Narrow bipolar events study based on broadband observations

dc.contributor.advisorRomán Campos, Francisco José
dc.contributor.authorDíaz Ortiz, Fernando Augusto
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000938440spa
dc.contributor.orcid0000-0002-7989-3475spa
dc.contributor.researchgroupCompatibilidad electromagnéticaspa
dc.date.accessioned2023-04-19T16:34:20Z
dc.date.available2023-04-19T16:34:20Z
dc.date.issued2023
dc.descriptionilustraciones, fotografías a colorspa
dc.description.abstractEste estudio determina las características de los pulsos bipolares estrechos (NBEs) en Bogotá, Colombia, proporcionando información sobre los NBEs en una región tropical observada desde un altiplano andino. La instrumentación y el software de rayos se crearon específicamente para este estudio y consisten en un módulo de medición de campo eléctrico, un módulo de medición de campo magnético y un interferómetro de rayos de banda ancha. Para la adquisición de datos, la instrumentación de rayos utiliza dos osciloscopios digitales que en conjunto proporcionan ocho canales. Los instrumentos de rayos se desplegaron en el techo de un edificio en el centro de la ciudad de Bogotá. La campaña de medición recopiló datos desde el 14 de noviembre de 2019 hasta el 9 de abril de 2020 e incluye la segunda temporada de lluvias de 2019 y parte de la primera temporada de lluvias de 2020. El período de observación duró exactamente 148 días y registró 1.316 eventos relacionados con rayos. La identificación de los NBEs involucró cuatro etapas: la primera etapa tuvo como objetivo eliminar el ruido de la señal adquirida, la segunda etapa involucró la identificación de los NBEs, la tercera etapa involucró la clasificación de los NBEs en función de sus formas de onda y, finalmente, la cuarta etapa involucró la medición de las características individuales de los NBEs. Este proceso se realizó en todos los eventos de rayos registrados. Un resumen de los hallazgos obtenidos en este estudio es el siguiente: los NBEs están presentes en solo una sexta parte de toda la actividad de rayos detectada, y la mayoría de ellos son de polaridad positiva en una proporción de 3 a 1. La polaridad positiva tiene una duración más larga para el pulso principal y duración total que su contraparte. Con respecto a su tipo, el Tipo A (un pulso bipolar típico) es una ocurrencia rara, lo que significa que oscilaciones adicionales sobre la forma de onda básica es una característica común. Combinando criterios de aislamiento temporal y espacial, el 13 % de los NBEs pueden considerarse NBEs aisladas, lo que sugiere que los NBEs restantes podrían estar relacionadas con el inicio de descargas intranubes, descargas nube-tierra (CG) o incluso NBEs con actividad posterior fallida. Aproximadamente el 80 % de los registros adquiridos durante este estudio presentan pulsos con duraciones menores a un microsegundo en distintos momentos. Adicionalmente, hay 22 grupos de NBEs compuestos por dos o tres NBEs temporalmente cercanos. La rara presencia de NBEs en la actividad regular de rayos sugiere que los NBEs no son la causa del inicio de los rayos. Esta afirmación está respaldada en este estudio por su presencia en solo una sexta parte de toda la actividad de rayos registrada. Los datos recopilados sugieren que los NBEs no son un evento aislado, sino que, se deduce que los NBEs son un fenómeno que tiene lugar como un efecto relacionado de algún CG o como parte del desarrollo de descargas eléctricas intranubes posteriores. El valor medio de la duración total del pulso sugiere que los NBE deben originarse a partir de alguna descarga eléctrica energética y de corta duración. Este resultado concuerda con la hipótesis de que las descargas eléctricas rápidas son el fenómeno responsable de la producción de NBEs. Al comparar las tasas de ocurrencia de NBEs, el resultado revela una relación aparente con la latitud, lo que significa que los NBE son más frecuentes en latitudes más bajas y también muestran una mayor proporción de NBEs de polaridad negativa. La tasa de ocurrencia del tipo A y el tipo C es similar a estudios previos, pero las proporciones para el tipo B y el tipo D ciertamente difieren, lo que exige un análisis más profundo para abordar este problema. (Texto tomado de la fuente)spa
dc.description.abstractThis study determines the features of narrow bipolar events (NBEs) in Bogotá, Colombia, providing insights into NBEs in a tropical region observed from an Andean high-plateau. The lightning instrumentation and software were created specifically for this study, consisting of an electric field measurement module, a magnetic field measurement module, and a broadband lightning interferometer. For data acquisition, the lightning instrumentation uses two digital oscilloscopes that together provide eight channels. Lightning instruments were deployed on the roof of a building in the city center of Bogotá. The measuring campaign collected data spans from November 14, 2019 to April 9, 2020 and includes the second rainy season of 2019 and part of the first rainy season of 2020. The observation period lasted exactly 148 days and recorded 1,316 lightning-related events. The identification of NBEs involved four stages: the first stage aimed at removing noise from the acquired signal, the second stage involved identifying NBEs, the third stage involved classifying NBEs based on their waveforms, and finally, the fourth stage involved measuring individual NBE features. This process was done on all recorded lightning events. A summary of the findings of this study is as follows: NBEs are present in only one-sixth of all lightning activity detected, with most of them being of positive polarity in a ratio of 3 to 1. Positive polarity has a longer duration for the main pulse and total duration than its counterpart. Regarding their type, Type A (a typical bipolar pulse) is a rare occurrence, meaning that additional ringing over its basic waveform is a common feature. By combining time and spatial isolation criteria, 13 % of NBEs can be considered to be truly isolated NBEs, suggesting that the remaining NBEs could be related to the initiation of IC, CG, or even NBEs with failed subsequent activity. Approximately 80 % of the records acquired during this study have sub-microsecond pulses at any moment of their process, and there are 22 groups of NBEs comprised of two or three temporally close NBEs. The rare presence of NBEs in regular lightning activity suggests NBEs are not the cause of lightning inception. This statement is supported in this study by their presence in only one-sixth of all lightning activity recorded. Data collected suggests NBEs are not an isolated event, instead, from data analysis, it is deduced that NBEs are a phenomenon that takes place as a related effect of some CG or as part of the development of subsequent intracloud electrical discharges. The mean value for total pulse duration suggests NBEs must originate from some energetic and short-duration electrical discharge. This result concurs with the hypothesis of fast electrical breakdowns are a responsible phenomenon for NBEs production. Comparing occurrence rates of NBEs, the effort reveals a relation to latitude meaning NBEs are more prevalent in lower latitudes also showing a higher proportion of negative polarity NBEs. The occurrence rate of type A and type C are similar to previous studies but proportions for type B and type D certainly differs demanding further analysis to address this issue.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaAtmospheric electricityspa
dc.format.extentxxiii, 117 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83737
dc.language.isoengspa
dc.publisherUniversidad Nacional de colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesT. J. Lang, S. Pédeboy, W. Rison, R. S. Cerveny, J. Montanyà, S. Chauzy, D. R. MacGorman, R. L. Holle, E. E. Ávila, Y. Zhang, G. Carbin, E. R. Mansell, Y. Kuleshov, T. C. Petersrson, M. Brunet, F. Driouech, and D. S. Krahenbuhl, “Wmo world record lightning extremes: Longest reported flash distance and longest reported flash duration,” Bulletin of the American Meteorological Society, vol. 98, pp. 1153–1168, 2017.spa
dc.relation.referencesJ. R. Dwyer and M. a. Uman, “The physics of lightning,” Physics Reports, vol. 534, pp. 147–241, 10 2013. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S037015731300375Xspa
dc.relation.referencesT. Warner, M. Saba, C. Schumann, J. H. Jr, and R. Orville, “Observations of bidirectional lightning leader initiation and development near positive leader channels,” Journal of Geophysical Research: Atmospheres, vol. 121, pp. 9251–9260, 2016.spa
dc.relation.referencesJ. Montanyà, O. van der Velde, and E. R. Williams, “The start of lightning: Evidence of bidirectional lightning initiation,” Scientific Reports, vol. 5, p. 15180, 2015. [Online]. Available: http://www.nature.com/articles/srep15180spa
dc.relation.referencesM. D. Tran and V. A. Rakov, “Initiation and propagation of cloud-to-ground lightning observed with a high-speed video camera,” Scientific Reports, vol. 6, pp. 1–11, 2016. [Online]. Available: http://dx.doi.org/10.1038/srep39521spa
dc.relation.referencesW. Rison, P. R. Krehbiel, M. G. Stock, H. E. Edens, X.-M. Shao, R. J. Thomas, M. A. Stanley, and Y. Zhang, “Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms,” Nature Communications, vol. 7, p. 10721, 2016. [Online]. Available: http://www.nature.com/doifinder/10.1038/ncomms10721spa
dc.relation.referencesJ. N. Tilles, N. Liu, M. A. Stanley, P. R. Krehbiel, W. Rison, G. Michael, J. R. Dwyer, R. Brown, and J. Wilson, “Fast negative breakdown in thunderstorms,” Nature Communications, pp. 1–12, 2018. [Online]. Available: http://dx.doi.org/10.1038/s41467-019-09621-zspa
dc.relation.referencesF. Shi, N. Liu, J. R. Dwyer, and K. M. Ihaddadene, “Vhf and uhf electromagnetic radiation produced by streamers in lightning,” Geophysical Research Letters, vol. 46, pp. 443–451, 2019spa
dc.relation.referencesD. M. L. Vine, “Sources of the strongest rf radiation from lightning,” Journal of Geophysical Research, vol. 85, p. 4091, 1980. [Online]. Available: http://doi.wiley.com/10.1029/JC085iC07p04091 http://hdl.handle.net/2060/19790015388spa
dc.relation.referencesD. L. Vine, “The spectrum of radiation from lightning,” 1980.spa
dc.relation.referencesA. F. Leal, V. A. Rakov, and B. R. P. Rocha, “Upgrading a low-cost system for measuring lightning electric field waveforms,” IEEE Transactions on Electromagnetic Compatibility, vol. 61, pp. 595–598, 2019.spa
dc.relation.referencesS. Karunarathne, T. C. Marshall, M. Stolzenburg, and N. Karunarathna, “Electrostatic field changes and durations of narrow bipolar events,” Journal of Geophysical Research: Atmospheres, pp. 1–14, 2016.spa
dc.relation.referencesR. J. Thomas, P. R. Krehbiel, T. Hamlin, J. Harlin, and D. Shown, “Observations of vhf source powers radiated by lightning,” Geophysical Research Letters, vol. 28, pp. 143–146, 2001.spa
dc.relation.referencesD. A. Smith, X. M. Shao, D. N. Holden, C. T. Rhodes, M. Brook, P. R. Krehbiel, M. Stanley, W. Rison, and R. J. Thomas, “A distinct class of isolated intracloud lightning discharges and their associated radio emissions,” Journal of Geophysical Research Atmospheres, vol. 104, pp. 4189– 4212, 1999. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2- s2.0-0033608497partnerID=tZOtx3y1spa
dc.relation.referencesA. R. Jacobson and T. E. L. Light, “Revisiting "narrow bipolar eventïntracloud lightning using the forte satellite,” Annales Geophysicae, vol. 30, pp. 389–404, 2012.spa
dc.relation.referencesT. Wu, W. Dong, Y. Zhang, T. Funaki, S. Yoshida, T. Morimoto, T. Ushio, and Z. Kawasaki, “Discharge height of lightning narrow bipolar events,” Journal of Geophysical Research, vol. 117, p. D05119, 3 2012. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0- 84863375330partnerID=tZOtx3y1spa
dc.relation.referencesA. Nag, “Characterization and modeling of lightning processes with emphasis on compact intracloud discharges,” p. 508, 2010.spa
dc.relation.referencesM. Ahmad, M. Esa, V. Cooray, Z. Baharudin, and P. Hettiarachchi, “Latitude dependence of narrow bipolar pulse emissions,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 128, pp. 40–45, 6 2015. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0- 84925435106partnerID=tZOtx3y1spa
dc.relation.referencesK. C. Wiens, T. Hamlin, J. D. Harlin, and D. M. Suszcynsky, “Relationships among narrow bipolar events, total lightning and radar inferred convective strength in great plains thunderstorms,” Journal of Geophysical Research, vol. 113, pp. 1–31, 2008. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2- s2.0-77949294233partnerID=tZOtx3y1spa
dc.relation.referencesS. Karunarathne, T. C. Marshall, M. Stolzenburg, and N. Karunarathna, “Modeling initial breakdown pulses of cg lightning flashes,” Journal of Geophysical Research Atmospheres, vol. 119, 2014.spa
dc.relation.referencesA. Nag, V. A. Rakov, D. Tsalikis, and J. A. Cramer, “On phenomenology of compact intracloud lightning discharges,” Journal of Geophysical Research, vol. 115, p. D14115, 7 2010. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0- 77955396523partnerID=tZOtx3y1spa
dc.relation.referencesJ. A. López, J. Montanyà, O. van der Velde, D. Romero, F. J. Gordillo-Vázquez, F. J. Pérez-Invernón, A. Luque, C. A. M. Rodriguez, T. Neubert, W. Rison, P. Krehbiel, J. N. González, N. Østgaard, and V. Reglero, “Initiation of lightning flashes simultaneously observed from space and the ground: Narrow bipolar events,” Atmospheric Research, vol. 268, 4 2022.spa
dc.relation.referencesS. Sharma, M. Fernando, and V. Cooray, “Narrow positive bipolar radiation from lightning observed in sri lanka,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 70, pp. 1251–1260, 7 2008. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0- 45449093166partnerID=tZOtx3y1spa
dc.relation.referencesM. Ahmad, M. Esa, E. R. Williams, D. Periannan, M. Aziz, G. Lu, H. Zhang, and V. Cooray, “Emission height of narrow bipolar events of a tropical storm over malacca strait,” 2016.spa
dc.relation.referencesR. Albrecht, S. Goodman, D. Buechler, R. Blakeslee, and H. Christian, “Where are the lightning hotspots on earth?” Builletin America Meteorological Society, vol. 97, pp. 2051–2068, 2016.spa
dc.relation.referencesJ. Herrera, C. Younes, and L. Porras, “Cloud-to-ground lightning activity in colombia: A 14-year study using lightning location system data,” Atmospheric Research, vol. 203, pp. 164–174, 2018. [Online]. Available: https://doi.org/10.1016/j.atmosres.2017.12.009spa
dc.relation.referencesD. J. Cecil, D. E. Buechler, and R. J. Blakeslee, “Trmm lis climatology of thunderstorm occurrence and conditional lightning flash rates,” Journal of Climate, vol. 28, pp. 6536– 6547, 2015.spa
dc.relation.referencesN. Karunarathna, T. C. Marshall, M. Stolzenburg, and S. Karunarathne, “Narrow bipolar pulse locations compared to thunderstorm radar echo structure,” Journal of Geophysical Research: Atmospheres, vol. 120, pp. 11,690–11,706, 11 2015. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0- 84954441993partnerID=tZOtx3y1spa
dc.relation.referencesF. Lü, B. Zhu, H. Zhou, V. A. Rakov, W. Xu, and Z. Qin, “Observations of compact intracloud lightning discharges in the northernmost region of china,” Journal of Geophysical Research: Atmospheres, vol. 118, pp. 4458–4465, 5 2013. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0- 84881170346partnerID=tZOtx3y1spa
dc.relation.referencesA. V. Gurevich, G. M. Milikh, and R. Roussel-Dupre, “Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm,” Physics Letters A, vol. 165, pp. 463–468, 1992.spa
dc.relation.referencesD. Li, F. Liu, F. J. Pérez-Invernón, G. Lu, Z. Qin, B. Zhu, and A. Luque, “On the accuracy of ray-theory methods to determine the altitudes of intracloud electric discharges and ionospheric reflections: Application to narrow bipolar events,” Journal of Geophysical Research: Atmospheres, vol. 125, pp. 1–10, 2020.spa
dc.relation.referencesT. Wu, Y. Takayanagi, S. Yoshida, T. Funaki, T. Ushio, and Z. Kawasaki, “Spatial relationship between lightning narrow bipolar events and parent thunderstorms as revealed by phased array radar,” Geophysical Research Letters, vol. 40, pp. 618–623, 2 2013. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0- 84878180257partnerID=tZOtx3y1spa
dc.relation.referencesH. Zhang, G. Lu, X. Qie, R. Jiang, Y. Fan, Y. Tian, Z. Sun, M. Liu, Z. Wang, D. Liu, and G. Feng, “Locating narrow bipolar events with singlestation measurement of low-frequency magnetic fields,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 143-144, pp. 88–101, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.jastp.2016.03.009spa
dc.relation.referencesA. Nag and V. A. Rakov, “Compact intracloud lightning discharges: 2. estimation of electrical parameters,” Journal of Geophysical Research, vol. 115, p. D20103, 10 2010. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0- 78049406039partnerID=tZOtx3y1spa
dc.relation.referencesF. C. Lü, B. Y. Zhu, M. Ma, L. X. Wei, and D. Ma, “Observations of narrow bipolar events during two thunderstorms in northeast china,” Science China Earth Sciences, vol. 56, pp. 1459–1470, 2013.spa
dc.relation.referencesT. Wu, S. Yoshida, and T. Ushio, “Observations of narrow bipolar events initiating regular lightning flashes.” IEEE, 8 2014, pp. 1– 4. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0- 84919776651partnerID=tZOtx3y1spa
dc.relation.referencesP. J. Medelius, E. M. Thomson, and J. S. Pierce, “E and de/dt waveshapes for narrow bipolar pulses in intracloud lightning.” NASA. Kennedy Space Center, The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, Volume 1; 10 p, 1991, pp. 12–1 – 12–10, available in eBooks Doctorado.spa
dc.relation.referencesJ. C. Willett, J. C. Bailey, and E. P. Krider, “A class of unusual lightning electric field waveforms with very strong high-frequency radiation,” Journal of Geophysical Research, vol. 94, p. 16255, 1989.spa
dc.relation.referencesA. Hazmi, P. Emeraldi, M. I. Hamid, and N. Takagi, “Research on positive narrow bipolar events in padang,” Proceedings - 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2016, pp. 156–159, 2017.spa
dc.relation.referencesT. Gunasekara, M. Fernando, U. Sonnadara, and V. Cooray, “Characteristics of narrow bipolar pulses observed from lightning in sri lanka,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 138-139, pp. 66–73, 2 2016. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0- 84951286333partnerID=tZOtx3y1spa
dc.relation.referencesY. Wang, G. Zhang, X. Qie, D. Wang, T. Zhang, Y. Zhao, Y. Li, and T. Zhang, “Characteristics of compact intracloud discharges observed in a severe thunderstorm in northern part of china,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 84- 85, pp. 7–14, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.jastp.2012.05.003spa
dc.relation.referencesK. B. Eack, “Electrical characteristics of narrow bipolar events,” Geophysical Research Letters, vol. 31, p. L20102, 2004. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0- 11844302162partnerID=tZOtx3y1spa
dc.relation.referencesS. Karunarathne, T. Marshall, M. Stolzenburg, and N. Karunarathna, “Observations of positive narrow bipolar pulses,” Journal of Geophysical Research: Atmospheres, vol. 120, pp. 7128–7143, 2015.spa
dc.relation.referencesS. Bandara, T. Marshall, S. Karunarathne, N. Karunarathne, R. Siedlecki, and M. Stolzenburg, “Characterizing three types of negative narrow bipolar events in thunderstorms,” Atmospheric Research, vol. 227, pp. 263–279, 2019. [Online]. Available: https://doi.org/10.1016/j.atmosres.2019.05.013 https://linkinghub.elsevier.com/retrieve/pii/S0169809519301383spa
dc.relation.referencesE. M. Smith, T. C. Marshall, S. Karunarathne, R. Siedlecki, and M. Stolzenburg, “Initial breakdown pulse parameters in intracloud and cloud-to-ground lightning flashes,” Journal of Geophysical Research: Atmospheres, vol. 123, pp. 2129–2140, 2018.spa
dc.relation.referencesF. Liu, B. Zhu, G. Lu, Z. Qin, J. Lei, K.-M. Peng, A. B. Chen, A. Huang, S. A. Cummer, M. Chen, M. Ma, F. Lyu, and H. Zhou, “Observations of blue discharges associated with negative narrow bipolar events in active deep convection,” Geophysical Research Letters, 2018. [Online]. Available: http://doi.wiley.com/10.1002/2017GL076207spa
dc.relation.referencesR. A. Marshall, C. L. da Silva, and V. P. Pasko, “Elve doublets and compact intracloud discharges,” Geophysical Research Letters, vol. 42, pp. 6112–6119, 7 2015. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0- 84938962666partnerID=tZOtx3y1spa
dc.relation.referencesI. Kolmašová, O. Santolík, E. Defer, W. Rison, S. Coquillat, S. Pedeboy, R. Lán, L. Uhlíř, D. Lambert, J. P. Pinty, S. Prieur, and V. Pont, “Lightning initiation: Strong pulses of vhf radiation accompany preliminary breakdown,” Scientific Reports, vol. 8, pp. 4–13, 2018.spa
dc.relation.referencesV. Cooray, G. Cooray, M. Rubinstein, and F. Rachidi, “Modeling compact intracloud discharge (cid) as a streamer burst,” Atmosphere, vol. 11, 2020.spa
dc.relation.referencesH. E. Rojas, C. A. Rivera, J. Chaves, C. A. Cortés, F. J. Román, and M. Fernando, “New circuit for the measurement of lightning generated electric fields,” 2017 International Symposium on Lightning Protection, XIV SIPDA 2017, pp. 188–194, 2017.spa
dc.relation.referencesM. G. Stock, M. Akita, P. R. Krehbiel, W. Rison, H. E. Edens, Z. Kawasaki, and M. A. Stanley, “Continuous broadband digital interferometry of lightning using a generalized cross-correlation algorithm,” Journal of Geophysical Research Atmospheres, vol. 119, pp. 3134–3165, 2014.spa
dc.relation.referencesX. Fan, P. Krehbiel, J. Tilles, M. Stanley, S. Senay, H. Edens, W. Rison, and Y. Zhang, “Radio interferometer observations and analysis of an radio interferometer observations and analysis of an energetic in-cloud pulse based on ensemble empirical mode decomposition,” IEEE Transactions on Geoscience and Remote Sensing, pp. 1–17, 2021.spa
dc.relation.referencesA. Chilingarian, M. Dolgonosov, A. Kiselyov, Y. Khanikyants, and S. Soghomonyan, “Lightning observations using broadband vhf interferometer and electric field measurements,” Journal of Instrumentation, vol. 15, 2020.spa
dc.relation.referencesZ. Koochak and A. Fraser-Smith, “Single-station lightning location using azimuth and time of arrival of sferics,” Radio Science, vol. 55, 2020.spa
dc.relation.referencesS. Bandara, T. Marshall, S. Karunarathne, and M. Stolzenburg, “Electric field change and vhf waveforms of positive narrow bipolar events in mississippi thunderstorms,” Atmospheric Research, vol. 243, p. 105000, 2020. [Online]. Available: https://doi.org/10.1016/j.atmosres.2020.105000spa
dc.relation.referencesA. F. R. Leal, V. A. Rakov, and B. R. P. da Rocha, “Compact intracloud discharges: New classification of field waveforms and identification by lightning locating systems,” Electric Power Systems Research, vol. 173, pp. 251–262, 2019.spa
dc.relation.referencesD. Aranguren, J. López, J. Inampués, H. Torres, and H. D. Betz, “Cloud-to-ground ligthning activity in colombia and the influence of topography,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 154, pp. 1850–1855, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.jastp.2016.08.010spa
dc.relation.referencesS. Bandara, T. Marshall, S. Karunarathne, and M. Stolzenburg, “Groups of narrow bipolar events within thunderstorms,” Atmospheric Research, vol. 252, p. 105450, 2021. [Online]. Available: https://doi.org/10.1016/j.atmosres.2021.105450spa
dc.relation.referencesD. Li, A. Luque, F. J. Gordillo-Vázquez, C. da Silva, P. R. Krehbiel, F. Rachidi, and M. Rubinstein, “Secondary fast breakdown in narrow bipolar events,” 4 2022spa
dc.relation.referencesF. Diaz, D. Ortiz, and F. Roman, “Lightning climatology in colombia,” Theoretical and Applied Climatology, 2022. [Online]. Available: https://doi.org/10.1007/s00704-022-04012-9spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.lembCampos eléctricosspa
dc.subject.lembElectric fieldseng
dc.subject.lembCampos electromagnéticosspa
dc.subject.lembElectromagnetic fieldseng
dc.subject.proposalLightningeng
dc.subject.proposalNarrow bipolar eventeng
dc.subject.proposalNarrow bipolar pulseeng
dc.subject.proposalcompact intracloud dischargeeng
dc.subject.proposalInterferometryeng
dc.subject.proposalRayosspa
dc.subject.proposalPulsos bipolares estrechosspa
dc.subject.proposalEventos bipolares estrechosspa
dc.subject.proposalInterferometríaspa
dc.subject.proposalDescarga compacta intranubespa
dc.titleNarrow bipolar events study based on broadband observationseng
dc.title.translatedEstudio de pulsos bipolares estrechos basado en observaciones de banda anchaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79797084.2023.pdf
Tamaño:
15.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: