Procesos de recuperación de ácidos gastados de decapado mediante la precipitación de metales pesados con ácido oxálico y ácido tartárico

dc.contributor.advisorEcheverry Vargas, Luver
dc.contributor.advisorOCAMPO CARMONA, LUZ MARINA
dc.contributor.advisorGallego Suarez, Dario de Jesus
dc.contributor.authorPardo Saray, Juan Jose
dc.contributor.orcidEcheverry Vargas, Luver [0000-0001-7365-4361]spa
dc.contributor.orcidOCAMPO CARMONA, LUZ MARINA [0000-0002-8117-1391]spa
dc.date.accessioned2023-01-26T13:59:18Z
dc.date.available2023-01-26T13:59:18Z
dc.date.issued2022
dc.descriptionilustraciones, diagramasspa
dc.description.abstractCon el auge de políticas ambientas más restrictivas la industria de galvanizado por inmersión en caliente ha identificado un potencial riesgo ambiental en los vertimientos de baños gastados de decapado, los cuales, pueden significar pérdidas económicas a largo plazo. Esto motiva la investigación acerca de procesos capaces de minimizar los vertimientos y recuperar el ácido gastado. En esta tesis se propone el estudio de la recuperación de estos ácidos para su posterior reutilización con la reacción de quelación-precipitación con ácido oxálico y ácido tartárico, para ello, se preparó una solución de simulada de los baños gastados de decapado. Que sirvieron como referencia para simulaciones de dinámica molecular en sistemas que emulaban las condiciones de las reacciones de precipitación-quelación. Estas simulaciones lograron replicar mediciones de densidades con un máximo error del 5%, además, mediante las funciones de distribución radial se determinó que los grupos de mayor interacción entre los iones metálicos y los ácidos orgánicos son los oxígenos pertenecientes a los grupos carboxílicos, implicando una posible reacción entre los iones y los ácidos carboxílicos. Posteriormente, basados en la solución simulada se estudió el efecto en la remoción del ion Fe+2 variando el %Zn en solución y la cantidad acido oxálico y ácido tartárico agregado. Con lo anterior se identificó existe una correlación fuerte entre el ácido oxálico y la remoción de Fe+2, logrando un máximo de remoción del 86% de Fe+2 y 55% de Zn+2 con un exceso de ácido oxálico, además, se evidencio que a las condiciones del experimento planteado el ácido tartárico y el zinc en solución no se correlacionan con la precipitación del Fe. Finalmente, se ejecutó un análisis de sostenibilidad multicriterio para comparar las reacciones de neutralización más comunes en el tratamiento de estos baños gastados y la reacción de precipitación-quelación, para lograr esto se realizaron encuestas a expertos que arrojaron que para este tipo de problemas el factor ambiental es el más importante. Por otro lado, al estimar los impactos observamos que la quelación tiene una ventaja en respecto a la contaminación cuerpos de agua y toxicidad de la reacción de la reacción quelación-precipitación son menores comparados con la neutralización. (Texto tomado de la fuente)spa
dc.description.abstractWith the rise of more news environmental policies, the hot-dip galvanizing industry has identified a potential environmental risk in the dumping of spent pickling baths, which can mean long-term economic losses. This motivates research into processes to minimize discharges and recovering spent acid. This thesis proposes the study of the recovery of these acids for subsequent reuse with the reaction of chelation-precipitation with oxalic acid and tartaric acid, for this, a simulated solution of spent pickling baths was prepared. They served as a reference for molecular dynamics simulations in systems that emulated the conditions of precipitation-chelation reactions. These simulations managed to replicate density measurements with a maximum error of 5%, in addition, through the radial distribution functions it was determined that the groups of greatest interaction between metal ions and organic acids are oxygens belonging to carboxylic groups, implying a possible reaction between ions and carboxylic acids. Subsequently, based on the simulated solution, the effect on the removal of the Fe+2 ion was studied, varying the %Zn in solution and the amount of oxalic acid and tartaric acid added. With the above was identified there is a strong correlation between oxalic acid and the removal of Fe+2, achieving a maximum removal of 86% of Fe+2 and 55% of Zn+ 2 with an excess of oxalic acid, in addition, it was evidenced that the conditions of the experiment raised tartaric acid and zinc in solution do not correlate with the precipitation of Fe. Finally, a multicriteria sustainability analysis was executed to compare the most common neutralization reactions in the treatment of these spent baths and the precipitation-chelation reaction, to achieve this, surveys were conducted with experts who showed that for this type of problems the environmental factor is the most important. On the other hand, when estimating the impacts, we observe that chelation has an advantage over contamination bodies of water and toxicity of the reaction of the chelation-precipitation reaction are lower compared to neutralization.eng
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.format.extent147 páginnasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83137
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdulkarim, B. I., Abu-Hassan, M. A., Ibrahim, R. R. K., Zaini, M. A. A., Ali, A. M., Hussein, A. S., Su, S. M., & Halim, M. I. M. (2017). Characterisation of Galvanic Sludge from Hot Dip Galvanising Process for Metal Surface Treatment. https://doi.org/10.9790/1813-0610023740spa
dc.relation.referencesAdham, K. (2006). ENERGY CONSUMPTION FOR IRON CHLORIDE PYROHYDROLYSIS: A COMPARISON BETWEEN FLUIDIZED BEDS AND SPRAY ROASTERS. https://www.researchgate.net/publication/346006016spa
dc.relation.referencesAdham, K. (2006). ENERGY CONSUMPTION FOR IRON CHLORIDE PYROHYDROLYSIS: A COMPARISON BETWEEN FLUIDIZED BEDS AND SPRAY ROASTERS. https://www.researchgate.net/publication/346006016spa
dc.relation.referencesAmerican Galvanizers Association. (2008). Sustainable Development and Hot-Dip Galvanizing. www.galvanizeit.orgspa
dc.relation.referencesAmerican Galvanizers Association. (2015). Galvanizado en Caliente para Protección Contra la Corrosión.spa
dc.relation.referencesAndersen, H. C. (1982). Rattle: A “Velocity” Version of the Shake Algorithm for Molecular Dynamics Calculations.spa
dc.relation.referencesANDI. (2013). Guía práctica de galvanizado por inmersión en caliente. 64. http://www.galvanizadocolombia.com/index.php/publicaciones?task=document.viewdoc&id=6spa
dc.relation.referencesArguillarena, A., Margallo, M., & Urtiaga, A. (2021). Carbon footprint of the hot-dip galvanisation process using a life cycle assessment approach. Cleaner Engineering and Technology, 2. https://doi.org/10.1016/j.clet.2021.100041spa
dc.relation.referencesArguillarena, A., Margallo, M., Urtiaga, A., & Irabien, A. (2021). Life-cycle assessment as a tool to evaluate the environmental impact of hot-dip galvanisation. Journal of Cleaner Production, 290, 125676. https://doi.org/10.1016/j.jclepro.2020.125676spa
dc.relation.referencesBascone, D., Cipollina, A., Morreale, M., Randazzo, S., Santoro, F., & Micale, G. (2016). Simulation of a regeneration plant for spent pickling solutions via spray roasting. Desalination and Water Treatment, 57(48–49), 23405–23419. https://doi.org/10.1080/19443994.2015.1137146spa
dc.relation.referencesBerendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The Missing Term in Effective Pair Potentialst. In J. Phys. Chem (Vol. 91).spa
dc.relation.referencesBermeo Garay, M. (2017). Neutralización: Aplicado a Aguas Residuales. http://142.93.18.15:8080/jspui/bitstream/123456789/69/1/COMPLETO_neutralizacion-mod.pdfspa
dc.relation.referencesBurckhard, S. R., Schwab, A. P., & Banks, M. K. (1995). The effects of organic acids on the leaching of heavy metals from mine tailings. Journal of Hazardous Materials, 41(2–3), 135–145. https://doi.org/10.1016/0304-3894(94)00104-Ospa
dc.relation.referencesCampano, B. R. (2012). The Kleingarn Regenerated Spent Acid at Increasing Ferrous ( Fe + 2 ) and Ferric ( Fe + 3 ) Chloride Content. 1–18.spa
dc.relation.referencesCarrasco, V. (2012). Estudio Computacional de los Mecanismos Estructurales Involucrados en las Trasnformaciones de Fase en Fluidos.spa
dc.relation.referencesCarrillo-Abad, J., García-Gabaldón, M., Ortega, E., & Pérez-Herranz, V. (2012). Recovery of zinc from spent pickling solutions using an electrochemical reactor in presence and absence of an anion-exchange membrane: Galvanostatic operation. Separation and Purification Technology, 98, 366–374. https://doi.org/10.1016/j.seppur.2012.08.006spa
dc.relation.referencesChapin, E., & Bell, J. (1931). THE SOLUBILITY OF OXALIC ACID IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID.spa
dc.relation.referencesClementi, E., Corongiu, G., Jönsson, B., & Romano, S. (1980). Monte Carlo simulations of water clusters around Zn++ and a linear Zn++·CO2 complex. The Journal of Chemical Physics, 72(1), 260–263. https://doi.org/10.1063/1.438886spa
dc.relation.referencesCsicsovszki, G., Kékesi, T., & Török, T. I. (2005). Selective recovery of Zn and Fe from spent pickling solutions by the combination of anion exchange and membrane electrowinning techniques. Hydrometallurgy, 77(1–2), 19–28. https://doi.org/10.1016/j.hydromet.2004.10.020spa
dc.relation.referencesCulcasi, A., Gueccia, R., Randazzo, S., Cipollina, A., & Micale, G. (2019). Design of a novel membrane-integrated waste acid recovery process from pickling solution. Journal of Cleaner Production, 236. https://doi.org/10.1016/j.jclepro.2019.117623spa
dc.relation.referencesCunha, T. N. D., Trindade, D. G., Canesin, M. M., Effting, L., de Moura, A. A., Moisés, M. P., Costa Junior, I. L., & Bail, A. (2021). Reuse of Waste Pickling Acid for the Production of Hydrochloric Acid Solution, Iron(II) Chloride and Magnetic Iron Oxide: An Eco-Friendly Process. Waste and Biomass Valorization, 12(3), 1517–1528. https://doi.org/10.1007/s12649-020-01079-1spa
dc.relation.referencesCurtiss, L. A., Woods Halley, J., Hautman, J., & Rahman, A. (1986). Nonadditivity of ab initio pair potentials for molecular dynamics of multivalent transition metal ions in water. The Journal of Chemical Physics, 86(4), 2319–2327. https://doi.org/10.1063/1.452130spa
dc.relation.referencesDevi, A., Singhal, A., Gupta, R., & Panzade, P. (2014). A study on treatment methods of spent pickling liquor generated by pickling process of steel. Clean Technologies and Environmental Policy, 16(8), 1515–1527. https://doi.org/10.1007/s10098-014-0726-7spa
dc.relation.referencesFinlayson, B. A., Finlayson, B. A., & Engineering, C. (2016). Ullmann ’ s Encyclopedia of Industrial Chemistry. October. https://doi.org/10.1002/14356007.b01spa
dc.relation.referencesFlett, D. S. (2005). Solvent extraction in hydrometallurgy: The role of organophosphorus extractants. Journal of Organometallic Chemistry, 690(10), 2426–2438. https://doi.org/10.1016/j.jorganchem.2004.11.037spa
dc.relation.referencesGuardia, E., & Padrd, J. A. (1990a). MOLECULAR DYNAMICS SIMULATION OF FERROUS AND FERRk IONS IN WATER. In Chemical Physics (Vol. 144).spa
dc.relation.referencesGurreri, L., Tamburini, A., Cipollina, A., & Micale, G. (2020). Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. In Membranes (Vol. 10, Issue 7, pp. 1–93). MDPI AG. https://doi.org/10.3390/membranes10070146spa
dc.relation.referencesGylien, O., & Salkauskas, M. (1998). Precipitation of metal ions by organic acids as a mean for metal recovery and decontamination of wastewater. In Journal of Radioanalytical and Nuclear Chemistry (Vol. 229, Issue 2).spa
dc.relation.referencesGyliene, O., Juskenas, R., & Salkauskas, M. (1997). The Use of Organic Acids as Precipitants for Metal Recovery from Galvanic Solutions *. In 111È115 J. Chem. T ech. Biotechnol (Vol. 70).spa
dc.relation.referencesHanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). SOFTWARE Open Access Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. In Journal of Cheminformatics (Vol. 4). http://www.jcheminf.com/content/4/1/17spa
dc.relation.referencesHaris, N. I. N., Sobri, S., Yusof, Y. A., & Kassim, N. K. (2021). An overview of molecular dynamic simulation for corrosion inhibition of ferrous metals. In Metals (Vol. 11, Issue 1, pp. 1–22). MDPI AG. https://doi.org/10.3390/met11010046spa
dc.relation.referencesHernández-Betancur, J. D. (2018). Detección de los puntos críticos del proceso de galvanizado por inmersión en caliente: un enfoque hacia la sostenibilidad y el desarrollo sostenible. May, 169. https://doi.org/10.13140/RG.2.2.19244.56960spa
dc.relation.referencesHockney, R. W., & Eastwood, J. W. (1988). Computer Simulation Using Particles.spa
dc.relation.referencesHoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. In PHYSICAL REVIEW A (Vol. 31).spa
dc.relation.referencesHumphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5spa
dc.relation.referencesIdrissi, A., Sokotic’, F., & Turrell, G. (1996). LIQUIDS Molecular dynamics simulation of HCI in liquid CCl4. In Journal of Molecular Liquids (Vol. 70).spa
dc.relation.referencesIHOBE. (2000). LIBRO BLANCO PARA MINIMIZACION DE RESIDUOS Y EMISIONES GALVANIZADO EN CALIENTE (D. D. O. D. T. V. Y. M. AMBIENTE, Ed.; 1st ed.). IHOBE.spa
dc.relation.referencesIZA. (2014). Zinc in the Environment understanding the science.spa
dc.relation.referencesJensen, K. P., & Jorgensen, W. L. (2006). Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. Journal of Chemical Theory and Computation, 2(6), 1499–1509. https://doi.org/10.1021/ct600252rspa
dc.relation.referencesJorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids.spa
dc.relation.referencesKarkoszka, T. (2017). Environmental Assessment of the Hot-Dip. 56, 188–190.spa
dc.relation.referencesKneifelt, C. L., Newton, M. D., & Friedman, H. L. (1994). LIQUIDS SIMULATION OF SOLVENT ISOTOPE EFFECTS ON AQUEOUS FERROUS AND FERRIC IONSt. In Journal of Molecular Liquids (Vol. 60).spa
dc.relation.referencesKoch, G. (2017). Cost of corrosion. In Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101105-8.00001-2spa
dc.relation.referencesLaaksonen, A., & Westlund, P. O. (1991). A molecular dynamics simulation of hcl a study of the vibrational dephasing mechanism. Molecular Physics, 73(3), 663–683. https://doi.org/10.1080/00268979100101451spa
dc.relation.referencesLawrence, M. E. (1996). Chloride Pyrohydrolysis Lixiviant Regeneration and Metal Separation.spa
dc.relation.referencesLee, K. R., Kim, J., & Jang, J. G. (2017). Recovery of zinc in spent pickling solution with oxalic acid. Korean Chemical Engineering Research, 55(6), 785–790. https://doi.org/10.9713/kcer.2017.55.6.785spa
dc.relation.referencesLevesque, D., Weis, J. J., & Oxtoby, D. W. (1983). A molecular dynamics simulation of rotational and vibrational relaxation in liquid HCl. The Journal of Chemical Physics, 79(2), 917–925. https://doi.org/10.1063/1.445868spa
dc.relation.referencesLevine, B. G., Stone, J. E., & Kohlmeyer, A. (2011). Fast analysis of molecular dynamics trajectories with graphics processing units-Radial distribution function histogramming. Journal of Computational Physics, 230(9), 3556–3569. https://doi.org/10.1016/j.jcp.2011.01.048spa
dc.relation.referencesLevitt, M., & Lifson, S. (1969). Refinement of Protein Conformations using a Macromolecular Energy Mhimization Procedure. In J. Mol. Biol (Vol. 46).spa
dc.relation.referencesLevitt, M., & Warshel, A. (1975). Computer simulation of protein folding. Nature, 253(5494), 694–698. https://doi.org/10.1038/253694a0spa
dc.relation.referencesLi, P., Roberts, B. P., Chakravorty, D. K., & Merz, K. M. (2013). Rational design of particle mesh ewald compatible lennard-jones parameters for +2 metal cations in explicit solvent. Journal of Chemical Theory and Computation, 9(6), 2733–2748. https://doi.org/10.1021/ct400146wspa
dc.relation.referencesLiu, S., Yang, H., Yang, Y., Guo, Y., & Qi, Y. (2017). Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor. Frontiers of Environmental Science and Engineering, 11(1). https://doi.org/10.1007/s11783-017-0902-1spa
dc.relation.referencesMansur, M. B., Rocha, S. D. F., Magalhães, F. S., & Benedetto, J. dos S. (2008). Selective extraction of zinc(II) over iron(II) from spent hydrochloric acid pickling effluents by liquid-liquid extraction. Journal of Hazardous Materials, 150(3), 669–678. https://doi.org/10.1016/j.jhazmat.2007.05.019spa
dc.relation.referencesMarder, A. R. (2000). The metallurgy of zinc-coated steel. Progress in Materials Science, 45(3), 191–271. https://doi.org/https://doi.org/10.1016/S0079-6425(98)00006-1spa
dc.relation.referencesMark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020wspa
dc.relation.referencesMartinez, L., Andrade, R., Birgin, E. G., & Martínez, J. M. (2009). PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 30(13), 2157–2164. https://doi.org/10.1002/jcc.21224spa
dc.relation.referencesMcDONALD, I. R. (2002). NpT-ensemble Monte Carlo calculations for binary liquid mixtures. Molecular Physics, 100(1), 95–105. https://doi.org/10.1080/00268970110088947spa
dc.relation.referencesMetropolis, N., Rosenbluch, A., Rosenbluch, M., & Teller, A. (1952). Equation of State Calculation by Fast Computing Machines. The Journal of Chemical Physics, 21(6).spa
dc.relation.referencesMohammed, A. M., Loeffler, H. H., Inada, Y., Tanada, K. I., & Funahashi, S. (2005). Quantum mechanical/molecular mechanical molecular dynamic simulation of zinc(II) ion in water. Journal of Molecular Liquids, 119(1–3), 55–62. https://doi.org/10.1016/j.molliq.2004.10.008spa
dc.relation.referencesMorgan, B., & Lahav, O. (2007). The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution - basic principles and a simple heuristic description. Chemosphere, 68(11), 2080–2084. https://doi.org/10.1016/j.chemosphere.2007.02.015spa
dc.relation.referencesMoucča, F., Lísal, M., & Smith, W. R. (2012). Molecular simulation of aqueous electrolyte solubility. 3. alkali-halide salts and their mixtures in water and in hydrochloric acid. Journal of Physical Chemistry B, 116(18), 5468–5478. https://doi.org/10.1021/jp301447zspa
dc.relation.referencesNaznin, M., Choi, J., Shin, W. S., & Choi, J. (2017a). Removal of metal ions from electrochemical decontamination solution using organic acids. Separation Science and Technology (Philadelphia), 52(18), 2886–2896. https://doi.org/10.1080/01496395.2017.1375955spa
dc.relation.referencesNosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1), 511–519. https://doi.org/10.1063/1.447334spa
dc.relation.referencesOcampo, L., Gallego, D. de J., Carvajal, E., Arroyave, D., Suárez, P., & Díaz, S. (2020). METÁLICOS EN EL SUR DEL VALLE DE ABURRA Casos de estudio : Galvanizado en caliente y Cobreado. RED UNAL MED PARA LA SOSTENIBILIDAD AMBIENTAL.spa
dc.relation.referencesPacheco-Blas, M. del A., & Vicente, L. (2019). Molecular dynamics simulation of removal of heavy metals with sodium dodecyl sulfate micelle in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 578. https://doi.org/10.1016/j.colsurfa.2019.123613spa
dc.relation.referencesPadro, J. A., & Guardia, E. (1996). LIQUIDS MOLECULAR DYNAMICS SIMULATION OF HCI IN LIQUID Ar. In Journal of Molecular Liquids (Vol. 70).spa
dc.relation.referencesPathak, A., Roy, A., & Manna, M. (2016). Recovery of zinc from industrial waste pickling liquor. Hydrometallurgy, 163, 161–166. https://doi.org/10.1016/j.hydromet.2016.04.006spa
dc.relation.referencesPietrucci, F., Boero, M., & Andreoni, W. (2021). How natural materials remove heavy metals from water: mechanistic insights from molecular dynamics simulations. Chemical Science, 12(8), 2979–2985. https://doi.org/10.1039/d0sc06204aspa
dc.relation.referencesRache, J., & Suarez, M. (2014). INTRODUCCIÓN A LA TERMODINÁMICA ESTADÍSTICA: FOTONES Y FONONES. http://fronterasdelconocimiento.com/w3/?p=2253spa
dc.relation.referencesRandazzo, S., Caruso, V., Ciavardelli, D., Micale, G., & Morreale, M. (2019). Recovery of zinc from spent pickling solutions by liquid–liquid extraction using tbp. Desalination and Water Treatment, 157, 110–117. https://doi.org/10.5004/dwt.2019.24111spa
dc.relation.referencesRegel-Rosocka, M. (2010). A review on methods of regeneration of spent pickling solutions from steel processing. Journal of Hazardous Materials, 177(1–3), 57–69. https://doi.org/10.1016/j.jhazmat.2009.12.043spa
dc.relation.referencesRegel-Rosocka, M., Cieszynska, A., & Wisniewski, M. (2007). Methods of regeneration of spent pickling solutions from steel treatment plants. Polish Journal of Chemical Technology, 9(2), 42–45. https://doi.org/10.2478/v10026-007-0023-xspa
dc.relation.referencesRemsungnen, T., & Rode, B. M. (2004). Molecular dynamics simulation of the hydration of transition metal ions: The role of non-additive effects in the hydration shells of Fe2+ and Fe3+ ions. Chemical Physics Letters, 385(5–6), 491–497. https://doi.org/10.1016/j.cplett.2004.01.016spa
dc.relation.referencesRossi, B., Marquart, S., & Rossi, G. (2017). Comparative life cycle cost assessment of painted and hot-dip galvanized bridges. Journal of Environmental Management, 197, 41–49. https://doi.org/10.1016/j.jenvman.2017.03.022spa
dc.relation.referencesRyckaert, J.-P., Ciccotti+, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. In JOURNAL OF COMPUTATIONAL. PHYSICS (Vol. 23).spa
dc.relation.referencesSalehi, H. S., Ramdin, M., Moultos, O. A., & Vlugt, T. J. H. (2019). Computing solubility parameters of deep eutectic solvents from Molecular Dynamics simulations. Fluid Phase Equilibria, 497, 10–18. https://doi.org/10.1016/j.fluid.2019.05.022spa
dc.relation.referencesSambasivarao, S. v., & Acevedo, O. (2009). Development of OPLS-AA force field parameters for 68 unique ionic liquids. Journal of Chemical Theory and Computation, 5(4), 1038–1050. https://doi.org/10.1021/ct900009aspa
dc.relation.referencesSastri, V. S., Pickling, A., Wells, A. O., Industry, M., Packaging, P. E., & Display, P. (2010). Sastri2010. 2990–3000.spa
dc.relation.referencesSerna, J., Díaz Martinez, E. N., Narváez Rincón, P. C., Camargo, M., Gálvez, D., & Orjuela, Á. (2016). Multi-criteria decision analysis for the selection of sustainable chemical process routes during early design stages. Chemical Engineering Research and Design, 113, 28–49. https://doi.org/10.1016/j.cherd.2016.07.001spa
dc.relation.referencesSOPRIN. (2014). Safety Data Sheet Multiacid.spa
dc.relation.referencesSOPRIN. (2016). HYDROCHLORIC ACID REGENERATION UNIT WITH MULTIACID HYDROCHLORIC ACID REGENERATION UNIT WITH MULTIACID :spa
dc.relation.referencesTang, J., Pei, Y., Hu, Q., Pei, D., & Xu, J. (2016). The Recycling of Ferric Salt in Steel Pickling Liquors: Preparation of Nano-sized Iron Oxide. Procedia Environmental Sciences, 31, 778–784. https://doi.org/10.1016/j.proenv.2016.02.071spa
dc.relation.referencesTripathi, A. (2020). Extraction of Heavy Metals from CETP Sludge using Low Molecular Weight Organic Acids-a Batch Study. In IJESC. http://ijesc.org/spa
dc.relation.referencesTuñón, I. (2010). TEMA 1. Termodinámica Estadística: Fundamentos y Sistemas de Partículas Independientes. Parte I: Fundamentos 1. Introducción a la Termodinámica Estadística 2. Estados de un Sistema. Relación entre las Propiedades Macroscópicasspa
dc.relation.referencesVerlet, L. (1967). Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 169spa
dc.relation.referencesVerma, A., Kore, R., Corbin, D. R., & Shiflett, M. B. (2019). Metal Recovery Using Oxalate Chemistry: A Technical Review. Industrial and Engineering Chemistry Research, 58(34), 15381–15393. https://doi.org/10.1021/acs.iecr.9b02598spa
dc.relation.referencesWalco S.A. (1997). Todo Sobre los Quelatos.spa
dc.relation.referencesWan, G., Lv, F., Yang, Y., & Wang, X. (2016). Synthesis of Iron Oxide Yellow from Spent Pickling Solutions. https://doi.org/10.1051/06091spa
dc.relation.referencesWorld Steel Association. (2020). World Steel in Figures. World Steel Association, 30 April, 1–8. http://www.worldsteel.org/wsif.phpspa
dc.relation.referencesWorld Steel Association. (2021). 2021-World-Steel-in-Figures.spa
dc.relation.referencesXu, Y. (2008). Heavy Metal Complexes Wastewater Treatment with Chelation Precipitation. IEEE Engineering in Medicine and Biology Society.spa
dc.relation.referencesYellishetty, M., Ranjith, P. G., & Tharumarajah, A. (2010). Iron ore and steel production trends and material flows in the world: Is this really sustainable? Resources, Conservation and Recycling, 54(12), 1084–1094. https://doi.org/10.1016/j.resconrec.2010.03.003spa
dc.relation.referencesZhang, W., Lu, B., Tang, H., Zhao, J., & Cai, Q. (2015). Reclamation of acid pickling waste: A facile route for preparation of single-phase Fe3O4 nanoparticle. Journal of Magnetism and Magnetic Materials, 381, 401–404. https://doi.org/10.1016/j.jmmm.2015.01.037spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.lembDecapado de metalesspa
dc.subject.lembAcido oxálicospa
dc.subject.lembAcido tartáricospa
dc.subject.lembMetals - picklingeng
dc.subject.proposalPrecipitación de oxalatosspa
dc.subject.proposalReutilización de residuosspa
dc.subject.proposalBaños gastados de decapadospa
dc.subject.proposalSimulación de dinámica molecular.spa
dc.subject.proposalOxalic acideng
dc.subject.proposalChelationeng
dc.subject.proposalWaste reuseeng
dc.subject.proposalSpent pickling acidseng
dc.subject.proposalMolecular dynamics simulationeng
dc.titleProcesos de recuperación de ácidos gastados de decapado mediante la precipitación de metales pesados con ácido oxálico y ácido tartáricospa
dc.title.translatedRecovery processes for spent acids from pickling through the precipitation of heavy metals with oxalic acid and tartaric acideng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032492453.2022.pdf
Tamaño:
6.17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: