Influencia de la dirección de impresión, espesor y tiempo de recocido en las propiedades mecánicas del Nylon 12 usado en manufactura aditiva SLS

dc.contributor.advisorNarvaéz Tovar, Carlos Albertospa
dc.contributor.advisorVelasco Peña, Marco Antoniospa
dc.contributor.authorGarcía Rodríguez, Alejandrospa
dc.contributor.orcidGarcía, Alejandro [0000-0002-2518-1093]spa
dc.contributor.researchgroupInnovación en Procesos de Manufactura E Ingeniería de Materiales (Ipmim)spa
dc.date.accessioned2024-06-20T21:49:36Z
dc.date.available2024-06-20T21:49:36Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa manufactura aditiva es uno de los campos de investigación que actualmente llaman el interés de la industria y de la comunidad científica. Existen diferentes tecnologías, sin embargo, una de las de mayor interés es la tecnología de Sinterizado Laser Selectivo (SLS), ya que esta permite construir piezas no paramétricas, en tiempos relativamente cortos con material reciclado. Actualmente esta tecnología se sigue investigando porque presenta muchas variables de diseño, máquina, postproceso con influencia significativa en las propiedades térmicas, químicas, mecánicas, entre otras. Las investigaciones más recientes se han centrado en parámetros ajenos a los parámetros del láser y máquina, con el fin de brindar herramientas y alimentar las guías de diseño para que los usuarios que deseen mejorar la calidad de sus productos, sin necesidad de invertir en la modificación de parámetros de la máquina. Por esta razón en la presente investigación se estudió la influencia de la dirección de impresión, espesor de pared y tiempo de recocido en las propiedades químicas, térmicas, mecánicas de PA 12 evaluando si los cambios presentados entre variables son estadísticamente significativos. Además, se caracterizó la materia en prima en polvo a una tasa de 70 % polvo reciclado y 30 % polvo virgen para evaluar si existen diferencias notables cuando son sometidos a ciclos de sinterizado. Se identificó que polvo reciclado presentó cambios notables después del primer y segundo ciclo de sinterizado, mostrando un aumento del 30 % en el porcentaje de cristalinidad en comparación con el polvo mezclado. La temperatura de cristalización presentó un aumento a medida que se aumentaban los ciclos de reciclado el polvo, mientras que la temperatura de fusión disminuyó. Sin embargo, no se presentaron cambios significativos en la composición química y las fases presentes en el material asociados al uso del polvo en diferentes ciclos. En cuanto al tamaño de partícula, el diámetro del polvo mezclado es estadísticamente menor a las otras condiciones de sinterizado. Además, se caracterizó la morfología del polvo y se relacionó con la morfología del cristal de partícula, mostrando cambios asociados a la afectación térmica producto de los ciclos de sinterizado. Por otra parte, las variables de espesor de pared, tiempo de recocido y dirección de impresión presentaron cambios significativos en las propiedades térmicas, morfológicas, y mecánicas de los especímenes manufacturados en PA 12. Las condiciones que presentaron mayores diferencias fueron la dirección vertical y el espesor de 2.0 mm, mostrando menores valores de área transversal, resistencia ultima a la tracción (UTS), elongación a la rotura (Eab), dureza y porcentaje dúctil de fractura estadísticamente menores en comparación con las otras direcciones. Se identifico que el porcentaje de cristalinidad es afectada tanto por el espesor y por la dirección de impresión. Este parámetro mostró un aumento considerable en el rango de valores en la condición de 3 horas de estancia de recocido, repercutiendo en un aumento de la resistencia mecánica, una caída en la elongación a la rotura. El módulo de elasticidad solo fue afectado por la dirección de impresión, puesto que en esta dirección se presentaron los valores de defectología de mayor medida. No se identificaron cambios químicos y estructurales en función de las tres variables de entrada. Por último, se contrastaron las diferencias significativas de manera puntual y funcional. En las condiciones químicas se presentaron diferencias significativas en la prueba funcional, posiblemente asociadas a la preparación de la muestra. Por otra parte, la caracterización térmica mostró diferencias en función de la dirección de impresión. Por último, la dirección de impresión y el tratamiento térmico afectaron funcionalmente los valores de esfuerzo, mientras que la elongación a la rotura fue afectada únicamente por la dirección de impresión. (Texto tomado de la fuente).spa
dc.description.abstractAdditive manufacturing is one of the research fields currently attracting the interest of the industry and the scientific community. There are different technologies, however, one of the most interesting is the Selective Laser Sintering (SLS) technology, since it allows the construction of non-parametric parts in relatively short times with recycled material. Currently, this technology is still being researched because it presents many design, machine and post-processing variables with significant influence on thermal, chemical and mechanical properties, among others. The most recent research has focused on parameters outside the parameters of the laser and machine, to provide tools and feed the design guides for users who wish to improve the quality of their products, without investing in the modification of machine parameters. For this reason, in the present research the influence of printing direction, wall thickness and annealing time on the chemical, thermal, mechanical properties of PA 12 was studied evaluating if the changes presented between variables are statistically significant. In addition, the raw material was characterized in powder form at a rate of 70% recycled powder and 30% virgin powder to evaluate if there are noticeable differences when subjected to sintering cycles. It was identified that recycled powder presented remarkable changes after the first and second sintering cycle, showing a 30 % increase in the percentage of crystallinity compared to the mixed powder. The crystallization temperature presented an increase as the powder cycles increased. Contrary to this behavior, as the sintering cycles increased, the melting temperature decreased. As for the particle size, the diameter of the mixed powder is statistically smaller than the other sintering conditions. As for the chemical composition and phases present in the material, there were no significant changes associated with the use of the powder in different cycles. In addition, the morphology of the powder was characterized and related to the morphology of the particle crystal, showing changes associated to the thermal affectation product of the sintering cycles. On the other hand, the variables of wall thickness, annealing time and printing direction presented significant changes in the thermal, morphological, and mechanical properties of the specimens manufactured in PA 12. The condition that presented the greatest differences were the vertical direction and the 2.0 mm thickness, showing lower values of cross-sectional area, ultimate tensile strength (UTS), elongation at break (Eab), hardness and ductile fracture percentage statistically lower compared to the other directions. It was identified that the percentage of crystallinity is affected by both the thickness and the printing direction. This parameter showed a considerable increase in the range of values in the condition of 3 hours of annealing stay, resulting in an increase in mechanical strength, a drop in elongation at break. The modulus of elasticity was only affected by the printing direction, since the highest defect values were found in this direction. No chemical and structural changes were identified as a function of the three input variables. Finally, significant differences were contrasted in a pointwise and functional manner. In the chemical conditions, there were significant differences in the functional test, possibly associated with the sample preparation. On the other hand, the thermal characterization showed differences as a function of the printing direction. Finally, the printing direction and heat treatment functionally affected the stress mechanical properties. The printing direction only affected the elongation at break.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaManufactura aditivaspa
dc.format.extentxxv, 196 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86286
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónicaspa
dc.relation.referencesN. A. Charoo et al., “Selective laser sintering 3D printing–an overview of the technology and pharmaceutical applications,” Drug Dev Ind Pharm, vol. 46, no. 6, pp. 869–877, 2020, doi: 10.1080/03639045.2020.1764027.spa
dc.relation.referencesA. Paolini, S. Kollmannsberger, and E. Rank, “Additive manufacturing in construction: A review on processes, applications, and digital planning methods,” Addit Manuf, vol. 30, 2019, doi: 10.1016/j.addma.2019.100894.spa
dc.relation.referencesG. Gong et al., “Research status of laser additive manufacturing for metal: a review,” Journal of Materials Research and Technology, vol. 15, pp. 855–884, 2021, doi: 10.1016/j.jmrt.2021.08.050.spa
dc.relation.referencesR. Govender, E. O. Kissi, A. Larsson, and I. Tho, “Polymers in pharmaceutical additive manufacturing: A balancing act between printability and product performance,” Adv Drug Deliv Rev, vol. 177, no. 0316, p. 113923, 2021, doi: 10.1016/j.addr.2021.113923.spa
dc.relation.referencesMordor inteligent, “3D PRINTING MARKET - GROWTH, TRENDS, COVID-19 IMPACT, AND FORECASTS (2022 - 2027).” [Online]. Available: https://www.mordorintelligence.com/industry-reports/3d-printing-marketspa
dc.relation.referencesB. A. Clegg, D. R. Shrestha, and N. Emami, “Biotribology Tribo-Mechanical Properties and Bioactivity of Additively Manufactured PAEK Materials for Load Bearing Medical Applications : A Systematic Review,” Biotribology, vol. 35–36, no. August, p. 100263, 2023, doi: 10.1016/j.biotri.2023.100263.spa
dc.relation.referencesH. Mobarak et al., “Applied Surface Science Advances Recent advances of additive manufacturing in implant fabrication – A review,” Applied Surface Science Advances, vol. 18, no. August, p. 100462, 2023, doi: 10.1016/j.apsadv.2023.100462.spa
dc.relation.referencesT. Cephas, D. Johan, and D. Beer, “Heliyon Additive manufacturing of NiTi shape memory alloy and its industrial applications,” Heliyon, vol. 10, no. 1, p. e23369, 2024, doi: 10.1016/j.heliyon.2023.e23369.spa
dc.relation.referencesC. Neto, “Heliyon Artificial teeth obtained by additive manufacturing : Wear resistance aspects . A systematic review of in vitro studies,” vol. 10, 2024, doi: 10.1016/j.heliyon.2023.e23279.spa
dc.relation.referencesR. D. Crapnell et al., “Additive manufacturing electrochemistry : An overview of producing bespoke conductive additive manufacturing fi laments,” Materials Today, vol. 71, no. December, pp. 73–90, 2023, doi: 10.1016/j.mattod.2023.11.002.spa
dc.relation.referencesC. Yan, S. Yusheng, L. Zhaoqing, W. Shifeng, and W. Qingsong, Selective Laser Sintering Additive Manufacturing Technology. 2021. doi: 10.1016/c2018-0-01960-x.spa
dc.relation.referencesY. Kutlu, Y. L. Wencke, G. A. Luinstra, C. Esen, and A. Ostendorf, “Directed Energy Deposition of PA12 carbon nanotube composite powder using a fiber laser,” Procedia CIRP, vol. 94, pp. 128–133, 2020, doi: 10.1016/j.procir.2020.09.025.spa
dc.relation.referencesI. Gibson and D. Shi, “Material properties and fabrication parameters in selective laser sintering process,” Rapid Prototyp J, vol. 3, no. 4, pp. 129–136, 1997, doi: 10.1108/13552549710191836.spa
dc.relation.referencesHubs, “Additive manufacturing trend report 2021,” 2021.spa
dc.relation.referencesZ. Major, M. Lackner, A. Hössinger-Kalteis, and T. Lück, “Characterization of the Fatigue Behavior of SLS Thermoplastics,” Procedia Structural Integrity, vol. 34, no. 2019, pp. 191–198, 2021, doi: 10.1016/j.prostr.2021.12.028.spa
dc.relation.referencesS. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem Rev, vol. 117, no. 15, pp. 10212–10290, 2017, doi: 10.1021/acs.chemrev.7b00074.spa
dc.relation.referencesB. O. Sivadas, I. Ashcroft, A. N. Khobystov, and R. D. Goodridge, “Laser sintering of polymer nanocomposites,” Advanced Industrial and Engineering Polymer Research, vol. 4, 2021.spa
dc.relation.referencesM. K.- Schuk, Lase Sintering with Plastics. HANSER, 2018.spa
dc.relation.referencesANDI and iNNpulsa, “Cierre de brechas de innovación y tecnología,” Online, p. 853, 2018.spa
dc.relation.referencesUniversidad Industrial de Santander, “SERVICIOS DE EXTENSIÓN: IMPRESIÓN 3D.” [Online]. Available: https://www.uis.edu.co/webUIS/es/rss/noticia.jsp?id=17&canal=6520.xml&facultad=fmecanicasspa
dc.relation.referencesIMOCOM, “SLS: la tecnología de impresión 3D más costo-eficiente del mercado.,” 2020.spa
dc.relation.referencesP. Kruth, X. Wang, and T. Laoui, “Lasers and materials in selective laser sintering,” vol. 23, no. 4, pp. 357–371, 2006.spa
dc.relation.references3D Systems, “Rapid Manufacturgin: SLS Design Guide-Plastics.” 2020.spa
dc.relation.referencesMaterialise, “DESIGN GUIDELINES: PA 12 (SLS).” [Online]. Available: https://www.materialise.com/en/academy/industrial/design-am/pa12-slsspa
dc.relation.referencesProto3000, “Selective Lase Sintering (SLS) 3D Printing Design Guidelines.” [Online]. Available: https://proto3000.com/service/3d-printing-services/materials/overview/design-guidelines/sls-design-guidelines/spa
dc.relation.referencesA. Kamil, “Post Processing for Nylon 12 Laser Sintered Components,” no. November, 2016.spa
dc.relation.referencesM. E. Imanian and F. R. Biglari, “Modeling and prediction of surface roughness and dimensional accuracy in SLS 3D printing of PVA/CB composite using the central composite design,” J Manuf Process, vol. 75, no. January, pp. 154–169, 2022, doi: 10.1016/j.jmapro.2021.12.065.spa
dc.relation.referencesO. D. Jucan, R. V. Gădălean, H. F. Chicinaş, M. Hering, N. Bâlc, and C. O. Popa, “Study on the indirect selective laser sintering (SLS) of WC-Co/PA12 powders for the manufacturing of cemented carbide parts,” Int J Refract Metals Hard Mater, vol. 96, no. January, pp. 2–10, 2021, doi: 10.1016/j.ijrmhm.2021.105498.spa
dc.relation.referencesH. Gu, Z. Bashir, and L. Yang, “The re-usability of heat-exposed poly ( ethylene terephthalate ) powder for laser sintering,” vol. 28, no. December 2018, pp. 194–204, 2019.spa
dc.relation.referencesS. I. A. Qadri, “A critical study and analysis of process parameters of selective laser sintering Rapid prototyping,” Mater Today Proc, vol. 49, pp. 1980–1988, 2022, doi: 10.1016/j.matpr.2021.08.153.spa
dc.relation.referencesJ. C. Nelson, Selective Laser Sintering: A Definition of the Process and an Empirical Sintering Model. 1993.spa
dc.relation.referencesK. Deshmukh, A. Muzaffar, T. Kovářík, T. Křenek, M. B. Ahamed, and S. K. K. Pasha, “Fundamentals and applications of 3D and 4D printing of polymers: Challenges in polymer processing and prospects of future research,” K. K. Sadasivuni, K. Deshmukh, and M. A. B. T.-3D and 4D P. of P. N. M. Almaadeed, Eds., Elsevier, 2020, pp. 527–560. doi: https://doi.org/10.1016/B978-0-12-816805-9.00017-X.spa
dc.relation.referencesQ. Tong, K. Xue, T. Wang, and S. Yao, “Laser sintering and invalidating composite scan for improving tensile strength and accuracy of SLS parts,” J Manuf Process, vol. 56, no. April, pp. 1–11, 2020, doi: 10.1016/j.jmapro.2020.04.056.spa
dc.relation.referencesP. Venuvinod and W. yin Ma, Rapid prototyping Laser-Based and Other Technologies, vol. 132, no. 1. 2004.spa
dc.relation.referencesC. Yan, Y. Shi, and L. Hao, “Investigation into the differences in the selective laser sintering between amorphous and semi-crystalline polymers,” International Polymer Processing, vol. 26, no. 4, pp. 416–423, 2011, doi: 10.3139/217.2452.spa
dc.relation.referencesH. J. O’ Connor and D. P. Dowling, “Comparison between the properties of polyamide 12 and glass bead filled polyamide 12 using the multi jet fusion printing process,” Addit Manuf, vol. 31, no. October 2019, 2020, doi: 10.1016/j.addma.2019.100961.spa
dc.relation.referencesF. Mehdipour, U. Gebhardt, and M. Kästner, “Anisotropic and rate-dependent mechanical properties of 3D printed polyamide 12 - A comparison between selective laser sintering and multi jet fusion,” Results in Materials, vol. 11, p. 100213, 2021, doi: 10.1016/j.rinma.2021.100213.spa
dc.relation.referencesS. Greiner et al., “Development of material-adapted processing strategies for laser sintering of polyamide 12,” 2021.spa
dc.relation.referencesW. Yusoff, D. T. Pham, and K. Dotchev, “Effect of Employing Different Grades of Recycled Polyamide 12 on the Surface Texture of Laser Sintered (Ls) Parts,” 2009.spa
dc.relation.referencesW. Ahmad and Y. Wan, “An investigation of the ‘ Orange Peel ’ Phenomenon,” no. April, 2007.spa
dc.relation.referencesY. W.A and T. A.J, “The Effect of Employing an Effective Laser Sintering Scanning Strategy and Energy Density Value on Eliminating “ Orange Peel" on a Selective Laser Sintered Part,” vol. 12, 2008.spa
dc.relation.referencesU. Ajoku, N. Saleh, N. Hopkinson, R. Hague, and P. Erasenthiran, “Investigating mechanical anisotropy and end-of-vector effect in laser-sintered nylon parts,” Proc Inst Mech Eng B J Eng Manuf, vol. 220, no. 7, pp. 1077–1086, 2006, doi: 10.1243/09544054JEM537.spa
dc.relation.referencesN. Rosenzweig and M. Narkis, “Dimensional variations of two spherical polymeric particles during sintering,” Polym Eng Sci, vol. 21, no. 10, pp. 582–585, 1981, doi: 10.1002/pen.760211003.spa
dc.relation.referencesY. Shi, Z. Li, H. Sun, S. Huang, and F. Zeng, “Effect of the properties of the polymer materials on the quality of selective laser sintering parts,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 218, no. 3, pp. 247–252, 2004, doi: 10.1243/1464420041579454.spa
dc.relation.referencesD. Damjanovi, “A Study of the Flexural Properties of PA12 / Clay Nanocomposites,” 2022.spa
dc.relation.referencesA. Touris et al., “Results in Materials Effect of molecular weight and hydration on the tensile properties of polyamide 12,” Results in Materials, vol. 8, no. October, p. 100149, 2020, doi: 10.1016/j.rinma.2020.100149.spa
dc.relation.referencesM. Launhardt et al., “Detecting surface roughness on SLS parts with various measuring techniques,” Polym Test, vol. 53, pp. 217–226, 2016, doi: 10.1016/j.polymertesting.2016.05.022.spa
dc.relation.referencesG. S. Martynková et al., “Polyamide 12 materials study of morpho-structural changes during laser sintering of 3d printing,” Polymers (Basel), vol. 13, no. 5, 2021, doi: 10.3390/polym13050810.spa
dc.relation.referencesG. Wypych, Handbook of Polymers. 2016.spa
dc.relation.referencesM. R. Omar, M. Ilman, and H. Chua, “Effect of Polyamide-12 Material Compositions on Mechanical Properties and Surface Morphology of SLS 3D Printed Part,” vol. 19, no. 1, pp. 57–70, 2022.spa
dc.relation.referencesR. Baserinia, K. Brockbank, and R. Dattani, “Correlating polyamide powder flowability to mechanical properties of parts fabricated by additive manufacturing,” Powder Technol, vol. 398, 2022, doi: 10.1016/j.powtec.2022.117147.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc670 - Manufactura::679 -Otros productos de materiales específicosspa
dc.subject.proposalSinterizado de Laser Selectivospa
dc.subject.proposalPA 12spa
dc.subject.proposalDirección de impresióneng
dc.subject.proposalEspesor de paredspa
dc.subject.proposalSelective Laser Sinteringeng
dc.subject.proposalPA 12eng
dc.subject.proposalPrinting directioneng
dc.subject.proposalWall thicknesseng
dc.subject.proposalAnnealedeng
dc.subject.unescoPolímerospa
dc.subject.unescoPolymerseng
dc.subject.unescoSinterizado selectivo por láserspa
dc.subject.unescoselective laser sinteringeng
dc.subject.unescoMétodo de impresiónspa
dc.subject.unescoPrinting methodseng
dc.titleInfluencia de la dirección de impresión, espesor y tiempo de recocido en las propiedades mecánicas del Nylon 12 usado en manufactura aditiva SLSspa
dc.title.translatedInfluence of build direction, thickness and annealing time on the mechanical properties of Nylon 12 used in SLS additive manufacturingeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016057987.2024.pdf
Tamaño:
33.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: