Exploracion transcriptomica del desarrollo floral en yuca (Manihot esculenta Crantz.)

dc.contributor.advisorLópez Carrascal, Camilo Ernesto
dc.contributor.authorDiaz, Cristian Giovanni
dc.contributor.orcidDiaz, Cristian Giovanni [0009-0008-8210-0561]
dc.contributor.researchgroupManihot Biotec
dc.date.accessioned2025-09-16T12:48:14Z
dc.date.available2025-09-16T12:48:14Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, gráficosspa
dc.description.abstractLa yuca (Manihot esculenta) es un cultivo clave para la seguridad alimentaria en regiones tropicales, pero el desarrollo de variedades mejoradas se ve limitado por su compleja biología reproductiva sexual. La inducción y el desarrollo floral en yuca representan procesos clave, pero poco caracterizados, dificultando los programas de mejoramiento. Este trabajo integró tres enfoques complementarios. Primero, se consolidó el conocimiento sobre vías de señalización en floración, con énfasis en el modelo ABCDE y su aplicabilidad a especies no modelo. Luego, se realizó un metaanálisis transcriptómico sobre seis datasets de RNA-seq para comparar condiciones de floración y no floración, identificando 2347 genes diferencialmente expresados (DEGs), de los cuales 50 están relacionados con floración según la base de datos PlantCFG. Los DEGs variaron según el experimento, indicando rutas alternativas hacia la floración, con participación de vías hormonales, de estrés y factores como FT, GI, WRKY y acuaporinas. Finalmente, se desarrolló un análisis exploratorio del transcriptoma floral mediante la secuenciación de ARN de hojas, flores masculinas y femeninas empleando la metodología de MACE-seq. A pesar de no contar con pruebas estadísticas formales, se observaron patrones coherentes en las transiciones vegetativo- reproductivo, diferencias sexuales y entre estadios florales. Las redes de co-expresión identificaron genes “hub” asociados a transcripción, metabolismo secundario y remodelación de pared celular. Estos resultados ofrecen un panorama global sobre los programas transcripcionales involucrados en floración en yuca y proponen candidatos funcionales para validación futura. (Texto tomado de la fuente)spa
dc.description.abstractCassava (Manihot esculenta) is a key crop for food security in tropical regions; however, the development of improved varieties is limited by its complex sexual reproductive biology. Floral induction and development in cassava are crucial yet poorly characterized processes, hindering breeding programs. This work integrated three complementary approaches. First, knowledge of flowering signaling pathways was consolidated, with an emphasis on the ABCDE model and its applicability to non-model species. Second, a transcriptomic meta-analysis was conducted using six RNA-seq datasets to compare flowering and nonflowering conditions, identifying 2,347 differentially expressed genes (DEGs), of which 50 were related to flowering according to the PlantCFG database. The DEGs varied across experiments, indicating alternative routes to flowering involving hormonal and stress-related pathways, as well as factors such as FT, GI, WRKY, and aquaporins. Finally, an exploratory analysis of the floral transcriptome was performed using MACE-seq on RNA from leaves, male, and female flowers. Although formal statistical tests were not applied, coherent expression patterns were observed across vegetative-to-reproductive transitions, floral stages, and sexual dimorphism. Co-expression networks revealed hub genes associated with transcription, secondary metabolism, and cell wall remodeling. These results provide a global overview of the transcriptional programs involved in cassava flowering and propose functional candidates for future validation.eng
dc.description.degreelevelMaestría
dc.description.degreenameMaster of Science - Biology
dc.format.extent61 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88789
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biología
dc.relation.referencesAdeyemo OS, Chavarriaga P, Tohme J, Fregene M, Davis SJ, Setter TL (2017) Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz). PloS ONE 12:e0181460. https://doi.org/10.1371/journal.pone.0181460
dc.relation.referencesAdeyemo OS, Hyde PT, Setter TL (2019) Identification of FT family genes that respond to photoperiod, temperature and genotype in relation to flowering in cassava (Manihot esculenta, Crantz). Plant Reprod 32:181–191. https://doi.org/10.1007/s00497-018-00354-5
dc.relation.referencesAnwer MU, Davis A, Davis SJ, Quint M (2020) Photoperiod sensing of the circadian clock is controlled by EARLY FLOWERING 3 and GIGANTEA. The Plant Journal, 101(6), 1397–1410. https://doi.org/10.1111/tpj.14604
dc.relation.referencesBaguma JK, Mukasa SB, Nuwamanya E, Alicai T, Omongo CA, Ochwo-Ssemakula M, Ozimati A, Esuma W, Kanaabi M, Wembabazi E, Baguma Y, Kawuki RS (2024) Identification of genomic regions for traits associated with flowering in cassava (Manihot esculenta Crantz). Plants, 13(6), Article 6. https://doi.org/10.3390/plants13060796
dc.relation.referencesBankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021
dc.relation.referencesBolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
dc.relation.referencesBoneva S, Schlecht A, Böhringer D, Mittelviefhaus H, Reinhard T, Agostini H, Auw-Haedrich C, Schlunck G, Wolf J, Lange C (2020) 3′ MACE RNA-sequencing allows for transcriptome profiling in human tissue samples after long-term storage. Laboratory Investigation, 100(10), 1345–1355. https://doi.org/10.1038/s41374-020-0446-z
dc.relation.referencesBray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology, 34(5), 525–527. https://doi.org/10.1038/nbt.3519
dc.relation.referencesChávez-Hernández EC, Quiroz S, García-Ponce B, Álvarez-Buylla ER (2022) The flowering transition pathways converge into a complex gene regulatory network that underlies the phase changes of the shoot apical meristem in Arabidopsis thaliana. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.852047
dc.relation.referencesChen S, Zhou Y, Chen Y, Gu J (2018) fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17), i884–i890. https://doi.org/10.1093/bioinformatics/bty560
dc.relation.referencesConesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biology, 17(1), 13. https://doi.org/10.1186/s13059-016-0881-8
dc.relation.referencesDas S, Rai A, Rai SN (2022) Differential expression analysis of single-cell RNA-Seq Data: Current statistical approaches and outstanding challenges. Entropy, 24(7), Article 7. https://doi.org/10.3390/e24070995
dc.relation.referencesDeshpande D, Chhugani K, Chang Y, Karlsberg A, Loeffler C, Zhang J, Muszyńska A, Munteanu V, Yang H, Rotman J, Tao L, Balliu B, Tseng E, Eskin E, Zhao F, Mohammadi PP. Łabaj P, Mangul S (2023) RNA-seq data science: From raw data to effective interpretation. Frontiers in Genetics, 14, 997383. https://doi.org/10.3389/fgene.2023.997383
dc.relation.referencesDobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635
dc.relation.referencesEngelhorn J, Moreau F, Fletcher JC, Carles CC (2014) ULTRAPETALA1 and LEAFY pathways function independently in specifying identity and determinacy at the Arabidopsis floral meristem. Annals of Botany, 114(7), 1497–1505. https://doi.org/10.1093/aob/mcu185
dc.relation.referencesEwels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048. https://doi.org/10.1093/bioinformatics/btw354
dc.relation.referencesGrabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, … Regev A (2011) Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883
dc.relation.referencesGraubert A, Aguet F, Ravi A, Ardlie KG, Getz G (2021) RNA-SeQC 2: Efficient RNA-seq quality control and quantification for large cohorts. Bioinformatics, 37(18), 3048–3050. https://doi.org/10.1093/bioinformatics/btab135
dc.relation.referencesHardcastle TJ, Kelly KA (2010) baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics, 11(1), 422. https://doi.org/10.1186/1471- 2105-11-422
dc.relation.referencesHyde PT, Setter TL (2022) Long-day photoperiod and cool temperature induce flowering in cassava: expression of signaling genes. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.973206
dc.relation.referencesJenkitkonchai J, Marriott P, Yang W, Sriden N, Jung J, Wigge PA, Charoensawan V (2021) Exploring PIF4 ’s contribution to early flowering in plants under daily variable temperature and its tissue‐specific flowering gene network. Plant Direct, 5(7), e339. https://doi.org/10.1002/pld3.339
dc.relation.referencesJohn S, Olas JJ, Mueller-Roeber B (2021) Regulation of alternative splicing in response to temperature variation in plants. Journal of Experimental Botany, 72(18), 6150–6163. https://doi.org/10.1093/jxb/erab232
dc.relation.referencesKhojayori FN, Ponraj U, Buch K, Zhao Y, Herrera-Ubaldo H, Glover BJ (2024) Evolution and development of complex floral displays. Development, 151(21), dev203027. https://doi.org/10.1242/dev.203027
dc.relation.referencesCeballos H, Hershey C, Iglesias C, Zhang X (2021) Fifty years of a public cassava breeding program: evolution of breeding objectives, methods, and decision-making processes. Theor Appl Genet 134:2335–2353. https://doi.org/10.1007/s00122-021-03852-9
dc.relation.referencesCeballos H, Kulakow P, Hershey C (2012) Cassava breeding: current status, bottlenecks and the potential of biotechnology tools. Tropical Plant Biol 5:73–87. https://doi.org/10.1007/s12042-012- 9094-9
dc.relation.referencesChávez-Hernández EC, Quiroz S, García-Ponce B, Álvarez-Buylla ER (2022) The flowering transition pathways converge into a complex gene regulatory network that underlies the phase changes of the shoot apical meristem in Arabidopsis thaliana. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.852047
dc.relation.referencesChen J, Huang Y, Li J, Li Y, Zeng X, Zhao D (2022) Overexpression of the Eucommia ulmoides aquaporin, EuPIP1;1, promotes leaf growth, flowering and bolting, and stress tolerance in Arabidopsis. Int J Mol Sci 23:11794. https://doi.org/10.3390/ijms231911794
dc.relation.referencesCorbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033. https://doi.org/10.1126/science.1141752
dc.relation.referencesCho SW, Lokhandwala J, Park JS, Kang HW, Choi M, Yang H-Q, Imaizumi T, Zoltowski BD, Song YH (2024) Disrupting FKF1 homodimerization increases FT transcript levels in the evening by enhancing CO stabilization. Plant Cell Rep 43:121. https://doi.org/10.1007/s00299-024-03207-w
dc.relation.referencesDobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635
dc.relation.referencesIbrahim Y, Baguma Y, Abincha W, Gibson P, Edema R, Bisikwa J (2020) Flowering problems and their possible solution in cassava breeding. J Sci Agri 83–89. https://doi.org/10.25081/jsa.2020.v4.6220
dc.relation.referencesLiu D, Li J, Wang S, Huang T, Tao F, Lin Y, Lin W, Zhao X, Huang Y, Jia Y, Yang Z, Luo C, Zhu Q, Sung W-K, Wu J, Yang Q-Y (2024) PlantCFG: A comprehensive database with web tools for analyzing candidate flowering genes in multiple plants. Plant Communications 5:100733. https://doi.org/10.1016/j.xplc.2023.100733
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacional
dc.subject.ddc570 - Biología
dc.subject.lembYucaspa
dc.subject.lembCassavaeng
dc.subject.lembFloración vegetalspa
dc.subject.lembFlowering of plantseng
dc.subject.otherTranscriptomaspa
dc.subject.otherTranscriptomeeng
dc.subject.proposaltranscriptomaspa
dc.subject.proposalyucaspa
dc.subject.proposalfloracionspa
dc.titleExploracion transcriptomica del desarrollo floral en yuca (Manihot esculenta Crantz.)spa
dc.title.translatedTranscriptomic exploration of floral development in cassava (Manihot esculenta Crantz.)eng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
ThesisFLowering_CD.pdf
Tamaño:
2.37 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: