communities. https://doi.org/10.36227/techrxiv.22133294spa
dc.relation.referencesArronategui, U., Bañares, J. Á., & Colom, J. M. (2023). A Framework to Support Decision-Making Based on AI and Simulation of Large-Scale Models. Lecture Notes in Computer Science, 148–152. https://doi.org/10.1007/978-3-031-29315-3_14spa
dc.relation.referencesÅström, K. J., Albertos, P., Blanke, M., Isidori, A., Schaufelberger, W., & Sanz, R. (2012). Control of Complex Systems. https://doi.org/10.1007/978-1-4471-0349-3spa
dc.relation.referencesAyres, R. U. (2016). Energy and Technology. 231–253. https://doi.org/10.1007/978-3-319-30545-5_8spa
dc.relation.referencesAzieva, R. K. (2023). Impact of energy efficiency on activities of enterprise. 2023(1), 28–35. https://doi.org/10.24143/2073-5537-2023-1-28-35spa
dc.relation.referencesBarbeito, I., Zaragoza, S., Tarrío-Saavedra, J., & Naya, S. (2017). Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data. Applied Energy, 190, 1–17. https://doi.org/https://doi.org/10.1016/j.apenergy.2016.12.100spa
dc.relation.referencesBatlle, C., & Doria-Cerezo, A. (2006). Energy-based modelling and simulation of the interconnection of a back-to-back converter and a doubly-fed induction machine. 2006 American Control Conference, 6 pp. http://doi.org/10.1109/ACC.2006.1656489spa
dc.relation.referencesBejarano, G. (2017). Optimization and multivariable control of refrigeration systems. Universidad de Sevilla.spa
dc.relation.referencesBjørn H. Samset. (2016). Energy and Climate: Vision for the Future.spa
dc.relation.referencesBlenk, T., & Weindl, C. (2023). Fundamentals of State-Space Based Load Flow Calculation of Modern Energy Systems †. Energies, 16(13). https://doi.org/10.3390/en16134872spa
dc.relation.referencesBorutzky, W. (2011). Bond Graph Modelling of Engineering Systems: Theory, Applications and Software Support.spa
dc.relation.referencesBorutzky, W. (2016). Bond graphs for modelling, control and fault diagnosis of engineering systems. In Bond Graphs for Modelling, Control and Fault Diagnosis of Engineering Systems, Second Edition. https://doi.org/10.1007/978-3-319-47434-2spa
dc.relation.referencesBroenink, J. F. (1999). Introduction to physical systems modelling with bond graphs. http://www.menet.umn.edu/~lixxx099/ME8287_S11/BondGraphsV2.pdfspa
dc.relation.referencesCavallaro, A., Gennaro, F. Di, Euzenat, J., Peters-Anders, J., & Osello, A. (2014). Vision of energy systems for smart cities. 35. https://hal.archives-ouvertes.fr/hal-01180924/documentspa
dc.relation.referencesChaudhary, P. K., & Dubey, D. S. P. (2016). Efficiency Optimization of Induction Motor Drive in Steady- State using Artificial Neural Network. International Conference on Computation of Power, 2, 295–302. http://doi.org/10.1109/ICCPEIC.2016.7557246spa
dc.relation.referencesCheng, Q., Goh, B. W., & Kim, J. B. (2018). Internal Control and Operational Efficiency. Contemporary Accounting Research, 35(2), 1102–1139. https://doi.org/10.1111/1911-3846.12409spa
dc.relation.referencesChoudhary, P. K., & Choudhary, U. K. (2017). Efficiency optimization of pump motor drive at steady-state condition. 2017 {IEEE} {International} {Conference} on {Power}, {Control}, {Signals} and {Instrumentation} {Engineering} ({ICPCSI}), 342–347. https://doi.org/10.1109/ICPCSI.2017.8392312spa
dc.relation.referencesChuang, H.-C., Chan, C.-C., Weng, W.-B., & Lee, C.-T. (2018). Energy saving technique for natural stone cutting machine by constant speed control in stone industry. Journal of the Chinese Institute of Engineers, 41(1), 61–68. https://doi.org/10.1080/02533839.2017.1410450spa
dc.relation.referencesCicchella, A. (2023). Human Power Production and Energy Harvesting. Encyclopedia, 3(2), 698–704. https://doi.org/10.3390/encyclopedia3020050spa
dc.relation.referencesCichy, M., Kropiwnicki, J., & Kneba, Z. (2015). A Model of Thermal Energy Storage According to the Convention of Bond Graphs (Bg) and State Equations (Se). Polish Maritime Research, 22(4), 41–47. https://doi.org/10.1515/pomr-2015-0069spa
dc.relation.referencesCinar, S., & Cimen, H. (2012). On the Investigation of the Energy Efficiency Using PID and Fuzzy Logic Controllers in a Marble Machine, 5(4), 73–80.spa
dc.relation.referencesCoelho, R. L. (2014). On the Concept of Energy: Eclecticism and Rationality. Science Education, 23(6), 1361–1380. https://doi.org/10.1007/S11191-013-9634-1spa
dc.relation.referencesCraig B. Smith, & Kelly E. Parmenter. (2016). Energy Management Principles: Applications, Benefits, Savings (second).spa
dc.relation.referencesCrespo, E. A., & Coutinho, J. A. P. (2022). Insights into the Limitations of Parameter Transferability in Heteronuclear SAFT-type Equations of State.spa
dc.relation.referencesDubois, D. (1987). An application of fuzzy arithmetic to the optimization of industrial machining processes. Mathematical Modelling, 9(6), 461–475. http://doi.org/10.1016/0270-0255(87)90512-4spa
dc.relation.referencesDwyer, A. O. (2006). Reducing energy costs by optimizing controller tuning, 0–6.spa
dc.relation.referencesDzyuba, A. P., Solovyeva, I., & Semikolenov, A. V. (2023). Raising the Resilience of Industrial Manufacturers through Implementing Natural Gas-Fired Distributed Energy Resource Systems with Demand Response. Sustainability, 15(10), 8241. https://doi.org/10.3390/su15108241spa
dc.relation.referencesFong, B., Sobocinski, P., & Rapisarda, P. (2016). A categorical approach to open and interconnected dynamical systems. 495–504. https://doi.org/10.1145/2933575.2934556spa
dc.relation.referencesFrigo, G. (2017). Energy ethics, homogenization, and hegemony: A reflection on the traditional energy paradigm. Energy Research and Social Science, 30, 7–17. https://doi.org/10.1016/J.ERSS.2017.06.030spa
dc.relation.referencesGavrilova, A. A., & Salov, A. (2019). System Analysis and Modeling of the Infrastructure of Production Activities of Generating Companies. https://doi.org/10.1109/CSCMP45713.2019.8976680spa
dc.relation.referencesGavrilova, A. A., & Salov, A. G. (2020). Systemic Analysis of Energy Systems in the New Economy. https://doi.org/10.1109/FAREASTCON50210.2020.9271638spa
dc.relation.referencesGhiaus, C. (1999). Fault diagnosis of air conditioning systems based on qualitative bond graph. Energy and Buildings. https://doi.org/https://doi.org/10.1016/S0378-7788(98)00070-Xspa
dc.relation.referencesGillingham, K., Huang, P., Buehler, C., Peccia, J., & Gentner, D. R. (2021). The climate and health benefits from intensive building energy efficiency improvements. Science Advances, 7(34). https://doi.org/10.1126/SCIADV.ABG0947spa
dc.relation.referencesGupta, J., & Chakraborty, M. (2021). Energy efficiency in buildings. 457–480. https://doi.org/10.1016/B978-0-12-822989-7.00016-0spa
dc.relation.referencesHan, S., Keel, L. H., & Bhattacharyya, S. P. (2023). Robust Decoupling, Disturbance Rejection and Linearization of Unknown Nonlinear Systems. 606–618. https://doi.org/10.1007/978-3-031-28076-4_44spa
dc.relation.referencesHan, X. (2012). Intelligent efficient engine and control method.spa
dc.relation.referencesHaoye, S., Hongzhe, Q., & Guozheng, T. (2020). Intelligent control system for high-efficiency aluminum electrolysis production.spa
dc.relation.referencesHasan, S., Zeyad, M. T., Ahmed, S. M. M., & Anubhove, Md. S. T. (2023). Optimization and planning of renewable energy sources based microgrid for a residential complex. Environmental Progress & Sustainable Energy. https://doi.org/10.1002/ep.14124spa
dc.relation.referencesHazi, A., Badea, A., Hazi, G., Necula, H., & Grigore, R. (2009). Increase of Paper Mill Energy Efficiency by Optimization Energy Supply System Industry. Romania, 1–5.spa
dc.relation.referencesHe, W., & Huang, Y. (2021). Real-time Energy Optimization of Hybrid Electric Vehicle in Connected Environment Based on Deep Reinforcement Learning. IFAC-PapersOnLine, 54(10), 176–181. https://doi.org/https://doi.org/10.1016/j.ifacol.2021.10.160spa
dc.relation.referencesHermes, C. J. L., & Melo, C. (2008). A first-principles simulation model for the start-up and cycling transients of household refrigerators. International Journal of Refrigeration, 31(8), 1341–1357. https://doi.org/10.1016/j.ijrefrig.2008.04.003spa
dc.relation.referencesHewitt, S. (2022a). History of Energy. 72–130. https://doi.org/10.53478/tuba.978-625-8352-00-9.ch02spa
dc.relation.referencesHewitt, S. (2022b). History of Energy. 72–130. https://doi.org/10.53478/tuba.978-625-8352-00-9.ch02spa
dc.relation.referencesHoldren, J. P. (2007). Energy and Sustainability. Science, 315(5813), 737. https://doi.org/10.1126/SCIENCE.1139792spa
dc.relation.referencesHoyler, T. L. (2023). Intelligent energy management systems: a review. Artificial Intelligence Review. https://doi.org/10.1007/s10462-023-10441-3spa
dc.relation.referencesHroncová, D., & Gmiterko, A. (2013). Bond Graphs of the Electrical RLC Circuit. American Journal of Mechanical Engineering, 1(7), 318–323. https://doi.org/10.12691/AJME-1-7-33spa
dc.relation.referencesHu, X., Wang, H., & Tang, X. (2017). Cyber-physical control for energy-saving vehicle following with connectivity. IEEE Transactions on Industrial Electronics, 64(11), 8578–8587. https://doi.org/10.1109/TIE.2017.2703673spa
dc.relation.referencesHybrid Physics and Data-Driven Method for Modeling and Analysis of Electricity–Heat Integrated Energy Systems. (2023). IEEE Systems Journal, 17(2), 2847–2857. https://doi.org/10.1109/jsyst.2022.3213048spa
dc.relation.referencesIbrahim Dincer, Marc A. Rosen, & Pouria Ahmadi. (2017). Optimization of Energy Systems.spa
dc.relation.referencesInnocent, K., Leila, B., & Atieh, D. (2023). Integrated Demand Response Programs in Energy Hubs: A Review of Applications, Classifications, Models and Future Directions. https://doi.org/10.20944/preprints202305.1021.v1spa
dc.relation.referencesInternational Energy Agency, I. (2022). Energy Efficiency 2022. www.iea.orgspa
dc.relation.referencesIshankhodjayev, G., & Sultanov, M. (2022). Development of Information Support for Decision-Making in Intelligent Energy Systems. 1–5. https://doi.org/10.1109/ICISCT55600.2022.10146931spa
dc.relation.referencesJahangeer, K. A., Tay, A. A. O., & Raisul Islam, M. (2011). Numerical investigation of transfer coefficients of an evaporatively-cooled condenser. Applied Thermal Engineering, 31(10), 1655–1663. https://doi.org/10.1016/j.applthermaleng.2011.02.007spa
dc.relation.referencesJia, S. Q., Xu, J. J., Pan, Y., Tian, L., & Gu, R. (2022). Operation optimization study of integrated energy system based on multi-energy complementary. Journal of Physics: Conference Series, 2237(1), 12031. https://doi.org/10.1088/1742-6596/2237/1/012031spa
dc.relation.referencesJing, R., Ani, V., & Bone, J. (2023). Integrated energy system. 165–176. https://doi.org/10.1016/b978-0-12-821204-2.00138-0spa
dc.relation.referencesJordan, M., Corry, J., & Jaques, I. (2017). Energy efficiency : a key enabler for energy access. 1–13.spa
dc.relation.referencesJunsheng, L. (2016). Intelligent energy efficiency optimizing control system for central air conditioning system and control method of intelligent energy efficiency optimizing control system.spa
dc.relation.referencesKaya, A. (2022). Queue models Evaluation of Simulation for Managerial Decision Support Systems: Application of Two-Stage Production Control. İzmir Sosyal Bilimler Dergisi, 4(2), 89–96. https://doi.org/10.47899/ijss.1193183spa
dc.relation.referencesKiptoo, M. K., Adewuyi, O. B., Howlader, H. O. R., Nakadomari, A., & Senjyu, T. (2023). Optimal Capacity and Operational Planning for Renewable Energy-Based Microgrid Considering Different Demand-Side Management Strategies. Energies, 16(10), 4147. https://doi.org/10.3390/en16104147spa
dc.relation.referencesKoshti, A. M. (2023). Transfer function models and sensitivity analysis. 12488, 124880T-124880T. https://doi.org/10.1117/12.2652138spa
dc.relation.referencesKoskinen, K. U. (2013). Systemic View and Systems Thinking. 13–30. https://doi.org/10.1007/978-3-319-00104-3_3spa
dc.relation.referencesKypuros, J. A. (2013). System dynamics and control with bond graph modeling. https://doi.org/10.1201/b14676spa
dc.relation.referencesL Pei, L., ML, M., & XW, X. W. (2023). Integrated Energy Systems towards Carbon Neutrality. https://doi.org/10.3390/books978-3-0365-6804-1spa
dc.relation.referencesLaimon, M., Yusaf, T., Mai, T., Goh, S., & Alrefae, W. (2022). A systems thinking approach to address sustainability challenges to the energy sector. International Journal of Thermofluids, 15, 100161. https://doi.org/10.1016/j.ijft.2022.100161spa
dc.relation.referencesLawrence E. Jones. (2017). Renewable Energy Integration Practical Management of Variability, Uncertainty, and Flexibility in Power Grids.spa
dc.relation.referencesLin, Y. (1999). General Systems Theory: A Mathematical Approach. Springer US. https://doi.org/10.1007/b116863spa
dc.relation.referencesLobontiu, N. (2018). Chapter 7 – Transfer Function Approach. 323–378. https://doi.org/10.1016/B978-0-12-804559-6.00007-5spa
dc.relation.referencesLopes, M. B., Antunes, C. H., & Martins, N. (2015). Towards more effective behavioural energy policy: An integrative modelling approach to residential energy consumption in Europe. Energy Research and Social Science, 7, 84–98. https://doi.org/10.1016/J.ERSS.2015.03.004spa
dc.relation.referencesMaheedhar, T. D. (2023). Advanced Technologies in Integrated Energy Systems. 105–117. https://doi.org/10.1002/9781119847564.ch8spa
dc.relation.referencesMakarov, A. (2022). Energy of the “Damned Side of Things.” Logos et Praxis, 3, 89–94. https://doi.org/10.15688/lp.jvolsu.2022.3.10spa
dc.relation.referencesMashrur Chowdhury, Amy Apon, & Kakan Dey. (2017). Data Analytics for Intelligent Transportation Systems.spa
dc.relation.referencesMoezzi, M., & Lutzenhiser, L. (2020). Beyond energy behaviour: A broader way to see people for climate change technology planning. 89–106. https://doi.org/10.1016/B978-0-12-818567-4.00003-Xspa
dc.relation.referencesMarine, C. (2020). Energy efficiency, the overlooked climate emergency solution. Economic Policy, 15(2), 48–67.spa
dc.relation.referencesNeil A. Duffie. (2022). Control Theory Applications for Dynamic Production Systems: Time and Frequency Methods for Analysis and Design. Wiley.spa
dc.relation.referencesPeña, M., Biscarri, F., Personal, E., & León, C. W. A. (2022). Decision Support System to Classify and Optimize the Energy Efficiency in Smart Buildings: A Data Analytics Approach. Sensors, 22(4), 1380. https://doi.org/10.3390/s22041380spa
dc.relation.referencesPillai, H. K., Shankar, S., Pillai, H. K., & Shankar, S. (1999). A Behavioral Approach to Control of Distributed Systems. Siam Journal on Control and Optimization. https://doi.org/10.1137/s0363012997321784spa
dc.relation.referencesPothitou, M. (2015). Linking energy behaviour, attitude and habits, and social practices with environmental predisposition and knowledge:what are the factors with influence on environmental behaviour?spa
dc.relation.referencesPothitou, M., Kolios, A., Varga, L., & Gu, S. (2016). A framework for targeting household energy savings through habitual behavioural change. International Journal of Sustainable Energy, 35(7), 686–700. https://doi.org/10.1080/14786451.2014.936867spa
dc.relation.referencesQin, C., Zhao, J., & Wang, W. (2023). Hybrid Physics and Data-Driven Method for Modeling and Analysis of Electricity–Heat Integrated Energy Systems. IEEE Systems Journal, 17, 2847–2857. https://doi.org/10.1109/JSYST.2022.3213048spa
dc.relation.referencesRane, D., Sharma, S., & Verma, A. (2022). Multi-Objective Building Energy Management for Integrated Energy Systems Considering Greenhouse Gas Emissions. 530–535. https://doi.org/10.1109/NPSC57038.2022.10068981spa
dc.relation.referencesRosen, M. A., & Farsi, A. (2022). Sustainability and sustainable energy. 107–132. https://doi.org/10.1016/b978-0-323-99872-7.00007-3spa
dc.relation.referencesSass, L. L. (2004). Symbolic modeling of electromechanical multibody, (January 2004). Retrieved from http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-0102004-172924/spa
dc.relation.referencesSchné, T., Jaskó, S., & Simon, G. (2015). Dynamic models of a home refrigerator. MACRo 2015- 5th International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics, 105–114. https://doi.org/10.1515/macro-2015-0010spa
dc.relation.referencesSchné, T., Jaskó, S., & Simon, G. (2018). Embeddable adaptive model predictive refrigerator control for cost-efficient and sustainable operation. Journal of Cleaner Production, 190, 496–507. http://doi.org/10.1016/j.jclepro.2018.04.137spa
dc.relation.referencesSeleem, M. S. (2023). Energy Transition: Changing the Brazilian Landscape Over Time. 1–15. https://doi.org/10.1007/978-3-031-21033-4_1spa
dc.relation.referencesSelva, J. A. N. (2010). A systemic vision of belief systems and ideologies. ViXra. https://rua.ua.es/dspace/bitstream/10045/24798/1/Tesis_Nescolarde.pdfspa
dc.relation.referencesSellami, A., Aridhi, E., Mzoughi, D., & Mami, A. (2018). Performance of the bond graph approach for the detection and localization of faults of a refrigerator compartment containing an ice quantity. https://doi.org/10.1142/S2010132518500281spa
dc.relation.referencesSerale, G., Fiorentini, M., Capozzoli, A., Bernardini, D., & Bemporad, A. (2018). Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: problem formulation, applications and opportunities. Energies, 11(3). https://doi.org/10.3390/en11030631spa
dc.relation.referencesShaikh, P. H., Nor, N. B. M., Nallagownden, P., Elamvazuthi, I., & Ibrahim, T. (2016). Intelligent multi-objective control and management for smart energy efficient buildings. International Journal of Electrical Power & Energy Systems, 74, 403–409. https://doi.org/https://doi.org/10.1016/j.ijepes.2015.08.006spa
dc.relation.referencesShin, S.-J., Woo, J., & Rachuri, S. (2017). Energy efficiency of milling machining: {Component} modeling and online optimization of cutting parameters. Journal of Cleaner Production, 161, 12–29. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.05.013spa
dc.relation.referencesSievers, J., & Blank, T. (2023). A Systematic Literature Review on Data-Driven Residential and Industrial Energy Management Systems. Energies, 16(4), 1688. https://doi.org/10.3390/en16041688spa
dc.relation.referencesSoto., G. J. A., & Hernandez-Riveros., J.-A. (2019). Evolutionary split range controller for a refrigeration system. https://doi.org/10.5220/0007930803410351spa
dc.relation.referencesSoto, G. J. A., López, J. M. G., & Hernández-Riveros, J. A. (2018). Coupled evolutionary tuning of PID controllers for the benchmark on vapor compression refrigeration. https://doi.org/10.1016/j.ifacol.2018.06.146spa
dc.relation.referencesStuart Borlase. (2013). Smart Grids: Infrastructure, Technology, and Solutions" .spa
dc.relation.referencesSundqvist, J.-O., Baky, A., Björklund, A., Carlsson, M., Eriksson, O., Frostell, B., Granath, J., & Thyselius, L. (1999). Systemanalys av energiutnyttjande från avfall - utvärdering av energi, miljö och ekonomi : Översiktsrapport.spa
dc.relation.referencesSurana, K., Chikkatur, A. P., & Sagar, A. D. (2013). Technology Innovation and Energy. 27–43. https://doi.org/10.1016/B978-0-12-409548-9.09059-Xspa
dc.relation.referencesTian, H., Wang, K., Cui, X.-F., Chen, Z., & Zhao, E. (2023). Multi-objective planning of microgrid based on renewable energy sources and energy storage system. Journal of Energy Storage, 68, 107803. https://doi.org/10.1016/j.est.2023.107803spa
dc.relation.referencesTrentelman, H. L., & Willems, J. C. (2003). The behavioral approach as a paradigm for modeling interconnected systems. 9, 296–306. https://doi.org/10.3166/EJC.9.296-306spa
dc.relation.referencesUllah, Z., Wang, S. R., Elkadeem, M. R., & Kotb, K. M. (2023). Optimal Capacity Planning and Analysis of a Sustainable Solar/Wind Microgrid in Rural Areas. 299–303. https://doi.org/10.1109/GreenTech56823.2023.10173808spa
dc.relation.referencesUparikar, Miss. U. A., & Jumale, N. V. (2020). Review on supercapacitor and battery power management in electric vehicle application. International Journal of Advance Research and Innovative Ideas in Education, 6(2), 1645–1649.spa
dc.relation.referencesvan Schoor, G., Uren, K. R., van Wyk, M. A., van Vuuren, P. A., & du Rand, C. P. (2014). An energy perspective on modelling, supervision, and control of large-scale industrial systems: {Survey} and framework. IFAC Proceedings Volumes, 47(3), 6692–6703. https://doi.org/10.3182/20140824-6-ZA-1003.02190spa
dc.relation.referencesVinatier, I. (2022). Analysis of Transfer Function Models. 17–24. https://doi.org/10.1201/9781003336891-2spa
dc.relation.referencesWang, B., & Wang, S. (2003). Parameter optimization in complex industrial process control based on improved fuzzy-GA. Machine Learning and …, (November), 2–5. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1259936spa
dc.relation.referencesWangsupphaphol, A., Phichaisawat, S., Idris, N. R. N., Jusoh, A., & Muhamad, N. D. (2023). A Systematic Review of Energy Management Systems for Battery/Supercapacitor Electric Vehicle Applications. Sustainability. https://doi.org/10.3390/su151411200spa
dc.relation.referencesWellstead, P., & Cloutier, M. (2011). An energy systems approach to Parkinson’s disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3(1), 1–6. https://doi.org/10.1002/WSBM.107spa
dc.relation.referencesWillems, J. C. (1997). On interconnections, control, and feedback. IEEE Transactions on Automatic Control, 42(3), 326–339. https://doi.org/10.1109/9.557576spa
dc.relation.referencesWillems, J. C. (2007b). The Behavioral Approach to Open and Interconnected Systems. IEEE Control Systems Magazine, 27(6), 46–99. https://doi.org/10.1109/MCS.2007.906923spa
dc.relation.referencesXia, X., & Zhang, L. (2016). Industrial energy systems in view of energy efficiency and operation control. Annual Reviews in Control, 0, 1–10. https://doi.org/10.1016/j.arcontrol.2016.09.009spa
dc.relation.referencesYan, Y., Bao, J., & Huang, B. (2021a). Behavioural Approach to Distributed Control of Interconnected Systems. http://arxiv.org/abs/2103.10063spa
dc.relation.referencesYan, Y., Bao, J., & Huang, B. (2021b). Behavioural Approach to Distributed Control of Interconnected Systems. http://arxiv.org/pdf/2103.10063.pdfspa
dc.relation.referencesYu, W. Y., Patros, P., Young, B., Klinac, E., & Walmsley, T. G. (2022). Energy digital twin technology for industrial energy management: Classification, challenges and future. Renewable & Sustainable Energy Reviews, 161, 112407. https://doi.org/10.1016/j.rser.2022.112407spa
dc.relation.referencesZhang, R., Wu, S., Lu, R., & Gao, F. (2014). Predictive control optimization based PID control for temperature in an industrial surfactant reactor. Chemometrics and Intelligent Laboratory Systems, 135, 48–62. http://doi.org/10.1016/j.chemolab.2014.03.021spa
dc.relation.referencesZhang, S., Hu, X., He, X., Tang, S., & Zhang, D. (2023). Dynamic coupling across energy forms and hybrid simulation of the multi-energy system. Frontiers in Energy Research, 11. https://doi.org/10.3389/fenrg.2023.1209845spa
dc.relation.referencesZhao, A., Ma, J., Zhou, X., Cong, L., Bai, B., Zeng, M., & Zhang, X. (2021). The Optimal Operation Model of Electric-Thermal-Gas Integrated Energy System Considering Multi-Energy Complementarity. 781(4), 042021. https://doi.org/10.1088/1755-1315/781/4/042021spa
dc.relation.referencesZiyou Song. (2022). Battery/Supercapacitor hybrid energy storage system in vehicle applications. 165–192. https://doi.org/10.1016/b978-0-08-102888-9.00007-0spa
dc.relation.referencesZubidi, A. N., Ismail, B., Hamrounni, I. M. A. Al, Rahman, N. H. A., & Rozlan, M. H. H. M. (2023). The Impact of Integrating Multi-Microgrid System with FACTS Devices for Voltage Profile Enhancement and Real Power Loss Reduction in Power System: A Review. Pertanika Journal of Science and Technology, 31(2), 633–653. https://doi.org/10.47836/pjst.31.2.01spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.lembConsumo de energía
dc.subject.lembEficiencia energética
dc.subject.lembSistema dinámico
dc.subject.proposalEficiencia energéticaspa
dc.subject.proposalSistema energético multidominiospa
dc.subject.proposalModelado unificado basado en energíaspa
dc.subject.proposalControl basado en comportamientospa
dc.subject.proposalEnfoque comportamental para sistemas abiertos e interconectadosspa
dc.subject.proposalAprendizaje evolutivo de trayectoriasspa
dc.subject.proposalEnergy efficiencyeng
dc.subject.proposalMultidomain energy systemeng
dc.subject.proposalEnergy-based unified modelingeng
dc.subject.proposalBehavior-based controleng
dc.subject.proposalBbehavioral approach for open and interconnected systemseng
dc.subject.proposalEvolutionary learning of trajectorieeng
dc.titleIntensificación de la eficiencia energética para un sistema energético multidominio por intervención directa en su dinámicaspa
dc.title.translatedIntensification of energy efficiency for a multidomain energy system through direct intervention in its dynamicseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
574193.2024.pdf
Tamaño:
4.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: