Predicción de patrones de navegación en mega-imágenes histopatológicas

dc.contributorGonzález Osorio, Fabio Augustospa
dc.contributor.authorRomo Bucheli, David Edmundospa
dc.date.accessioned2019-06-24T16:53:16Zspa
dc.date.available2019-06-24T16:53:16Zspa
dc.date.issued2011-05-18spa
dc.description.abstractLa microscopía virtual puede mejorar el trabajo rutinario de los laboratorios patológicos modernos. Este objetivo ha sido severamente limitado por la gran cantidad de información contenida en las laminas histopatológicas virtuales. La adopción de técnicas para mejorar la eficiencia durante la navegación de mega-imágenes ha mostrado ser útil para reducir los tiempos de respuesta en sistemas de microscopía virtual. Este trabajo presenta un enfoque novedoso para predecir patrones de navegación en laminas histopatológicas virtuales durante tareas de evaluación diagnosticas realizadas por patólogos. A partir de la selección de imágenes de ejemplos positivos (objetivo) y negativos (distractor) realizada por el patólogo, el método construye un mapa asignando relevancia a cada una de las regiones de la mega-imagen. Durante la evaluación de la identificación de relevancia, se encontró que el método desarrollado presento medidas promedio de precisión (55 %) y de promedio de recall (38 %) en el conjunto de datos utilizado, superando otras técnicas para detectar regiones de interés basadas en modelos computacionales de atención visual (Modelo Itti). La información contenida en el mapa de relevancia mostro una capacidad predictiva útil para la formulación de estrategias optimas de navegación, superando estrategias tradicionales en algunas de las situaciones analizadas en el presente trabajo. / Abstract. Virtual microscopy can improve the work ow of modern pathology laboratories, a goal limited by the large size of the virtual slides (VS). Lately some strategies to accelerate the navigation performance in large images has reduced the time. This work presents a novel method for predicting navigation patterns in VS during diagnostic tasks performed by pathologists. By selecting positive and negative image examples, the method constructs a map that assigns relevance to each image region. The evaluation of the regions of interest through Precision-recall measurements, calculated at each step of any actual navigation, obtained an average precision of 55% and a recall of about 38% when using the available set of navigations, outperforming other techniques based on computational models of visual attention that identify regions of interest. The predictive capability of the elevancy map was useful in the formulation of strategies to improve navigation.spa
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/4015/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/7614
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Medicinaspa
dc.relation.ispartofFacultad de Medicinaspa
dc.relation.referencesRomo Bucheli, David Edmundo (2011) Predicción de patrones de navegación en mega-imágenes histopatológicas / Prediction of navigation patterns in histopathological mega-images. Maestría thesis, Universidad Nacional de Colombia.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc61 Ciencias médicas; Medicina / Medicine and healthspa
dc.subject.proposalPatrones de navegaciónspa
dc.subject.proposalMega-imágenesspa
dc.subject.proposalImágenes histopatológicas / Prediction of navigationspa
dc.subject.proposalMega-imagesspa
dc.subject.proposalhistopathological imagesspa
dc.titlePredicción de patrones de navegación en mega-imágenes histopatológicasspa
dc.title.translatedPrediction of navigation patterns in histopathological mega-imagesSpa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
597896.2011.pdf
Tamaño:
3.77 MB
Formato:
Adobe Portable Document Format