Evaluación de la interacción fluido – fluido y fluido - roca en procesos de inyección de agua de salinidad modificada (IASM) y su impacto en la recuperación de aceite en sistemas de areniscas

dc.contributor.advisorCortés Correra, Farid Bernardo
dc.contributor.authorMaya, Gustavo
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000182184spa
dc.contributor.cvlacMaya Toro, Gustavo Adolfo [0000182184]spa
dc.contributor.googlescholarhttps://scholar.google.com.mx/citations?hl=en&pli=1&user=KmgMo2UAAAAJspa
dc.contributor.orcidMaya Toro, Gustavo Adolfo [0000-0002-8780-3580]spa
dc.contributor.orcidCortés Correra, Farid Bernardo [0000-0003-1207-3859]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Gustavo-Maya-2spa
dc.contributor.researchgroupFenómenos de Superficie Michael Polanyispa
dc.date.accessioned2023-06-16T16:08:56Z
dc.date.available2023-06-16T16:08:56Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLos procesos de recobro mejorado son una familia de tecnologías que buscan obtener el mayor beneficio de los yacimientos de hidrocarburos; sin embargo, cada uno de ellos presenta dificultades de diversas índoles; técnicas, económicas y ambientales. La inyección de agua de salinidad controlada, o inyección de agua de baja salinidad como también se le conoce, ha resaltado en la industria por sus bajos impactos ambientales y beneficios económicos; sin embargo, no existe acuerdo científico en los fenómenos que lo gobiernan. Este estudio analiza los efectos en sistemas específicos de roca-crudo-salmuera al inyectar aguas de baja salinidad con diferentes composiciones, separando las interacciones fluido-fluido y roca-fluido para identificar los fenómenos hasta ahora propuestos en la literatura. Los resultados obtenidos arrojan evidencias muy claras sobre la importancia de los mecanismos fluido-fluido. Desalado (salting in / out) y posible generación de microemulsiones cobran importancia frente a otros mecanismos propuestos en la literatura, en particular los mecanismos fluido-roca. La investigación permite también evidenciar que los mecanismos presentes en el proceso de recobro mejorado bajo estudio van más allá de la reducción de la salinidad del agua de inyección, y obedecen al manejo específico del contenido iónico de la misma. Esta investigación utilizó la técnica de electroforesis capilar para medición de iones disueltos en el agua a la ejecución de pruebas de desplazamiento de crudo en medios porosos, lo cual al momento no ha sido reportado en la literatura, siendo una mejora importante para el análisis de este tipo de procesos. (Texto tomado de la fuente)spa
dc.description.abstractEnhanced recovery processes are a family of technologies that seek to obtain the most significant benefit from hydrocarbon deposits; however, each presents various technical, economic, and environmental difficulties. Controlled salinity water injection, or low salinity water injection as it is also known, has stood out in the industry for its low environmental impacts and economic benefits; however, there is no scientific agreement on the phenomena that govern it. This study analyzes the effects on specific rock-oil-brine systems when injecting low-salinity waters with different compositions, separating fluid-fluid and rock-fluid interactions to identify the phenomena so far proposed in the literature. The results obtained provide unequivocal evidence of the importance of fluid-fluid mechanisms. Desalination (salting in / out) and possible generation of microemulsions gain importance compared to other mechanisms proposed in the literature, particularly fluid-rock mechanisms. The investigation also makes it possible to demonstrate that the mechanisms present in the improved recovery process under study go beyond the reduction of the salinity of the injection water and obey the specific management of its ionic content. This research used the capillary electrophoresis technique to measure dissolved ions in the water to carry out displacement tests of crude oil in porous media, which at the moment has not been reported in the literature, being an essential improvement for the analysis of this type of process.eng
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.funderConvocatoria 758 – 2016 (Doctorado Nacional Empresa).spa
dc.description.researchareaRecobro Mejoradospa
dc.description.sponsorshipContrato FP44842-338-2017 (Ecopetrol - Colciencias).spa
dc.format.extentxxi, 204 pagínasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84028
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAghaeifar, Z., Strand, S., Austad, T., Puntervold, T., Aksulu, H., Navratil, K., Storås, S., & Håmsø, D. (2015). Influence of Formation Water Salinity/Composition on the Low-Salinity Enhanced Oil Recovery Effect in High-Temperature Sandstone Reservoirs. Energy and Fuels, 29(8), 4747–4754. https://doi.org/10.1021/acs.energyfuels.5b01621spa
dc.relation.referencesAghaeifar, Z., Strand, S., Puntervold, T., Austad, T., & Sajjad, F. M. (2018). Smart Water injection strategies for optimized EOR in a high temperature offshore oil reservoir. Journal of Petroleum Science and Engineering, 165(July 2017), 743–751. https://doi.org/10.1016/j.petrol.2018.02.021spa
dc.relation.referencesAi-Saedi, H. N., & Flori, R. E. (2018). Enhanced oil recovery of low salinity water flooding in sandstone and the role of clay. Petroleum Exploration and Development, 45(5), 927–931. https://doi.org/10.1016/S1876-3804(18)30096-Xspa
dc.relation.referencesAl Maskari, N. S., Xie, Q., & Saeedi, A. (2019). Role of Basal-Charged Clays in Low Salinity Effect in Sandstone Reservoirs: Adhesion Force on Muscovite using Atomic Force Microscope [Research-article]. Energy and Fuels, 33(2), 756–764. https://doi.org/10.1021/acs.energyfuels.8b03452spa
dc.relation.referencesAl-Saedi, H. N., & Flori, R. E. (2019). Effect of divalent cations in low salinity water flooding in sandstone reservoirs. Journal of Molecular Liquids, 283, 417–426. https://doi.org/10.1016/j.molliq.2019.03.112spa
dc.relation.referencesAl-Shalabi, E. W., & Sepehrnoori, K. (2016). A comprehensive review of low salinity/engineered water injections and their applications in sandstone and carbonate rocks. Journal of Petroleum Science and Engineering, 139, 137–161. https://doi.org/10.1016/j.petrol.2015.11.027spa
dc.relation.referencesAl-Shalabi, E. W., Sepehrnoori, K., & Pope, G. (2014). Mysteries behind the Low Salinity Water Injection Technique. Journal of Petroleum Engineering, 2014, 1–11. https://doi.org/10.1155/2014/304312spa
dc.relation.referencesAlvarado, V., Garcia-Olvera, G., & Manrique, E. J. (2015). Considerations of adjusted brine chemistry for waterflooding in offshore environments. Offshore Technology Conference This, May 2016, 1961–1978. https://doi.org/10.4043/26293-msspa
dc.relation.referencesAustad, T., RezaeiDoust, A., & Puntervold, T. (2010). Chemical mechanism of low salinity water flooding in sandstone reservoirs. Proceedings - SPE Symposium on Improved Oil Recovery, 1, 679–695.spa
dc.relation.referencesBernard, G. G. (1967). Effect of floodingwater salinity on recovery of oil from cores containing clays. Society of Petroleum Engineers of AIME, SPE 1725, 1–8. https://doi.org/10.2118/1725-MSspa
dc.relation.referencesCissokho, M., Boussour, S., Cordier, P., Bertin, H., & Hamon, G. (2010). Low salinity oil recovery on clayey sandstone: Experimental study. Petrophysics, 51(5), 305–313.spa
dc.relation.referencesCollins, I. R., Couves, J. W., Hodges, M., Mcbride, E. K., Pedersen, C. S., Salino, P. A., Webb, K. J., Wicking, C., & Zeng, H. (2018). Effect of Low Salinity Waterflooding on the Chemistry of the Produced Crude Oil. Society of Petroleum Engineers, 1900191-MS, 1–17.spa
dc.relation.referencesDoust, A. R., Puntervold, T., & Austad, T. (2011). Chemical verification of the EOR mechanism by using low saline/smart water in sandstone. Energy and Fuels, 25(5), 2151–2162. https://doi.org/10.1021/ef200215yspa
dc.relation.referencesFahim, M. A., Elkilani, A., & Alsahhaf, T. (2010). Fundamentals of Petroleum Refining: Vol. Elsevier First Ed. http://www.elsevierdirect.com/spa
dc.relation.referencesFarajzadeh, R., Guo, H., van Winden, J., & Bruining, J. (2017). Cation Exchange in the Presence of Oil in Porous Media. ACS Earth and Space Chemistry, 1(2), 101–112. https://doi.org/10.1021/acsearthspacechem.6b00015spa
dc.relation.referencesFathi, S. J., Austad, T., & Strand, S. (2010). ‘Smart water’ as a wettability modifier in chalk: The effect of salinity and ionic composition. Energy and Fuels, 24(4), 2514–2519. https://doi.org/10.1021/ef901304mspa
dc.relation.referencesFredriksen, S. B., Rognmo, A. U., & Fernø, M. A. (2018). Pore-scale mechanisms during low salinity waterflooding: Oil mobilization by diffusion and osmosis. Journal of Petroleum Science and Engineering, 163, 650–660. https://doi.org/10.1016/j.petrol.2017.10.022spa
dc.relation.referencesGandomkar, A., & Rahimpour, M. R. (2015). Investigation of Low-Salinity Waterflooding in Secondary and Tertiary Enhanced Oil Recovery in Limestone Reservoirs. Energy and Fuels, 29(12), 7781–7792. https://doi.org/10.1021/acs.energyfuels.5b01236spa
dc.relation.referencesGarcia-Olvera, G., & Alvarado, V. (2016). The Potential of Sulfate as Optimizer of Crude Oil-Water Interfacial Rheology to Increase Oil Recovery During Smart Water Injection in Carbonates. SPE Improved Oil Recovery Conference, 9–12. https://doi.org/10.2118/179544-MSspa
dc.relation.referencesHaagh, M. E. J., Siretanu, I., Duits, M. H. G., & Mugele, F. (2017). Salinity-Dependent Contact Angle Alteration in Oil/Brine/Silicate Systems: the Critical Role of Divalent Cations. Langmuir, 33(14), 3349–3357. https://doi.org/10.1021/acs.langmuir.6b04470spa
dc.relation.referencesHadia, N. J., Hansen, T., Tweheyo, M. T., & Torsæter, O. (2012). Influence of crude oil components on recovery by high and low salinity waterflooding. Energy and Fuels, 26(7), 4328–4335. https://doi.org/10.1021/ef3003119spa
dc.relation.referencesHan, Y., Zhou, C., Yu, J., Li, C., Hu, F., Xu, H., & Yuan, C. (2019). Experimental investigation on the effect of wettability on rock-electricity response in sandstone reservoirs. Fuel, 239(August 2018), 1246–1257. https://doi.org/10.1016/j.fuel.2018.11.072spa
dc.relation.referencesHua, Z., Li, M., Ni, X., Wang, H., Yang, Z., & Lin, M. (2016). Effect of injection brine composition on wettability and oil recovery in sandstone reservoirs. Fuel, 182, 687–695. https://doi.org/10.1016/j.fuel.2016.06.009spa
dc.relation.referencesIsah, A., Arif, M., Hassan, A., Mahmoud, M., & Iglauer, S. (2022). Fluid–rock interactions and its implications on EOR: Critical analysis, experimental techniques and knowledge gaps. In Energy Reports (Vol. 8, pp. 6355–6395). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2022.04.071spa
dc.relation.referencesJoonaki, E., Hassanpouryouzband, A., Burgass, R., & Tohidi, B. (2017). Effect of Water Chemistry on Asphaltene Stabilised Water in Oil Emulsions - A New Search for Low Salinity Water Injection Mechanism. July. https://doi.org/10.3997/2214-4609.201701297spa
dc.relation.referencesKakati, A., Kumar, G., & Sangwai, J. S. (2020). Oil Recovery Efficiency and Mechanism of Low Salinity-Enhanced Oil Recovery for Light Crude Oil with a Low Acid Number. ACS Omega, 5(3), 1506–1518. https://doi.org/10.1021/acsomega.9b03229spa
dc.relation.referencesKakati, A., & Sangwai, J. S. (2017). Effect of monovalent and divalent salts on the interfacial tension of pure hydrocarbon-brine systems relevant for low salinity water flooding. Journal of Petroleum Science and Engineering, 157, 1106–1114. https://doi.org/10.1016/j.petrol.2017.08.017spa
dc.relation.referencesLager, A., Webb, K. J., Collins, I. R., & Richmond, D. M. (2008). LoSal Enhanced Oil Recovery: Evidence of Enhanced Oil Recovery at the Reservoir Scale. SPE Symposium on Improved Oil Recovery, SPE 113976. https://doi.org/10.2118/113976-MSspa
dc.relation.referencesLashkarbolooki, M., Ayatollahi, S., & Riazi, M. (2014). Effect of salinity, resin, and asphaltene on the surface properties of acidic crude oil/smart water/rock system. Energy and Fuels, 28(11), 6820–6829. https://doi.org/10.1021/ef5015692spa
dc.relation.referencesLigthelm, D. J., Gronsveld, J., Hofman, J., Brussee, N., Marcelis, F., & van der Linde, H. (2009). Novel Waterflooding Strategy By Manipulation Of Injection Brine Composition. EUROPEC/EAGE Conference and Exhibition, 3, 1–2. https://doi.org/10.2118/119835-MSspa
dc.relation.referencesMahzari, P., & Sohrabi, M. (2015). Impact of Micro-Dispersion Formation on Effectiveness of Low Salinity Waterflooding. April. https://doi.org/10.3997/2214-4609.201412103spa
dc.relation.referencesManrique, E., Delgadillo, C., Maya, G., & Gelvis, J. (2020). EOR Screening Methods Assisted by Digital Rock Analysis: A Step Forward. Society of Petroleum Engineers, 199107-MS(Latin America and Caribbean Pet. Eng. Conf. (LACPEC)), Bogota July 27-31, 2020.spa
dc.relation.referencesMaya, G., Cardona, L., Rueda, M., & Cortés, F. (2020). Effect of ionic strength in low salinity water injection processes. CTyF - Ciencia, Tecnologia y Futuro, 10(2), 17–26. https://doi.org/10.29047/01225383.269spa
dc.relation.referencesMcGuire, P. L., Chatham, J. R., Paskvan, F. K., Sommer, D. M., & Carini, F. H. (2005). Low Salinity Oil Recovery: An Exciting New EOR Opportunity for Alaska´s North Slope. SPE Western Regional Meeting, 1–15. https://doi.org/10.2118/93903-MSspa
dc.relation.referencesMehana, M., Fahes, M., Kang, Q., & Viswanathan, H. (2020). Molecular simulation of double layer expansion mechanism during low-salinity waterflooding. Journal of Molecular Liquids, 318. https://doi.org/10.1016/j.molliq.2020.114079spa
dc.relation.referencesMokhtari, R., Ayatollahi, S., & Fatemi, M. (2019). Experimental investigation of the influence of fluid-fluid interactions on oil recovery during low salinity water flooding. Journal of Petroleum Science and Engineering, 182. https://doi.org/10.1016/j.petrol.2019.106194spa
dc.relation.referencesMorrow, N., & Buckley, J. (2011). Improved Oil Recovery by Low-Salinity Waterflooding. Journal of Petroleum Technology, 63(05), 106–112. https://doi.org/10.2118/129421-JPTspa
dc.relation.referencesMorrow, N. R., & Carlisle, C. (2012). Low Salinity Waterflooding Fundamentals and Case Studies.spa
dc.relation.referencesNasralla, R. A., Bataweel, M. A., & Nasr-El-Din, H. A. (2013). Investigation of wettability alteration and oil-recovery improvement by low-salinity water in sandstone rock. Journal of Canadian Petroleum Technology, 52(2), 144–154. https://doi.org/10.2118/146322-PAspa
dc.relation.referencesNasralla, R. A., Mahani, H., van der Linde, H. A., Marcelis, F. H. M., Masalmeh, S. K., Sergienko, E., Brussee, N. J., Pieterse, S. G. J., & Basu, S. (2018). Low salinity waterflooding for a carbonate reservoir: Experimental evaluation and numerical interpretation. Journal of Petroleum Science and Engineering, 164, 640–654. https://doi.org/10.1016/j.petrol.2018.01.028spa
dc.relation.referencesNasralla, R. A., & Nasr-El-Din, H. A. (2011). Coreflood Study of Low Salinity Water Injection in Sandstone Reservoirs. SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition, May, 15–18. https://doi.org/10.2118/149077-MSspa
dc.relation.referencesNguele, R., Sasaki, K., Al-Salim, H. S., Sugai, Y., & Nakano, M. (2015). Wettability alteration in berea sandstone cores by contact angle measurements. 21st Formation Evaluation Symposium of Japan, 1–6.spa
dc.relation.referencesPiñerez Torrijos, I. D., Puntervold, T., Strand, S., Austad, T., Abdullah, H. I., & Olsen, K. (2016). Experimental Study of the Response Time of the Low-Salinity Enhanced Oil Recovery Effect during Secondary and Tertiary Low-Salinity Waterflooding. Energy and Fuels, 30(6), 4733–4739. https://doi.org/10.1021/acs.energyfuels.6b00641spa
dc.relation.referencesPiñerez Torrijos, I. D., Puntervold, T., Strand, S., Austad, T., Bleivik, T. H., & Abdullah, H. I. (2018). An experimental study of the low salinity Smart Water - Polymer hybrid EOR effect in sandstone material. Journal of Petroleum Science and Engineering, 164(January), 219–229. https://doi.org/10.1016/j.petrol.2018.01.031spa
dc.relation.referencesPooryousefy, E., Xie, Q., Chen, Y., Sari, A., & Saeedi, A. (2018). Drivers of low salinity effect in sandstone reservoirs. Journal of Molecular Liquids, 250, 396–403. https://doi.org/10.1016/j.molliq.2017.11.170spa
dc.relation.referencesRaphaug, M., Soerland, G. H., & Urkedal, H. (2010). Investigation of Low Salinity Water Flooding By NMR and Cryoesem. International Symposium of the Society of Core Analysts, 1–12.spa
dc.relation.referencesRashid, S., Mousapour, M. S., Ayatollahi, S., Vossoughi, M., & Beigy, A. H. (2015). Wettability alteration in carbonates during ‘Smart Waterflood’: Underling mechanisms and the effect of individual ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 487, 142–153. https://doi.org/10.1016/j.colsurfa.2015.09.067spa
dc.relation.referencesRezaeiDoust, A., Puntervold, T., & Austad, T. (2011). Chemical verification of the EOR mechanism by using low saline/smart water in sandstone. Energy and Fuels, 25(5), 2151–2162. https://doi.org/10.1021/ef200215yspa
dc.relation.referencesRezaeidoust, A., Puntervold, T., Strand, S., & Austad, T. (2009). Smart water as wettability modifier in carbonate and sandstone: A discussion of similarities/differences in the chemical mechanisms. Energy and Fuels, 23(9), 4479–4485. https://doi.org/10.1021/ef900185qspa
dc.relation.referencesRobertson, E. P. (2007). Low-Salinity Waterflooding to Improve Oil Recovery-Historical Field Evidence. SPE Annual Technical Conference and Exhibition. https://doi.org/10.4161/cc.8.18.9614spa
dc.relation.referencesRomero, M. I., Gamage, P., Jiang, H., Chopping, C., & Thyne, G. (2013). Study of low-salinity waterflooding for single- and two-phase experiments in Berea sandstone cores. Journal of Petroleum Science and Engineering, 110, 149–154. https://doi.org/10.1016/j.petrol.2013.08.050spa
dc.relation.referencesShaker Shiran, B., & Skauge, A. (2012). Wettability and Oil Recovery by Low Salinity Injection. SPE EOR Conference at Oil and Gas West Asia, 1957, 1–2. https://doi.org/10.2118/155651-MSspa
dc.relation.referencesShaker Shiran, B., & Skauge, A. (2013). Enhanced oil recovery (EOR) by combined low salinity water/polymer flooding. Energy and Fuels, 27(3), 1223–1235. https://doi.org/10.1021/ef301538espa
dc.relation.referencesSoraya, B., Malick, C., Philippe, C., Bertin, H. J., & Hamon, G. (2009). Oil Recovery by Low-Salinity Brine Injection: Laboratory Results on Outcrop and Reservoir Cores. SPE Annual Technical Conference and Exhibition, 2005. https://doi.org/10.2118/124277-MSspa
dc.relation.referencesStrand, S., Puntervold, T., & Austad, T. (2016). Water based EOR from clastic oil reservoirs by wettability alteration: A review of chemical aspects. Journal of Petroleum Science and Engineering, 146, 1079–1091. https://doi.org/10.1016/j.petrol.2016.08.012spa
dc.relation.referencesTabrizy, V. A., Hamouda, A. A., & Denoyel, R. (2011). Influence of magnesium and sulfate ions on wettability alteration of calcite, quartz, and kaolinite: Surface energy analysis. Energy and Fuels, 25(4), 1667–1680. https://doi.org/10.1021/ef200039mspa
dc.relation.referencesTakeya, M., Shimokawara, M., Elakneswaran, Y., Nawa, T., & Takahashi, S. (2019). Predicting the electrokinetic properties of the crude oil/brine interface for enhanced oil recovery in low salinity water flooding. Fuel, 235, 822–831. https://doi.org/10.1016/j.fuel.2018.08.079spa
dc.relation.referencesTang, G. Q., & Morrow, N. R. (1997). Salinity, Temperature, Oil Composition, and Oil Recovery by Waterflooding. SPE Reservoir Engineering, 12(04), 269–276. https://doi.org/10.2118/36680-PAspa
dc.relation.referencesTang, G. Q., & Morrow, N. R. (1999). Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery. Journal of Petroleum Science and Engineering, 24(2–4), 99–111. https://doi.org/10.1016/S0920-4105(99)00034-0spa
dc.relation.referencesValocchi, A. J., Street, R. L., & Roberts, P. v. (1981). Transport of Ion-Exchanging Solutes in Groundwater: Chromatographic Theory and Field Simulation. In WATER RESOURCES RESEARCH (Vol. 17, Issue 5).spa
dc.relation.referencesXie, Q., Liu, F., Chen, Y., Yang, H., Saeedi, A., & Hossain, M. M. (2019). Effect of electrical double layer and ion exchange on low salinity EOR in a pH controlled system. Journal of Petroleum Science and Engineering, 174(June 2018), 418–424. https://doi.org/10.1016/j.petrol.2018.11.050spa
dc.relation.referencesYang, J., Dong, Z., Yang, Z., Lin, M., Zhang, J., & Chen, C. (2016). Wettability Alteration During Low Salinity Waterflooding: Effect Oil Composition and Divalent Cations. 12th Middle East Geosciences Conference & Exhibition, 41835.spa
dc.relation.referencesYu, M., Zeinijahromi, A., Bedrikovetsky, P., Genolet, L., Behr, A., Kowollik, P., & Hussain, F. (2019). Effects of fines migration on oil displacement by low-salinity water. Journal of Petroleum Science and Engineering, 175, 665–680. https://doi.org/10.1016/j.petrol.2018.12.005spa
dc.relation.referencesZhang, Y., Xie, X., & Morrow, N. (2007). Waterflood Performance by Injection of Brine With Different Salinity for Reservoir Cores. SPE Annual Technical Conference and Exhibition, SPE 109849, 1217–1228. https://doi.org/10.2523/109849-MSspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.proposalRecobro mejoradospa
dc.subject.proposalBaja salinidadspa
dc.subject.proposalSalinidad modificadaspa
dc.subject.proposalEnhanced oil recoveryeng
dc.subject.proposalLow salinityeng
dc.subject.proposalSmart water floodingeng
dc.titleEvaluación de la interacción fluido – fluido y fluido - roca en procesos de inyección de agua de salinidad modificada (IASM) y su impacto en la recuperación de aceite en sistemas de areniscasspa
dc.title.translatedEvaluation of fluid-fluid and fluid-rock interaction in salinity modified water injection processes, and its impact in oil recovery in sandstone systemseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinCiencias - Fondo Francisco José de Caldasspa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameEcopetrol S.A.spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71782146.2023.pdf
Tamaño:
7.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: