Structural modelling of the Soapaga Fault in the central part of the Eastern Cordillera, Colombia

dc.contributor.advisorCamargo Cortés, Guillermo Arturospa
dc.contributor.authorPardo Torres, Germán Andrésspa
dc.date.accessioned2021-01-22T20:29:19Zspa
dc.date.available2021-01-22T20:29:19Zspa
dc.date.issued2020-11-06spa
dc.description.abstractThe Soapaga Fault is the eastern border of the Floresta Massif, oriented in an NNE-SSW trend, and several authors have linked it to the Bucaramanga Fault's southern termination. There have been several structural interpretations for this fault, such as the Fault-Propagation, Fault-Bend, and Buckling folding kinematic models: all of these tried to explain the related deformation observed in the field. However, none of these structural interpretations clearly explain structural features such as the Betéitiva Syncline presence in the Soapaga Fault’s footwall, the upright-to-overturned backlimb, and the stratigraphic thinning of the units at this limb of the fold. Therefore, I have proposed a kinematic model using the Trishear folding style to explain the Soapaga Fault deformation in an area between Paz de Río and Corrales localities (Boyacá). For this reason, I have restored five structural cross-sections, associating the geologic evidence observed in the field to three inferred deformation stages for the Soapaga-Corrales fault system. In this study, I identify several structural interpretations for the Soapaga Fault, diverging each other in the kinematic folding models used to explain the deformation related to this structure. I observed that most of the proposed models for the Soapaga Fault evolution do not fit with my structural analysis results, mainly because several authors described both the Corrales Fault and the Soapaga Fault as a single structure. Besides, the restoration I made for the Soapaga-Corrales fault system through the Trishear kinematic model shows that the shortening for the five structural cross-sections could be ten times lesser compared to the fault-bend fold modelsspa
dc.description.abstractLa Falla de Soapaga es una estructura orientada en dirección NNE-SSW, la cual corresponde al borde oriental del Macizo de Floresta y se ha relacionado con la terminación sur de la Falla de Bucaramanga. Existen varias interpretaciones estructurales para la Falla de Soapaga como los modelos cinemáticos de pliegues por propagación de falla, por flexión de falla y tipo buckling, los cuales buscan dar respuesta a las evidencias de deformación observadas en campo. Sin embargo, ninguna de estas interpretaciones estructurales explica con claridad características estructurales como la presencia del Sinclinal de Betéitiva localizado en el bloque yacente de la falla, la posición vertical a invertida del flanco trasero de este pliegue, y el adelgazamiento estratigráfico evidenciado en esta parte del pliegue. Por esta razón, he propuesto un modelo cinemático a través del estilo de pliegues tipo Trishear, que explique la deformación de la Falla de Soapaga en una zona entre el sector de Paz de Río y Corrales, Boyacá. Para esto, realicé el balanceo de cinco secciones estructurales asociando las evidencias geológicas observadas en campo a tres episodios deformativos que interpreté para el sistema de fallas Corrales-Soapaga. En este estudio identifiqué que existen diferentes interpretaciones de la Falla de Soapaga, las cuales difieren en gran medida en los estilos deformativos utilizados para explicar la deformación asociada a esta estructura. Mediante el análisis que realicé, observé que varios de los modelos propuestos para la evolución de la Falla de Soapaga no concuerdan con mi análisis, debido principalmente a que la Falla de Corrales se ha descrito como la Falla de Soapaga, tratando estas dos fallas como una sola estructura. Adicionalmente, el balanceo que desarrollé para el sistema de fallas Soapaga-Corrales a través del modelo de Trishear, muestra que el acortamiento para estas secciones puede llegar a ser hasta diez veces menos en comparación con los modelos de pliegues por flexión de fallaspa
dc.description.additionalLínea de investigación: Geología estructuralspa
dc.description.degreelevelMaestríaspa
dc.format.extent74spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78884
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geologíaspa
dc.relation.referencesAllmendinger, R. W., Zapata, T., Manceda, R., & Dzelalija, F. (2004). Trishear Kinematic Modeling of Structures, with Examples from the Neuquen Basin, Argentina. 356–371spa
dc.relation.referencesÁlvarez-Gómez, J. A. (2019). FMC—Earthquake focal mechanisms data management, cluster and classification. SoftwareX, 9, 299–307spa
dc.relation.referencesBennison, G. M., Olver, P. A., & Moseley, K. A. (1997). An Introduction to Geological Structures and Maps. Arnoldspa
dc.relation.referencesCaballero, V., Mora, A., Quintero, I., Blanco, V., Parra, M., Rojas, L. E., Lopez, C., Sánchez, N., Horton, B. K., Stockli, D., & Duddy, I. (2013). Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: The Nuevo Mundo syncline, Middle Magdalena Valley, Colombia. Geological Society, London, Special Publications, 377, SP377.12spa
dc.relation.referencesCardozo, N., Jackson, C. A.-L., & Whipp, P. S. (2011). Determining the uniqueness of best-fit trishear models. Journal of Structural Geology, 33(6), 1063–1078.spa
dc.relation.referencesCooper, M. A., Addison, F. T., Alvarez, R., Coral, M., Graham, R. H., Hayward, A. B., Howe, S., Martinez, J., Naar, J., Penas, R., Pulham, A. J., & Taborda, A. (1995). Basin Development and Tectonic History of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. AAPG Bulletin, 79(10), 1421–1442.spa
dc.relation.referencesCooper, M. A., Williams, G. D., Graciansky, P. C. de, Murphy, R. W., Needham, T., Paor, D. de, Stoneley, R., Todd, S. P., Turner, J. P., & Ziegler, P. A. (1989). Inversion tectonics—A discussion. Geological Society, London, Special Publications, 44(1), 335–347spa
dc.relation.referencesortés, M., Angelier, J., & Colletta, B. (2005). Paleostress evolution of the northern Andes (Eastern Cordillera of Colombia): Implications on plate kinematics of the South Caribbean region. Tectonics, 24(1)spa
dc.relation.referencesDavis, G. H., Reynolds, S. J., & Kluth, C. F. (2011). Structural Geology of Rocks and Regions (3 edition). Wiley.spa
dc.relation.referencesDelvaux, D., & Sperner, B. (2003). New aspects of tectonic stress inversion with reference to the TENSOR program. Geological Society, London, Special Publications, 212(1), 75–100.spa
dc.relation.referencesDengo, C. A., & Covey, M. C. (1993). Structure of the Eastern Cordillera of Colombia: Implications for Trap Styles and Regional Tectonics. AAPG Bulletin, 77(8), 1315–1337.spa
dc.relation.referencesErslev, E. A. (1991). Trishear fault-propagation folding. Geology, 19(6), 617–620.spa
dc.relation.referencesEtayo-Serna, F. (1968). El Sistema Cretáceo en la región de Villa de Leiva y zonas próximas. Geología Colombiana, 5(0), 5–74.spa
dc.relation.referencesFossen, H. (2010). Structural Geology (1 edition). Cambridge University Press.spa
dc.relation.referencesFrohlich, C., & Apperson, K. D. (1992). Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries. Tectonics, 11(2), 279–296.spa
dc.relation.referencesGale, J. F. W., Laubach, S. E., Olson, J. E., Eichhubl, P., & Fall, A. (2014). Natural fractures in shale: A review and new observations. AAPG Bulletin, 98(11), 2165–2216.spa
dc.relation.referencesGEOESTUDIOS. (2006). Cartografía geológica cuenca Cordillera Oriental—Sector Soapaga (Técnico Final; p. 257). Agencia Nacional de Hidrocarburos. http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Tesis/CARTOGRAFIA%20GEOLOGICA%20SOAPAGA-C.ORIENTAL%202005.pdfspa
dc.relation.referencesGEOSEARCH. (2007). Consultoría para la elaboración de tres (3) secciones estructurales admisibles en el sector comprendido entre Suesca y Sogamoso, Cuenca Cordillera Oriental. (p. 448).spa
dc.relation.referencesGroshong, R. H. (2006). Structural Validation, Restoration, and Prediction. In 3-D Structural Geology (pp. 305–372). Springer.spa
dc.relation.referencesHandin, J. (1969). On the Coulomb-Mohr failure criterion. Journal of Geophysical Research, 74(22), 5343–5348. https://doi.org/10.1029/JB074i022p05343spa
dc.relation.referencesHardy, S., & Allmendinger, R. W. (2011). Trishear: A Review of Kinematics, Mechanics, and Applications. 95–119. https://doi.org/10.1306/13251334M943429spa
dc.relation.referencesHarrison, J. V., & Falcon, N. L. (1936). Gravity Collapse Structures and Mountain Ranges, as exemplified in South-Western Iran. Quarterly Journal of the Geological Society, 92(1–4), 91–102.spa
dc.relation.referencesHorton, B., Parra, M., Saylor, J., Nie, J., Mora, A., Torres, V., Stockli, D., & Strecker, M. (2010). Resolving uplift of the northern Andes using detrital zircon age signatures. GSA Today, 4–10.spa
dc.relation.referencesHubach Eggers, E. (1931). Geología petrolífera del departamento de Norte de Santander. Servicio Geológico Nacional.spa
dc.relation.referencesHuggett, R. (2016). Fundamentals of Geomorphology (Edición: 4). Routledge.spa
dc.relation.referencesJohansen, A. M. (2010). Monte Carlo Methods. In P. Peterson, E. Baker, & B. McGaw (Eds.), International Encyclopedia of Education (Third Edition) (pp. 296–303). Elsevier.spa
dc.relation.referencesKammer, A. (1996). Estructuras y deformaciones del borde oriental del macizo de floresta. Geología Colombiana, 21(1), 65–80.spa
dc.relation.referencesKammer, A., & Sánchez, J. (2006). Early Jurassic rift structures associated with the Soapaga and Boyacá faults of the Eastern Cordillera, Colombia: Sedimentological inferences and regional implications. Journal of South American Earth Sciences, 21(4), 412–422.spa
dc.relation.referencesKonon, A., & Śmigielski, M. (2006). DEM-based structural mapping: Examples from the Holy Cross Mountains and the Outer Carpathians, Poland. Acta Geologica Polonica, Vol. 56(1), 1–16.spa
dc.relation.referencesLacassin, R., Replumaz, A., & Leloup, P. H. (1998). Hairpin river loops and slip-sense inversion on southeast Asian strike-slip faults. Geology, 26(8), 703–706.spa
dc.relation.referencesLozano, G. U. (2014). Tectónica de bloques, delimitados por lineamientos NNE-SSO y NO-SE, en Colombia. Geología Colombiana, 39(0), 37–54.spa
dc.relation.referencesMarshak, S., & Mitra, G. (1988). Basic Methods of Structural Geology (1 edition). Pearson.spa
dc.relation.referencesMcClay, K. (2011). Introduction to Thrust Fault-related Folding. 1–19.spa
dc.relation.referencesMcClay, K. R., Whitehouse, P. S., Dooley, T., & Richards, M. (2004). 3D evolution of fold and thrust belts formed by oblique convergence. Marine and Petroleum Geology, 21(7), 857–877.spa
dc.relation.referencesMojica, J., & Villarroel, C. (1984). Contribución al conocimiento de las unidades paleozoicas del área de Floresta (Cordillera Oriental Colombiana; Departamento de Boyacá) y en especial al de la Formación Cuche. Geología Colombiana, 13(0), 55–79.spa
dc.relation.referencesMora, A., Horton, B. K., Mesa, A., Rubiano, J., Ketcham, R. A., Parra, M., Blanco, V., Garcia, D., & Stockli, D. F. (2010). Migration of cenozoic deformation in the eastern cordillera of colombia interpreted from fission track results and structural relationships: Implications for petroleum systems. AAPG Bulletin.spa
dc.relation.referencesMora, A., Reyes-Harker, A., Rodriguez, G., Tesón, E., Ramirez-Arias, J. C., Parra, M., Caballero, V., Mora, J. P., Quintero, I., Valencia, V., Ibañez, M., Horton, B. K., & Stockli, D. F. (2013). Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geological Society, London, Special Publications, 377(1), 411–442.spa
dc.relation.referencesParra, M., Mora, A., Jaramillo, C., Strecker, M. R., Sobel, E. R., Quiroz, L., Rueda, M., & Torres, V. (2009). Orogenic wedge advance in the northern Andes: Evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. Bulletin of the Geological Society of Americaspa
dc.relation.referencesParra, M., Mora, A., Lopez, C., Rojas, L. E., & Horton, B. K. (2012). Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology, 40(2), 175–178.spa
dc.relation.referencesPérez, G., & Salazar, A. (1978). Estratigrafía y facies del Grupo Guadalupe. Geología Colombiana, 10(0), 6–85spa
dc.relation.referencesPetit, J. P. (1987). Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology, 9(5), 597–608spa
dc.relation.referencesPetit, J.-P., Auzias, V., Rawnsley, K., & Rives, T. (2000). Development of joint sets in the vicinity of faults. In Aspects of Tectonic Faulting (pp. 167–183). Springer, Berlin, Heidelberg.spa
dc.relation.referencesRivard, L. (2012). Satellite Geology and Photogeomorphology: An Instructional Manual for Data Integration. Springer-Verlag.spa
dc.relation.referencesRodríguez, D. (2009). Modelo de la Falla de Soapaga a partir de correlación espectral de campos potenciales. Universidad Nacional de Colombia.spa
dc.relation.referencesSalamanca, A. F. (2012). Estudio estratigráfico de la Formación Tibasosa: Miembro calcáreo inferior, en el área de Tibasosa.spa
dc.relation.referencesSarmiento, G. (1992). Estratigrafía y medios de depósito de la formación Guaduas. Boletín Geológico, 32(1–3), 1–45.spa
dc.relation.referencesSaylor, J. E., Horton, B. K., Stockli, D. F., Mora, A., & Corredor, J. (2012). Structural and thermochronological evidence for Paleogene basement-involved shortening in the axial Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 39, 202–215.spa
dc.relation.referencesSchultz, R. A., & Fossen, H. (2008). Terminology for structural discontinuities. AAPG Bulletin, 92(7), 853–867.spa
dc.relation.referencesTesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., Casallas, W., Julivert, M., Taylor, M., Ibáñez-Mejía, M., & Valencia, V. A. (2013). Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geological Society, London, Special Publications, 377, SP377.10.spa
dc.relation.referencesToro, J. (1990). The termination of the bucaramanga fault in the Cordillera Oriental, Colombia [The University of Arizona.].spa
dc.relation.referencesToro, J., Roure, F., Floch, N. B.-L., Cornec-Lance, S. L., & Sassi, W. (2004). Thermal and Kinematic Evolution of the Eastern Cordillera Fold and Thrust Belt, Colombia. In R. Swennen, F. Roure, & J. W. Granath (Eds.), Deformation, Fluid Flow, and Reservoir Appraisal in Foreland Fold and Thrust Belts (Vol. 1, p. 0). American Association of Petroleum Geologists.spa
dc.relation.referencesTwiss, R. J., & Unruh, J. R. (1998). Analysis of fault slip inversions: Do they constrain stress or strain rate? Journal of Geophysical Research: Solid Earth, 103(B6), 12205–12222.spa
dc.relation.referencesUlloa, C., Rodríguez, E., & Rodríguez, G. I. (2001). Geología de la Plancha 172 Paz de Río (p. 111) [Memoria Explicativa]. Ingeominas.spa
dc.relation.referencesVelandia, F. (2005). Interpretación de transcurrencia de las fallas Soapaga y Boyacá a partir de imágenes landsat TM. Boletín de Geología, 27(1), 81–94.spa
dc.relation.referencesVelandia, F., & Bermúdez, M. A. (2018). The transpressive southern termination of the Bucaramanga fault (Colombia): Insights from geological mapping, stress tensors, and fractal analysis. Journal of Structural Geology, 115, 190–207.spa
dc.relation.referencesVillamil, T., & Kauffman, E. G. (Univ of C. (1993). Milankovitch climate cyclicity and its effect on relative sea level changes and organic carbon storage, Late Cretaceous black shales of Colombia and Venezuela. AAPG Bulletin (American Association of Petroleum Geologists); (United States), 77:2. https://www.osti.gov/biblio/5998198-milankovitch-climate-cyclicity-its-effect-relative-sea-level-changes-organic-carbon-storage-late-cretaceous-black-shales-colombia-venezuelaspa
dc.relation.referencesWoodcock, N. H., & Mort, K. (2008). Classification of fault breccias and related fault rocks. Geological Magazine, 145(3), 435–440spa
dc.relation.referencesWoodward, N. B., Boyer, S. E., & Suppe, J. (1991). Balanced Geological Cross-Sections: An Essential Technique in Geological Research and Exploration (1 edition). American Geophysical Unionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.proposalTrisheareng
dc.subject.proposalTrishearspa
dc.subject.proposalSoapaga Faulteng
dc.subject.proposalFalla de Soapagaspa
dc.subject.proposalCorrales Faulteng
dc.subject.proposalFalla de Corralesspa
dc.subject.proposalBalanced cross-sectioneng
dc.subject.proposalbalanceo de secciones estructuralesspa
dc.subject.proposalFloresta Massifeng
dc.subject.proposalMacizo de Florestaspa
dc.subject.proposalpliegues por propagación de fallaspa
dc.subject.proposalFault-propagation foldseng
dc.titleStructural modelling of the Soapaga Fault in the central part of the Eastern Cordillera, Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Thesis German Pardo 2021-01-fusionado_organized.pdf
Tamaño:
7.63 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: