Estudio de un sistema bio-electroquímico de fermentación para la producción de 1,3-propanodiol a partir de glicerina cruda

dc.contributor.advisorMontoya Castaño, Dolly
dc.contributor.authorAragón Caycedo, Oscar Leonardo
dc.contributor.orcidOSCAR LEONARDO ARAGON CAICEDO [0000000193632258]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Oscar-Aragonspa
dc.contributor.researchgroupBioprocesos y Bioprospeccionspa
dc.date.accessioned2023-07-19T14:02:51Z
dc.date.available2023-07-19T14:02:51Z
dc.date.issued8-07-23
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractLos azúcares y el glicerol pueden servir como sustratos de bajo costo en aplicaciones biotecnológicas para obtener varios intermediarios químicos con un alto valor agregado. La electrofermentación es una reciente tecnología con la que es posible mejorar y controlar la fermentación microbiana, especialmente con cepas del género Clostridium, aumentando la especificidad de las vías metabólicas. En este contexto, cepas bacterianas aisladas de suelos colombianos, y estrechamente relacionadas con Clostridium butyricum, se han identificado como eficientes productoras de solventes y ácidos, incluidos ácido acético, ácido butírico, etanol, butanol, acetona e hidrógeno a partir de glucosa o 1,3-propanodiol a partir de glicerol. En este trabajo se evalúa el efecto del suministro externo de electrones en la producción de metabolitos de interés comercial con una red metabólica de C. butyricum. Los resultados obtenidos de un modelo de simulación señalan que la interacción con el electrodo catódico mejora los rendimientos de productos reducidos. En concreto, utilizando glicerol como sustrato, la simulación indicó que el rendimiento medio del producto podría aumentar con 1,3-propanodiol (23%) e hidrógeno (45%). Por último, se estableció experimentalmente que la cepa nativa IBUN 158B es electroactiva y tiene la capacidad de incrementar los valores de rendimiento producto / sustrato de 1,3-PD (7 – 9%) cuando es sometida a la alimentación de pequeñas cantidades de electrones desde un cátodo en un proceso electrofermentación catódica y que el uso de transportadores de electrones como el Rojo Neutral incrementa los efectos de la electrofermentación alcanzando mayores valores de rendimiento cuando está presente en el medio de cultivo. En conclusión, la electrofermentación de Clostridium butyricum como técnica de cultivo bioelectroquímico tiene potencial como proceso de producción alternativo a la fermentación tradicional para controlar el estado redox durante la síntesis de bioquímicos y aumentar la producción de metabolitos de interés comercial. Pero se necesita más investigación básica y aplicada para dilucidar los mecanismos de transferencia de electrones y revelar los mecanismos reguladores subyacentes. (Texto tomado de la fuente)spa
dc.description.abstractSugars and glycerol can serve as low-cost substrates in biotechnological applications to obtain various chemical intermediates with high added value. Electrofermentation is a recent technology with which it is possible to improve and control microbial fermentation, especially with strains of the Clostridium genus, increasing the specificity of metabolic pathways. In this context, bacterial strains isolated from Colombian soils, and closely related to Clostridium butyricum. These strains have been efficient producers of solvents and acids, including acetic acid, butyric acid, ethanol, butanol, acetone, and hydrogen from glucose or 1,3-propanediol from glycerol. In this work, the production of commercial interest metabolites is assessed using an electron external supply with a metabolic network of C. butyricum. The simulation results show that the interaction with the cathode electrode improves the reduced product rates. Specifically, using glycerol as a substrate, the average yield of the product increases with 1,3-propanediol (23%) and hydrogen (45%). Finally, it was established experimentally that the native strain IBUN 158B is electroactive and has the capacity to increase the product/substrate yield values of 1,3-PD (7-9%) when it is submitted to the feeding of small amounts of electrons from a cathode in a cathodic electrofermentation process and that the use of electron carriers such as Neutral Red increases the effects of electrofermentation, reaching higher yield values when it is present in the culture medium. In conclusion, the electrofermentation of Clostridium butyricum as a bioelectrochemical culture technique has potential as an alternative production process to traditional fermentation to control the redox state during the synthesis of biochemicals and increase the production of metabolites of commercial interest. More basic and applied research is necessary to elucidate the mechanisms of electron transfer and reveal the underlying regulatory mechanisms.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctorado en Biotecnologíaspa
dc.description.researchareaBioprocesosspa
dc.description.researchareaMicroorganismos solventogénicosspa
dc.format.extentxvi, 113 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84216
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.referencesVees CA, Neuendorf CS, Pflügl S (2020) Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives, Springer International Publishing.spa
dc.relation.referencesDahiya S, Katakojwala R, Ramakrishna S, et al. (2020) Biobased Products and Life Cycle Assessment in the Context of Circular Economy and Sustainability. Mater Circ Econ 2: 1–28.spa
dc.relation.referencesBaritugo KA, Kim HT, David Y, et al. (2018) Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl Microbiol Biotechnol 102: 3915–3937.spa
dc.relation.referencesKumar B, Verma P (2020) Biomass-based biorefineries: An important architype towards a circular economy. Fuel 119622spa
dc.relation.referencesSantos SCSC, Liebensteiner MGMG, van Gelder AHAH, et al. (2018) Bacterial glycerol oxidation coupled to sulfate reduction at neutral and acidic pH. J Gen Appl Microbiol 64: 1–8.spa
dc.relation.referencesCheng H-H, Whang L-M, Lin C-A, et al. (2013) Metabolic flux network analysis of fermentative hydrogen production: using Clostridium tyrobutyricum as an example. Bioresour Technol 141: 233–239.spa
dc.relation.referencesDrozdzyńska A, Leja K, Czaczyk K, et al. (2011) Biotechnological production of 1,3-propanediol from crude glycerol. Biotechnologia 92: 92–100.spa
dc.relation.referencesSoares JF, Confortin TC, Todero I, et al. (2020) Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects. Renew Sustain Energy Rev 117: 109484.spa
dc.relation.referencesLiberato V, Benevenuti C, Coelho F, et al. (2019) Clostridium sp. As bio-catalyst for fuels and chemicals production in a biorefinery context. Catalysts 9spa
dc.relation.referencesPark J-H, Kim D-H, Baik J-H, et al. (2021) Improvement in H2 production from Clostridium butyricum by co-culture with Sporolactobacillus vineae. Fuel 285: 119051.spa
dc.relation.referencesCai G, Jin B, Monis P, et al. (2013) A genetic and metabolic approach to redirection of biochemical pathways of Clostridium butyricum for enhancing hydrogen production. Biotechnol Bioeng 110: 338–342.spa
dc.relation.referencesVivek N, Pandey A, Binod P (2017) Production and applications of 1, 3-propanediol, Current developments in biotechnology and bioengineering, Elsevier, 719–738.spa
dc.relation.referencesXu BB, Ma C (2019) Advances in the production of 1, 3-propanediol by microbial fermentation. AIP Conf Proc 2110: 10–15.spa
dc.relation.referencesWang X-L, Zhou J-J, Shen J-T, et al. (2020) Sequential fed-batch fermentation of 1, 3-propanediol from glycerol by Clostridium butyricum DL07. Appl Microbiol Biotechnol 104: 1–13spa
dc.relation.referencesZhou JJJ-J, Shen J-TT, Wang X-LXL, et al. (2020) Metabolism, morphology and transcriptome analysis of oscillatory behavior of Clostridium butyricum during long-term continuous fermentation for 1, 3-propanediol production. Biotechnol Biofuels 13: 1–18.spa
dc.relation.referencesSu M-YMY, Li Y, Ge XZX-Z, et al. (2014) Insights into 3-hydroxypropionic acid biosynthesis revealed by overexpressing native glycerol dehydrogenase in Klebsiella pneumoniae. Biotechnol Biotechnol Equip 28: 762–768.spa
dc.relation.referencesZhang Y, Huang Z, Du C, et al. (2009) Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab Eng 11: 101–106.spa
dc.relation.referencesakshmanan M, Chung BKS, Liu C, et al. (2013) Cofactor modification analysis: A computational framework to identify cofactor specificity engineering targets for strain improvement. J Bioinform Comput Biol 11: 1343006.spa
dc.relation.referencesAbbad-Andaloussi S, Amine J, Gerard P, et al. (1998) Effect of glucose on glycerol metabolism by Clostridium butyricum DSM 5431. J Appl Microbiol 84: 515–522.spa
dc.relation.referencesUtesch T, Sabra W, Prescher C, et al. (2019) Enhanced electron transfer of different mediators for strictly opposite shifting of metabolism in Clostridium pasteurianum grown on glycerol in a new electrochemical bioreactor. Biotechnol Bioeng 116: 1627–1643.spa
dc.relation.referencesToledo-Alarcón J, Fuentes L, Etchebehere C, et al. (2020) Glucose electro-fermentation with mixed cultures: A key role of the Clostridiaceae family. Int J Hydrogen Energy.spa
dc.relation.referencesZhou J, Wang X, Sun Y, et al. (2016) Progress on microbial electrosynthesis of bio-based chemicals. Huagong Jinzhan/Chemical Ind Eng Prog 35: 3005–3015.spa
dc.relation.referencesMoscoviz R, Desmond-Le Quéméner E, Trably E, et al. (2019) Bioelectrochemical Systems for the Valorization of Organic Residues, Biorefinery, Springer, 511–534.spa
dc.relation.referencesChoi O, Kim T, Woo HMHM, et al. (2014) Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Sci Rep 4: 6961.spa
dc.relation.referencesUtesch T, Zeng A (2018) A novel All‐in‐One electrolysis electrode and bioreactor enable better study of electrochemical effects and electricity‐aided bioprocesses. Eng Life Sci 18: 600–610.spa
dc.relation.referencesUtesch T, Sabra W, Zeng AP (2016) Growth of Clostridium pasteurianum in bio-electrochemical H-cell reactorspa
dc.relation.referencesKim TS, Kim BH (1988) Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent. Biotechnol Lett 10: 123–128.spa
dc.relation.referencesEngel M, Holtmann D, Ulber R, et al. (2019) Increased Biobutanol Production by Mediator-Less Electro-Fermentation. Biotechnol J 14spa
dc.relation.referencesChoi O, Um Y, Sang BIB-IBI (2012) Butyrate production enhancement by clostridium tyrobutyricum using electron mediators and a cathodic electron donor. Biotechnol Bioeng 109: 2494–2502.spa
dc.relation.referencesZhang Y, Li J, Meng J, et al. (2021) A neutral red mediated electro-fermentation system of Clostridium beijerinckii for effective co-production of butanol and hydrogen. Bioresour Technol 332: 125097.spa
dc.relation.referencesHe AY, Yin CY, Xu H, et al. (2016) Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4. 39: 245–254.spa
dc.relation.referencesXafenias N, Kmezik C, Mapelli V (2017) Enhancement of anaerobic lysine production in Corynebacterium glutamicum electrofermentations. Bioelectrochemistry 117: 40–47.spa
dc.relation.referencesHaas T, Krause R, Weber R, et al. (2018) Technical photosynthesis involving CO2 electrolysis and fermentation. Nat Catal 2017 11 1: 32–39.spa
dc.relation.referencesJabeen G, Farooq R (2016) Bio-electrochemical synthesis of commodity chemicals by autotrophic acetogens utilizing CO2 for environmental remediation. J Biosci 41: 367–380.spa
dc.relation.referencesBajracharya S, Ter Heijne A, Dominguez Benetton X, et al. (2015) Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour Technol 195: 14–24.spa
dc.relation.referencesNevin KP, Hensley SA, Franks AE, et al. (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77: 2882–2886.spa
dc.relation.referencesKoch C, Kuchenbuch A, Kracke F, et al. (2017) Predicting and experimental evaluating bio-electrochemical synthesis — A case study with Clostridium kluyveri. Bioelectrochemistry 118: 114–122.spa
dc.relation.referencesVan Eerten-Jansen MCAAAA, Ter Heijne A, Grootscholten TIMM, et al. (2013) Bioelectrochemical Production of Caproate and Caprylate from Acetate by Mixed Cultures. ACS Sustain Chem Eng 1: 1069–1069.spa
dc.relation.referencesKluge M, Pérocheau Arnaud S, Robert T (2019) 1,3-Propanediol and its Application in Bio-Based Polyesters for Resin Applications. Chem Africa 2: 215–221.spa
dc.relation.referencesCheng C, Bao T, Yang S-TS-T (2019) Engineering Clostridium for improved solvent production: recent progress and perspective. Appl Microbiol Biotechnol 103: 5549–5566.spa
dc.relation.referencesAsopa RP, Ikram MM, Saharan VK (2022) Valorization of glycerol into 1,3-propanediol and organic acids using biocatalyst Saccharomyces cerevisiae. Bioresour Technol Reports 18spa
dc.relation.referencesKumar P, Mehariya S, Ray S, et al. (2014) Biodiesel Industry Waste: A Potential Source of Bioenergy and Biopolymers. Indian J Microbiol 2014 551 55: 1–7.spa
dc.relation.referencesAttarbachi T, Kingsley MD, Spallina V (2023) New trends on crude glycerol purification: A review. Fuel 340: 127485spa
dc.relation.referencesBautista S, Espinoza A, Narvaez P, et al. (2019) A system dynamics approach for sustainability assessment of biodiesel production in Colombia. Baseline simulation. J Clean Prod 213: 1–20spa
dc.relation.referencesde Souza TAZ, Pinto GM, Julio AAV, et al. (2022) Biodiesel in South American countries: A review on policies, stages of development and imminent competition with hydrotreated vegetable oil. Renew Sustain Energy Rev 153: 111755.spa
dc.relation.referencesLiu Y, Zhong B, Lawal A (2022) Recovery and utilization of crude glycerol, a biodiesel byproduct. RSC Adv 12: 27997–28008.spa
dc.relation.referencesDikshit PK, Moholkar VS (2019) Batch and repeated-batch fermentation for 1, 3-dihydroxyacetone production from waste glycerol using free, immobilized and resting Gluconobacter oxydans cells. Waste and Biomass Valorization 10: 2455–2465.spa
dc.relation.referencesPott RWM, Howe CJ, Dennis JS (2014) The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Bioresour Technol 152: 464–470spa
dc.relation.referencesLopes AP, Souza PR, Bonafé EG, et al. (2019) Purified glycerol is produced from the frying oil transesterification by combining a pre-purification strategy performed with condensed tannin polymer derivative followed by ionic exchange. Fuel Process Technol 187: 73–83.spa
dc.relation.referencesThompson JC, He BB (2006) Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl Eng Agric 22: 261–265.spa
dc.relation.referencesElgharbawy AS, Sadik W, Sadek OM, et al. (2021) A review on biodiesel feedstocks and production technologies. J Chil Chem Soc 66: 5098–5109.spa
dc.relation.referencesYildiz G, Ronsse F, Venderbosch R, et al. (2015) Effect of biomass ash in catalytic fast pyrolysis of pine wood. Appl Catal B Environ 168: 203–211.spa
dc.relation.referencesDi Fraia A, Miliotti E, Rizzo AM, et al. (2023) Coupling hydrothermal liquefaction and aqueous phase reforming for integrated production of biocrude and renewable H2. AIChE J 69: e17652.spa
dc.relation.referencesSamul D, Leja K, Grajek W (2014) Impurities of crude glycerol and their effect on metabolite production. Ann Microbiol 64: 891–898.spa
dc.relation.referencesBoga DA, Liu F, Bruijnincx PCA, et al. (2016) Aqueous-phase reforming of crude glycerol: effect of impurities on hydrogen production. Catal Sci \& Technol 6: 134–143.spa
dc.relation.referencesViana MB, Freitas A V, Leitão RC, et al. (2012) Anaerobic digestion of crude glycerol: a review. Environ Technol Rev 1: 81–92.spa
dc.relation.referencesPagliaro M (2017) C3-Monomers. Glycerol Renew Platf Chem 23–57.spa
dc.relation.referencesAsopa RP, Bhoi R, Saharan VK (2022) Valorization of glycerol into value-added products: A comprehensive review on biochemical route. Bioresour Technol Reports 20.spa
dc.relation.referencesCrosse AJ, Brady D, Zhou N, et al. (2019) Biodiesel’s trash is a biorefineries’ treasure: the use of “dirty” glycerol as an industrial fermentation substrate. World J Microbiol Biotechnol 2019 361 36: 1–5.spa
dc.relation.referencesJuturu V, Wu JC (2016) Microbial production of lactic acid: the latest development. Crit Rev Biotechnol 36: 967–977.spa
dc.relation.referencesGarlapati VKVK, Shankar U, Budhiraja A (2016) Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol Reports 9: 9–14.spa
dc.relation.referencesKaur J, Sarma AK, Jha MK, et al. (2020) Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. Biotechnol Reports 27: e00487.spa
dc.relation.referencesLiu H, Xu Y, Zheng Z, et al. (2010) 1,3-Propanediol and its copolymers: Research, development and industrialization. Biotechnol J 5: 1137–1148.spa
dc.relation.referencesPapanikolaou S, Ruiz-Sanchez P, Pariset B, et al. (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77: 191–208.spa
dc.relation.referencesFokum E, Zabed HM, Yun J, et al. (2021) Recent technological and strategical developments in the biomanufacturing of 1,3-propanediol from glycerol. Int J Environ Sci Technol 18: 2467–2490.spa
dc.relation.referencesSun YQ, Shen JT, Yan L, et al. (2018) Advances in bioconversion of glycerol to 1,3-propanediol: Prospects and challenges. Process Biochem 71: 134–146.spa
dc.relation.referencesda Silva Ruy AD, de Brito Alves RM, Reis Hewer TL, et al. (2020) Catalysts for glycerol hydrogenolysis to 1,3-propanediol: A review of chemical routes and market. Catal Today 381: 243–253.spa
dc.relation.referencesCen X, Dong Y, Liu D, et al. (2023) Microbial Production of C2-C5 Diols1. Handb Biorefinery Res Technol 1–32.spa
dc.relation.referencesBiebl H, Menzel K, Zeng A-PP, et al. (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52: 289–297spa
dc.relation.referencesForsberg CW (1987) Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl Environ Microbiol 53: 639–643.spa
dc.relation.referencesBaeza-Jiménez R, Lopez-Martinez LX, de la Cruz-Medina J, et al. (2011) Effect of glucose on 1,3-propanediol production by Lactobacillus reuteri | Efecto de la glucosa sobre la producción de 1,3-propanodiol por Lactobacillus reuteri. Rev Mex Ing Quim 10: 39–46.spa
dc.relation.referencesCelinska E, Celińska E, Celinska E, et al. (2012) Klebsiella spp as a 1, 3-propanediol producer: the metabolic engineering approach. Crit Rev Biotechnol 32: 274–288.spa
dc.relation.referencesChatzifragkou A, Papanikolaou S, Kopsahelis N, et al. (2014) Biorefinery development through utilization of biodiesel industry by-products as sole fermentation feedstock for 1,3-propanediol production. Bioresour Technol 159: 167–175.spa
dc.relation.referencesDietz D, Zeng A-PAP (2014) Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. Bioprocess Biosyst Eng 37: 225–233.spa
dc.relation.referencesFerreira TFTF, Saab VDSVDS, De Matos PMPMPM, et al. (2014) Evaluation of 1,3-propanediol production from glycerine by clostridium butyricum ncimb 8082. Chem Eng Trans 38: 475–480.spa
dc.relation.referencesHao J, Wang W, Tian J, et al. (2008) Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01. J Ind Microbiol Biotechnol 35: 735–741.spa
dc.relation.referencesJensen TOTØO, Kvist T, Mikkelsen MJMJ, et al. (2012) Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol. AMB Express 2: 1–7.spa
dc.relation.referencesKivisto A, Santala V, Karp M (2012) 1,3-Propanediol production and tolerance of a halophilic fermentative bacterium, Halanaerobium saccharolyticum subsp. saccharolyticum. J Biotechnol 158: 242–247.spa
dc.relation.referenceskubiak P, Leja K, Myszka K, et al. (2012) Physiological predisposition of various Clostridium species to synthetize 1,3-propanediol from glycerol. Process Biochem 47: 1308–1319.spa
dc.relation.referencesLee CS, Aroua MK, Daud WMAW, et al. (2015) A review: Conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew Sustain Energy Rev 42: 235–244.spa
dc.relation.referencesAnand P, Saxena RK (2012) A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. N Biotechnol 29: 199–205.spa
dc.relation.referencesSzymanowska-Powałowska D, Orczyk D, Leja K, et al. (2014) Biotechnological potential of Clostridium butyricum bacteria. Braz J Microbiol 45: 892–901.spa
dc.relation.referencesZhou S, Li L, Perseke M, et al. (2015) Isolation and characterization of a Klebsiella pneumoniae strain from mangrove sediment for efficient biosynthesis of 1,3-propanediol. Sci Bull 60: 511–521.spa
dc.relation.referencesChen X, Zhang D-JJ, Qi W-TT, et al. (2003) Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl Microbiol Biotechnol 63: 143–146.spa
dc.relation.referencesCheng K-KKK, Liu H-JHJ, Liu DHD-H (2005) Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnol Lett 27: 19–22.spa
dc.relation.referencesHartlep M, Hussmann W, Prayitno N, et al. (2002) Study of two-stage processes for the microbial production of 1,3-propanediol from glucose. Appl Microbiol Biotechnol 60: 60–66.spa
dc.relation.referencesAbbad-Andaloussi S, Manginot-Durr C, Amine J, et al. (1995) Isolation and characterization of Clostridium butyricum DSM 5431 mutants with increased resistance to 1,3-propanediol and altered production of acids. Appl Environ Microbiol 61: 4413–4417.spa
dc.relation.referencesBiebl H (1991) Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat. Appl Microbiol Biotechnol 35: 701–705.spa
dc.relation.referencesGonzález-Pajuelo M, Andrade JCC, Vasconcelos I (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31: 442–446.spa
dc.relation.referencesSaint-Amans S, Girbal L, Andrade J, et al. (2001) Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. J Bacteriol 183: 1748–1754spa
dc.relation.referencesGungormusler-Yilmaz M, Shamshurin D, Grigoryan M, et al. (2014) Reduced catabolic protein expression in Clostridium butyricum DSM 10702 correlate with reduced 1,3-propanediol synthesis at high glycerol loading. AMB Express 4: 1–14.spa
dc.relation.referencesRampy MA, Chou TS, Pinchuk AN, et al. (1995) Synthesis and biological evaluation of radioiodinated phospholipid ether analogs. Nucl Med Biol 22: 505–512.spa
dc.relation.referencesZhou M, Tu H, He Y, et al. (2020) Synthesis of an oligomeric thickener for supercritical carbon dioxide and its properties. J Mol Liq 312.spa
dc.relation.referencesBiebl H (2001) Fermentation of glycerol by Clostridium pasteurianum - Batch and continuous culture studies. J Ind Microbiol Biotechnol 27: 18–26.spa
dc.relation.referencesO’Brien JR, Raynaud C, Croux C, et al. (2004) Insight into the Mechanism of the B12-Independent Glycerol Dehydratase from Clostridium butyricum: Preliminary Biochemical and Structural Characterization. Biochemistry 43: 4635–4645.spa
dc.relation.referencesSun J, Van Den Heuvel J, Soucaille P, et al. (2003) Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol Prog 19: 263–272.spa
dc.relation.referencesSaxena RK, Anand P, Saran S, et al. (2009) Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotechnol Adv 27: 895–913.spa
dc.relation.referencesBizukojc M, Dietz D, Sun J, et al. (2010) Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archeon, Methanosarcina mazei, under anaerobic conditions. Bioprocess Biosyst Eng 33: 507–523.spa
dc.relation.referencesCho S, Kim T, Woo HMHM, et al. (2015) High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnol Biofuels 8: 146.spa
dc.relation.referencesMalaoui H, Marczak R (2001) Influence of glucose on glycerol metabolism by wild-type and mutant strains of Clostridium butyricum E5 grown in chemostat culture. Appl Microbiol Biotechnol 55: 226–233.spa
dc.relation.referencesZeng A-PP, Biebl H, Schlieker H, et al. (1993) Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: Regulation of reducing equivalent balance and product formation. Enzyme Microb Technol 15: 770–779.spa
dc.relation.referencesZeng A-PP (1996) Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioprocess Eng 14: 169–175.spa
dc.relation.referencesYun J, Zabed HM, Zhang Y, et al. (2022) Improving tolerance and 1,3-propanediol production of Clostridium butyricum using physical mutagenesis, adaptive evolution and genome shuffling. Bioresour Technol 363.spa
dc.relation.referencesSchmitz R, Sabra W, Arbter P, et al. (2019) Improved electrocompetence and metabolic engineering of Clostridium pasteurianum reveals a new regulation pattern of glycerol fermentation. Eng Life Sci 19: 412–422.spa
dc.relation.referencesBarbirato F, Grivet JPJP, Soucaille P, et al. (1996) 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environ Microbiol 62: 1448–1451.spa
dc.relation.referencesWang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31: 1796–1807spa
dc.relation.referencesZhou M, Chen J, Freguia S, et al. (2013) Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol Mi. Environ Sci Technol 47: 1–16spa
dc.relation.referencesTremblay P-L, Zhang T (2015) Electrifying microbes for the production of chemicals. Front Microbiol 6.spa
dc.relation.referencesdeCamposRodrigues T, Rosenbaum MA (2014) Microbial Electroreduction: Screening for New Cathodic Biocatalysts. ChemElectroChem 1: 1916–1922spa
dc.relation.referencesEl-Naggar MY, Wanger G, Leung KM, et al. (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci U S A 107: 18127–18131.spa
dc.relation.referencesVarcoe JR, Atanassov P, Dekel DR, et al. (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7: 3135–3191spa
dc.relation.referencesAndersen SJ, Hennebel T, Gildemyn S, et al. (2014) Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams. Environ Sci Technol 48: 7135–7142spa
dc.relation.referencesLovley DR (2017) Syntrophy Goes Electric: Direct Interspecies Electron Transfer. Annu Rev Microbiol 71: 643–664.spa
dc.relation.referencesRosenbaum M, Aulenta F, Villano M, et al. (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102: 324–333spa
dc.relation.referencesStrycharz SM, Woodard TL, Johnson JP, et al. (2008) Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol 74: 5943–5947spa
dc.relation.referencesMarsili E, Baron DB, Shikhare ID, et al. (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105: 3968–3973spa
dc.relation.referencesxia X, Cao XX, Liang P, et al. (2010) Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells. Appl Microbiol Biotechnol 87: 383–390spa
dc.relation.referencesPham TH, Boon N, Aelterman P, et al. (2008) Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77: 1119–1129.spa
dc.relation.referencesThrash JC, Van Trump JI, Weber KA, et al. (2007) Electrochemical Stimulation of Microbial Perchlorate Reduction. Environ Sci Technol 41: 1740–1746spa
dc.relation.referencesPark DH, Laivenieks M, Guettler M V., et al. (1999) Microbial Utilization of Electrically Reduced Neutral Red as the Sole Electron Donor for Growth and Metabolite Production. Appl Environ Microbiol 65: 2912spa
dc.relation.referencesLi J, Zhang Y, Sun K, et al. (2022) Optimization of a cathodic electro-fermentation process for enhancing co-production of butanol and hydrogen via acetone-butanol-ethanol fermentation of Clostridium beijerinckii. Energy Convers Manag 251: 114987spa
dc.relation.referencesZheng T, Li J, Ji Y, et al. (2020) Progress and Prospects of Bioelectrochemical Systems: Electron Transfer and Its Applications in the Microbial Metabolism. Front Bioeng Biotechnol 8: 10.spa
dc.relation.referencesHarrington TD, Tran VN, Mohamed A, et al. (2015) The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction. Bioresour Technol 192: 689–695spa
dc.relation.referencesXafenias N, Anunobi MOSO, Mapelli V (2015) Electrochemical startup increases 1,3-propanediol titers in mixed-culture glycerol fermentations. Process Biochem 50: 1499–1508spa
dc.relation.referencesSelembo PA, Perez JM, Lloyd WA, et al. (2009) Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnol Bioeng 104: 1098–1106spa
dc.relation.referencesDennis PGPG, Harnisch F, Yeoh YKYKYK, et al. (2013) Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system. Appl Environ Microbiol 79: 4008–4014.spa
dc.relation.referencesZhou M, Yang J, Wang H, et al. (2013) Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials. Environ Technol (United Kingdom) 34: 1915–1928.spa
dc.relation.referencesMoscoviz R, Flayac C, Desmond-Le Quéméner E, et al. (2017) Revealing extracellular electron transfer mediated parasitism: energetic considerations. Sci Rep 7: 7766.spa
dc.relation.referencesSadhukhan J, Lloyd JR, Scott K, et al. (2016) A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2. Renew Sustain Energy Rev 56: 116–132.spa
dc.relation.referencesKracke F, Virdis B, Bernhardt P V., et al. (2016) Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply. Biotechnol Biofuels 9: 249.spa
dc.relation.referencesZhang C, Traitrongsat P, Zeng A-P (2023) Electrochemically mediated bioconversion and integrated purification greatly enhanced co-production of 1,3-propanediol and organic acids from glycerol in an industrial bioprocess. Bioprocess Biosyst Eng 2023 1–11.spa
dc.relation.referencesKim C, Lee JJHJJH, Baek J, et al. (2020) Small Current but Highly Productive Synthesis of 1,3-Propanediol from Glycerol by an Electrode-Driven Metabolic Shift in Klebsiella pneumoniae L17. ChemSusChem 13: 564–573spa
dc.relation.referencesJourdin L, Sousa J, van Stralen N, et al. (2020) Techno-economic assessment of microbial electrosynthesis from CO2 and/or organics: An interdisciplinary roadmap towards future research and application. Appl Energy 279: 115775spa
dc.relation.referencesKhosravanipour Mostafazadeh A, Drogui P, Brar SK, et al. (2017) Microbial electrosynthesis of solvents and alcoholic biofuels from nutrient waste: A review. J Environ Chem Eng 5: 940–954spa
dc.relation.referencesNagendranatha Reddy C, Mehariya S, Kavitha S, et al. (2020) Electro-Fermentation of biomass for high-value organic acids. Biorefineries A Step Towar Renew Clean Energy 417–436.spa
dc.relation.referencesEscapa A, Mateos R, Martinez EJ, et al. (2016) Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew Sustain Energy Rev 55: 942–956spa
dc.relation.referencesGadkari S, Beigi BHM, Aryal N, et al. (2021) Microbial electrosynthesis: is it sustainable for bioproduction of acetic acid? RSC Adv 11: 9921–9932spa
dc.relation.referencesLiu Z, Xue X, Cai W, et al. (2023) Recent progress on microbial electrosynthesis reactor designs and strategies to enhance the reactor performance. Biochem Eng J 190: 108745spa
dc.relation.referencesAl-Mamun A, Ahmed W, Jafary T, et al. (2023) Recent advances in microbial electrosynthesis system: Metabolic investigation and process optimization. Biochem Eng J 196: 108928spa
dc.relation.referencesSavla N, Pandit S, Verma JP, et al. (2021) Techno-economical evaluation and life cycle assessment of microbial electrochemical systems: A review. Curr Res Green Sustain Chem 4: 100111spa
dc.relation.referencesHoeger CD (2013) Foundational Work in Bioelectrochemical Anaerobic Reactor Design with Electron Mediators.spa
dc.relation.referencesRodriguez J, Premier GC (2010) Towards a mathematical description of bioelectrochemical systems, Bioelectrochemical systems, London., 423–448.spa
dc.relation.referencesGadkari S, Gu S, Sadhukhan J (2018) Towards automated design of bioelectrochemical systems: A comprehensive review of mathematical models. Chem Eng J 343: 303–316spa
dc.relation.referencesKazemi M, Biria D, Rismani-Yazdi H (2015) Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO2 and H2O. Phys Chem Chem Phys 17: 12561–12574.spa
dc.relation.referencesGadkari S, Shemfe M, Modestra JA, et al. (2019) Understanding the interdependence of operating parameters in microbial electrosynthesis: A numerical investigation. Phys Chem Chem Phys 21: 10761–10772spa
dc.relation.referencesAbel AJ, Clark DS (2021) A Comprehensive Modeling Analysis of Formate-Mediated Microbial Electrosynthesis**. ChemSusChem 14: 344–355spa
dc.relation.referencesSalimijazi F, Kim J, Schmitz AM, et al. (2020) Constraints on the Efficiency of Engineered Electromicrobial Production. Joule 4: 2101–2130.spa
dc.relation.referencesPassi A, Tibocha-Bonilla JD, Kumar M, et al. (2021) Genome-Scale Metabolic Modeling Enables In-Depth Understanding of Big Data. Metabolites 12spa
dc.relation.referencesCabau-Peinado O, Straathof AJJ, Jourdin L (2021) A General Model for Biofilm-Driven Microbial Electrosynthesis of Carboxylates From CO2. Front Microbiol 12: 1405spa
dc.relation.referencesPandit A V., Mahadevan R (2011) In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals. Microb Cell Fact 10: 76spa
dc.relation.referencesKracke F, Krömer JO (2014) Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinformatics 15spa
dc.relation.referencesMarshall CW, Ross DE, Handley KM, et al. (2017) Metabolic reconstruction and modeling microbial electrosynthesis. Sci Rep 7: 1–12spa
dc.relation.referencesGallardo R, Acevedo A, Quintero J, et al. (2016) In silico analysis of Clostridium acetobutylicum ATCC 824 metabolic response to an external electron supply. Bioprocess Biosyst Eng 39: 295–305spa
dc.relation.referencesWu C, Cano M, Gao X, et al. (2020) A quantitative lens on anaerobic life: leveraging the state-of-the-art fluxomics approach to explore clostridial metabolism. Curr Opin Biotechnol 64: 47–54spa
dc.relation.referencesMaertens J, Vanrolleghem PA (2010) Modeling with a view to target identification in metabolic engineering: A critical evaluation of the available tools. Biotechnol Prog 26: 313–331spa
dc.relation.referencesTrinh CT, Thompson RA (2012) Elementary mode analysis: A useful metabolic pathway analysis tool for reprograming microbial metabolic pathways. Subcell Biochem 64: 21–42spa
dc.relation.referencesStephanopoulos GN, Aristidou AA, Nielsen J (1998) Flux Analysis of Metabolic Networks. Metab Eng 581–627spa
dc.relation.referencesOrman MA, Berthiaume F, Androulakis IP, et al. (2011) Advanced Stoichiometric Analysis of Metabolic Networks of Mammalian Systems. Crit Rev Biomed Eng 39: 511spa
dc.relation.referencesMartínez I, Bennett GN, San KY (2010) Metabolic impact of the level of aeration during cell growth on anaerobic succinate production by an engineered Escherichia coli strain. Metab Eng 12: 499–509spa
dc.relation.referencesOrth JD, Thiele I, Palsson BOØ (2010) What is flux balance analysis? Nat Biotechnol 28: 245–248spa
dc.relation.referencesSchuster S, Pfeiffer T, Fell DA (2008) Is maximization of molar yield in metabolic networks favoured by evolution? J Theor Biol 252: 497–504spa
dc.relation.referencesReed JL, Palsson B (2004) Genome-Scale In Silico Models of E. coli Have Multiple Equivalent Phenotypic States: Assessment of Correlated Reaction Subsets That Comprise Network States. Genome Res 14: 1797spa
dc.relation.referencesWlaschin AP, Trinh CT, Srienc F (2005) Determination of the fractional contribution of individual elementary modes to the overall metabolism of Escherichia coli, AIChE Annual Meeting, Conference Proceedings, 8336spa
dc.relation.referencesArbter P (2022) Fluxomic and metabolomic studies on the electro-fermentation of Rhodosporidium toruloides and Clostridium pasteurianum for improved bioprocessesspa
dc.relation.referencesZanghellini J, Ruckerbauer DE, Hanscho M, et al. (2013) Elementary flux modes in a nutshell: Properties, calculation and applications. Biotechnol J 8: 1009–1016spa
dc.relation.referencesArbter P, Sinha A, Troesch J, et al. (2019) Redox governed electro-fermentation improves lipid production by the oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 294: 122122.spa
dc.relation.referencesVan Klinken JB, Willems Van Dijk K (2016) FluxModeCalculator: an efficient tool for large-scale flux mode computation. Bioinformatics 32: 1265–1266spa
dc.relation.referencesUllah E, Yosafshahi M, Hassoun S (2020) Towards scaling elementary flux mode computation. Brief Bioinform 21: 1875–1885spa
dc.relation.referencesKremling A (2013) Systems biology: Mathematical modeling and model analysis. Syst Biol Math Model Model Anal 1–362spa
dc.relation.referencesMontoya Castaño D (2013) Biotechnology Institute: Leader in Research, Development and Innovation. Rev Colomb Biotecnol 15: 5–7.spa
dc.relation.referencesMontoya D, Arévalo C, Gonzales S, et al. (2001) New solvent-producing Clostridium sp. strains, hydrolyzing a wide range of polysaccharides, are closely related to Clostridium butyricum. J Ind Microbiol Biotechnol 27: 329–335.spa
dc.relation.referencesQuilaguy Ayure DM, Suárez Moreno ZR, Aristizábal Gutierrez FA, et al. (2006) Genome analysis of thirteen Colombian clostridial strains by pulsed field gel electrophoresis. Electron J Biotechnol 9: 0spa
dc.relation.referencesBernal M, Tinoco LK, Torres L, et al. (2013) Evaluating Colombian Clostridium spp. strains’ hydrogen production using glycerol as substrate. Electron J Biotechnol 16: 6spa
dc.relation.referencesCárdenas DP, Pulido C, Aragón ÓL, et al. (2006) Evaluating Clostridium sp. native strains1, 3-propanediol production byfermentation from glycerol USP and raw glycerol from biodiesel production. Rev Colomb Ciencias Químico-Farmacéuticas 35: 120–137spa
dc.relation.referencesBarragan CE, Gutiérrez-Escobar AJAJ, Montoya Castaño D, et al. (2014) Computational analysis of 1,3-propanediol operon transcriptional regulators: Insights into Clostridium sp. Glycerol metabolism regulation. Univ Sci 20: 129–140spa
dc.relation.referencesComba Gonzalez N, Vallejo AFAF, Sanchez-Gomez M, et al. (2013) Protein identification in two phases of 1,3-propanediol production by proteomic analysis. J Proteomics 89: 255–264spa
dc.relation.referencesRosas-Morales JPJP, Perez-Mancilla X, López-Kleine L, et al. (2015) Draft genome sequences of Clostridium strains native to Colombia with the potential to produce solvents. Genome Announc 3spa
dc.relation.referencesSerrano-Bermúdez LLM, González Barrios AAF, Maranas CDC, et al. (2017) Clostridium butyricum maximizes growth while minimizing enzyme usage and ATP production: Metabolic flux distribution of a strain cultured in glycerol. BMC Syst Biol 11: 58spa
dc.relation.referencesSerrano-Bermúdez LLM, González Barrios A, Montoya D, et al. (2018) Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content. PLoS One 13: e0209447spa
dc.relation.referencesAragón ÓL (2007) Estudio de la viabilidad tecnica de la producción de 1,3-Propanodiol (1,3-PD) a partir de glicerol con nuevas cepas colombianas de Clostridium sp. a nivel de laboratoriospa
dc.relation.referencesMontoya D, Buitrago G, Pineda L (2016) Programa estratégico para la biotransformación sostenible de glicerina cruda en 1,3-propanodiol y prospectiva para desarrollar una biorefinería en ECODIESEL COLOMBIA SA - Informe final - Convocatoria 562-2012, Bogotá.spa
dc.relation.referencesGómez J (2016) Conceptual design of a downstream process of bio-based 1,3-propanediol.spa
dc.relation.referencesGómez Rodríguez J, Aragón Caycedo O, Paez Coy N, et al. (2015) Study of added value to crude glycerin from colombian biodiesel industry, through a biotechnological production process of 1,3-propanediol with native strains of clostridium sp., 10th European Congress of Chemical Engineering +3rd European Congress of Applied Biotechnology + 5th European Process Intensification Conference (ECCE10+ECAB3+EPIC5), Niza, Francispa
dc.relation.referencesHernández Prada CF (2015) Modelamiento del circuito eléctrico equivalente de una celda de combustible microbiana para condiciones de estado estacionario.spa
dc.relation.referencesBanu J R, Usman T M M, S K, et al. (2021) A critical review on limitations and enhancement strategies associated with biohydrogen production. Int J Hydrogen Energy 46: 16565–16590spa
dc.relation.referencesAtasoy M, Cetecioglu Z (2020) Butyric acid dominant volatile fatty acids production : Bio-Augmentation of mixed culture fermentation by Clostridium butyricum. J Environ Chem Eng 8spa
dc.relation.referencesMarassi RJRJ, Igreja M, Uchigasaki M, et al. (2019) High strength bioethanol wastewater inoculated with single-strain or binary consortium feeding air-cathode microbial fuel cells. Environ Prog Sustain Energy 38: 380–386.spa
dc.relation.referencesArkin AP, Cottingham RW, Henry CS, et al. (2018) KBase: the United States department of energy systems biology knowledgebase. Nat Biotechnol 36: 566.spa
dc.relation.referencesAllen B, Drake M, Harris N, et al. (2017) Using KBase to assemble and annotate prokaryotic genomes. Curr Protoc Microbiol 46: 1E – 13spa
dc.relation.referencesEdirisinghe JN, Faria JP, Harris NL, et al. (2018) Reconstruction and Analysis of Central Metabolism in Microbes, Metabolic Network Reconstruction and Modeling, Springer, 111–129spa
dc.relation.referencesHenry CS, DeJongh M, Best AA, et al. (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28: 977spa
dc.relation.referencesPapoutsakis ET (2000) Equations and calculations for fermentations of butyric acid bacteria. Biotechnol Bioeng 67: 813–826spa
dc.relation.referencesSenger RS, Papoutsakis ET (2008) Genome‐scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis. Biotechnol Bioeng 101: 1036–1052spa
dc.relation.referencesKanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30spa
dc.relation.referencesShi L, Dong H, Reguera G, et al. (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14: 651–662.spa
dc.relation.referencesUnrean P, Nguyen NHA (2013) Metabolic pathway analysis and kinetic studies for production of nattokinase in Bacillus subtilis. Bioprocess Biosyst Eng 36: 45–56spa
dc.relation.referencesMatlab S (2012) Matlab. MathWorks, Natick, MA.spa
dc.relation.referencesvon Kamp A, Thiele S, Hädicke O, et al. (2017) Use of CellNetAnalyzer in biotechnology and metabolic engineering. J Biotechnol 261: 221–228spa
dc.relation.referencesDevore J (2011) Probability and Statistics for Engineering and the Sciences, Nelson Education.spa
dc.relation.referencesSolomon BOO, Zeng A-PP, Biebl H, et al. (1995) Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol. J Biotechnol 39: 107–117spa
dc.relation.referencesHeyndrickx M, De Vos P, Vancanneyt M, et al. (1991) The fermentation of glycerol by Clostridium butyricum LMG 1212t2 and 1213t1 and C. pasteurianum LMG 3285. Appl Microbiol Biotechnol 34: 637–642spa
dc.relation.referencesQuilaguy Ayure DM, Montoya Solano JD, Suárez Moreno ZR, et al. (2010) Analysing the dhaT gene in Colombian Clostridium sp.(Clostridia) 1, 3-propanediol-producing strains. Univ Sci 15: 17–26spa
dc.relation.referencesBiebl H, Spröer C (2002) Taxonomy of the glycerol fermenting clostridia and description of Clostridium diolis sp. nov. Syst Appl Microbiol 25: 491–497spa
dc.relation.referencesHarrington TD, Mohamed A, Tran VN, et al. (2015) Neutral red-mediated electro-fermentation by Escherichia coli, Klebsiella pneumoniae, and Zymomonas mobilis. BIOELECTROCHEMICAL Syst ENERGY BIOCOMMODITY Prod 66.spa
dc.relation.referencesArbter P, Sabra W, Utesch T, et al. (2021) Metabolomic and kinetic investigations on the electricity-aided production of butanol by Clostridium pasteurianum strains. Eng Life Sci 21: 181–195spa
dc.relation.referencesKaur G, Srivastava AKAKAK, Chand S (2012) Simple strategy of repeated batch cultivation for enhanced production of 1,3-propanediol using clostridium diolis. Appl Biochem Biotechnol 167: 1061–1068spa
dc.relation.referencesWang J, Yin Y (2021) Clostridium species for fermentative hydrogen production: An overview. Int J Hydrogen Energy 46: 34599–34625spa
dc.relation.referencesGirbal L, Croux C, Vasconcelos I, et al. (1995) Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Rev 17: 287–297spa
dc.relation.referencesGirbal L, Vasconcelos I, Saint‐Amans S, et al. (1995) How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol Rev 16: 151–162spa
dc.relation.referencesByung-Hong K, Zeikus JG, Zeikus; JG (1992) Hydrogen Metabolism in Clostridium acetobutylicum Fermentation. J Microbiol Biotechnol 2: 248–254spa
dc.relation.referencesNasser Al-Shorgani NK, Kalil MS, Wan Yusoff WM, et al. (2015) Improvement of the butanol production selectivity and butanol to acetone ratio (B:A) by addition of electron carriers in the batch culture of a new local isolate of Clostridium acetobutylicum YM1. Anaerobe 36: 65–72spa
dc.relation.referencesUjor V, Okonkwo C, Ezeji TC (2016) Unorthodox methods for enhancing solvent production in solventogenic Clostridium species. Appl Microbiol Biotechnol 100: 1089–1099.spa
dc.relation.referencesHipolito CN, Crabbe E, Badillo CM, et al. (2008) Bioconversion of industrial wastewater from palm oil processing to butanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). J Clean Prod 16: 632–638spa
dc.relation.referencesLi X, Li ZG, Shi ZP (2014) Metabolic flux and transcriptional analysis elucidate higher butanol/acetone ratio feature in ABE extractive fermentation by clostridium acetobutylicum using cassava substrate. Bioresour Bioprocess 1: 1–13spa
dc.relation.referencesPark HS, Kim BH, Kim HS, et al. (2001) A Novel Electrochemically Active and Fe(III)-reducing Bacterium Phylogenetically Related to Clostridium butyricum Isolated from a Microbial Fuel Cell. Anaerobe 7: 297–306.spa
dc.relation.referencesMartin AL, Satjaritanun P, Shimpalee S, et al. (2018) In-situ electrochemical analysis of microbial activity. AMB Express 8: 1–10spa
dc.relation.referencesMartin A (2015) Use of Electrochemistry to Monitor the Growth and Activity of Clostridium phytofermentans. All Thesesspa
dc.relation.referencesChatzifragkou A, Dietz D, Komaitis M, et al. (2010) Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718. Biotechnol Bioeng 107: 76–84spa
dc.relation.referencesBatlle-Vilanova P, Puig S, Gonzalez-Olmos R, et al. (2016) Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture. J Chem Technol Biotechnol 91: 921–927spa
dc.relation.referencesGuerrero K, Gallardo R, Gonzalez E, et al. (2021) Butanol production by Clostridium acetobutylicum ATCC 824 by electro-fermentation in culture medium supplemented with butyrate and neutral red. Artic J Chem Technol Biotechnolspa
dc.relation.referencesSriram S, Wong JWC, Pradhan N (2022) Recent advances in electro-fermentation technology: A novel approach towards balanced fermentation. Bioresour Technol 360: 127637.spa
dc.relation.referencesVollenweider S, Lacroix C (2004) 3-Hydroxypropionaldehyde: Applications and perspectives of biotechnological production. Appl Microbiol Biotechnol 64: 16–27.spa
dc.relation.referencesZheng Z-M, Wang T-P, Xu Y-Z, et al. (2011) Inhibitory mechanism of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol synthesis with Klebsiella pneumoniae. African J Biotechnol 10: 6794–6798.spa
dc.relation.referencesColin T, Bories A, Moulin G (2000) Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl Microbiol Biotechnol 54: 201–205.spa
dc.relation.referencesVenkataramanan KPKP, Boatman JJJJ, Kurniawan Y, et al. (2012) Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl Microbiol Biotechnol 93: 1325–1335.spa
dc.relation.referencesDamasceno APK, Rossi DM, Ayub MAZ (2022) Biosynthesis of 1,3-propanodiol and 2,3-butanodiol from residual glycerol in continuous cell-immobilized Klebsiella pneumoniae bioreactors. Biotechnol Prog 38.spa
dc.relation.referencesLuo H, Yang R, Zhao Y, et al. (2018) Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. Bioresour Technol 253: 343–354.spa
dc.relation.referencesIsar J, Joshi H, Rangaswamy V (2019) 1,3-Propanediol: From Waste to Wardrobe, High Value Fermentation Products, Hoboken, NJ, USA, John Wiley & Sons, Inc., 281–318.spa
dc.relation.referencesBarbirato F, Himmi EHEH, Conte T, et al. (1998) 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries. Ind Crops Prod 7: 281–289.spa
dc.relation.referencesHimmi EHEH, Bories A, Barbirato F (1999) Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum. Bioresour Technol 67: 123–128.spa
dc.relation.referencesDa Silva GPGP, De Lima CJBCJB, Contiero J (2015) Production and productivity of 1,3-propanediol from glycerol by Klebsiella pneumoniae GLC29. Catal Today 257: 259–266.spa
dc.relation.referencesWilkens E, Ringel AKAKAK, Hortig D, et al. (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93: 1057–1063.spa
dc.relation.referencesLoureiro-Pinto M, González-Benito G, Coca M, et al. (2016) Valorization of crude glycerol from the biodiesel industry to 1,3-propanediol byClostridium butyricumDSM 10702: Influence of pretreatment with ion exchange resins. Can J Chem Eng 94: 1242–1248.spa
dc.relation.referencesBiebl H, Marten S, Hippe H, et al. (1992) Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl Microbiol Biotechnol 36: 592–597.spa
dc.relation.referencesSzymanowska-Powałowska D, Białas W, Szymanowska-Powalowska D, et al. (2014) Scale-up of anaerobic 1,3-propanediol production by Clostridium butyricum DSP1 from crude glycerol. BMC Microbiol 14: 45.spa
dc.relation.referencesPetitdemange E, Dürr C, Andaloussi SAA, et al. (1995) Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Ind Microbiol 15: 498–502.spa
dc.relation.referencesPapanikolaou S, Fick M, Aggelis G (2004) The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. J Chem Technol Biotechnol 79: 1189–1196.spa
dc.relation.referencesZhang AH, Zhuang XY, Chen KN, et al. (2019) Adaptive evolution of Clostridium butyricum and scale-Up for high-Concentration 1,3-propanediol production. AIChE J 65: 32–39.spa
dc.relation.referencesHirschmann S, Baganz K, Koschik I, et al. (2005) Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol waters. Landbauforsch Völkenrode 55: 261–267.spa
dc.relation.referencesTee ZKZK, Jahim JM, Tan JPJPJP, et al. (2017) Preeminent productivity of 1,3-propanediol by Clostridium butyricum JKT37 and the role of using calcium carbonate as pH neutraliser in glycerol fermentation. Bioresour Technol 233: 296–304.spa
dc.relation.referencesMartins FFFF, Saab VSVSVS, Ribeiro CMSCMS, et al. (2016) Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel derived glycerol. Chem Eng Trans 50: 289–294.spa
dc.relation.referencesLan Y, Feng J, Guo X, et al. (2021) Isolation and characterization of a newly identified Clostridium butyricum strain SCUT343-4 for 1,3-propanediol production. Bioprocess Biosyst Eng 44: 2375–2385.spa
dc.relation.referencesChatzifragkou A, Papanikolaou S, Dietz D, et al. (2011) Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl Microbiol Biotechnol 91: 101–112.spa
dc.relation.referencesSaint-Amans S, Perlot P, Goma G, et al. (1994) High production of 1,3-propanediol from glycerol by Clostridium butyricum VPI 3266 in a simply controlled fed-batch system. Biotechnol Lett 16: 831–836.spa
dc.relation.referencesCheng K-K, Ling H-Z, Zhang L-L, et al. (2004) Effect of glucose as cosubstrate on 1,3-propanediol fermentation by Klebsiella pneumoniae. Guocheng Gongcheng Xuebao/The Chinese J Process Eng 4: 561–566.spa
dc.relation.referencesJi X-JXJ, Huang HH, Zhu J-GJG, et al. (2009) Efficient 1,3-propanediol production by fed-batch culture of klebsiella pneumoniae: The role of pH fluctuation. Appl Biochem Biotechnol 159: 605–613.spa
dc.relation.referencesReimann A, Biebl H (1996) Production of 1,3-propanediol by Clostridium butyricum DSM 5431 and product tolerant mutants in fedbatch culture: Feeding strategy for glycerol and ammonium. Biotechnol Lett 18: 827–832.spa
dc.relation.referencesKaur G, Srivastava AK, Chand S (2012) Advances in biotechnological production of 1,3-propanediol. Biochem Eng J 64: 106–118.spa
dc.relation.referencesMetsoviti M, Paramithiotis S, Drosinos EHEHEH, et al. (2012) Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol. Eng Life Sci 12: 57–68.spa
dc.relation.referencesZeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74: 239–259.spa
dc.relation.referencesChatzifragkou A, Aggelis G, Komaitis M, et al. (2011) Impact of anaerobiosis strategy and bioreactor geometry on the biochemical response of Clostridium butyricum VPI 1718 during 1,3-propanediol fermentation. Bioresour Technol 102: 10625–10632.spa
dc.relation.referencesMenzel K, Zeng A-PP, Deckwer W-DD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Technol 20: 82–86.spa
dc.relation.referencesXiu Z-LZL, Song B-HBH, Wang Z-TZT, et al. (2004) Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one- and two-stage anaerobic cultures. Biochem Eng J 19: 189–197.spa
dc.relation.referencesReimann A, Biebl H, Deckwer W-DD (1998) Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl Microbiol Biotechnol 49: 359–363.spa
dc.relation.referencesBoenigk R, Bowien S, Gottschalk G (1993) Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol 38: 453–457.spa
dc.relation.referencesWang Y, Teng HH, Xiu Z (2011) Effect of aeration strategy on the metabolic flux of Klebsiella pneumoniae producing 1,3-propanediol in continuous cultures at different glycerol concentrations. J Ind Microbiol Biotechnol 38: 705–715.spa
dc.relation.referencesMu Y, Xiu Z-LZL, Zhang DJD-J (2008) A combined bioprocess of biodiesel production by lipase with microbial production of 1,3-propanediol by Klebsiella pneumoniae. Biochem Eng J 40: 537–541.spa
dc.relation.referencesAgrawal D, Budakoti M, Kumar V (2023) Strategies and tools for the biotechnological valorization of glycerol to 1, 3-propanediol: Challenges, recent advancements and future outlook. Biotechnol Adv 108177.spa
dc.relation.referencesNakamura CECE, Whited GMGM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14: 454–459.spa
dc.relation.referencesGonzález-Pajuelo M, Meynial-Salles I, Mendes F, et al. (2005) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab Eng 7: 329–336.spa
dc.relation.referencesMartins FF, Liberato VDSS, Ribeiro CMS, et al. (2020) Low-cost medium for 1,3-propanediol production from crude glycerol by Clostridium butyricum. Biofuels, Bioprod Biorefining 14: 1125–1134.spa
dc.relation.referencesvan Heerden C (2023) Techno-economic analysis of 1, 3-propanediol, sorbitol, itaconic acid, and xylooligosaccharides production from sugarcane-based feedstocks.spa
dc.relation.referencesEspinel-Ríos S, Ruiz-Espinoza JEE (2019) Production of 1,3-propanediol from crude glycerol: Bioprocess design and profitability analysis | Producción de 1,3-propanodiol a partir de glicerol crudo: Diseño del bioproceso y análisis de rentabilidad. Rev Mex Ing química 18: 831–840.spa
dc.relation.referencesEnzmann F, Stöckl M, Zeng AP, et al. (2019) Same but different–Scale up and numbering up in electrobiotechnology and photobiotechnology. Eng Life Sci 19: 121–132.spa
dc.relation.referencesScopus (2023) Elsevier, Scopus [Database]. Available at: https://www.scopus.com, 2023.spa
dc.relation.referencesKim BH, Lim SS, Daud WRW, et al. (2015) The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresour Technol 190: 395–401.spa
dc.relation.referencesKracke F, Vassilev I, Krömer JOJO, et al. (2015) Microbial electron transport and energy conservation - The foundation for optimizing bioelectrochemical systems. Front Microbiol 6: 1–18.spa
dc.relation.referencesArbter P, Widderich N, Utesch T, et al. (2022) Control of redox potential in a novel continuous bioelectrochemical system led to remarkable metabolic and energetic responses of Clostridium pasteurianum grown on glycerol. Microb Cell Fact 21.spa
dc.relation.referencesBhagchandanii DD, Babu RP, Sonawane JM, et al. (2020) A Comprehensive Understanding of Electro-Fermentation. Fermentation 6: 92.spa
dc.relation.referencesNevin KP, Woodard TL, Franks AE, et al. (2010) Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1.spa
dc.relation.referencesChandrasekhar K, Naresh Kumar A, Kumar G, et al. (2021) Electro-fermentation for biofuels and biochemicals production: Current status and future directions. Bioresour Technol 323: 124598.spa
dc.relation.referencesRabaey K, Rozendal RA (2010) Microbial electrosynthesis — revisiting the electrical route for microbial production. Nat Rev Microbiol 2010 810 8: 706–716.spa
dc.relation.referencesJun S-ASA, Moon C, Kang C-HCH, et al. (2010) Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl Biochem Biotechnol 161: 491–501.spa
dc.relation.referencesSim YB, Yang J, Kim SM, et al. (2022) Effect of bioaugmentation using Clostridium butyricum on the start-up and the performance of continuous biohydrogen production. Bioresour Technol 366: 128181spa
dc.relation.referencesSerrano Bermúdez LM (2016) Análisis de balance de flujo dinámico de la producción de 1, 3-Propanodiol a partir de Clostridium sp.spa
dc.relation.referencesTracy BPBP, Jones SWSW, Fast AGAG, et al. (2012) Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23: 364–381spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industrialesspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.lembFERMENTACIONspa
dc.subject.lembFermentationeng
dc.subject.lembGLICERINA-ANALISISspa
dc.subject.lembGlycerin - analysiseng
dc.subject.proposalGlicerolspa
dc.subject.proposalGlyceroleng
dc.subject.proposal1,3-propanodiolspa
dc.subject.proposal1,3-propanedioleng
dc.subject.proposalFermentacionspa
dc.subject.proposalFermentationeng
dc.subject.proposalClostridiumspa
dc.subject.proposalClostridiumeng
dc.subject.proposalElectrofermentationeng
dc.subject.proposalElectrofermentacionspa
dc.subject.proposalHidrógenospa
dc.subject.proposalCátodospa
dc.subject.proposalAnálisis de modo elementalspa
dc.subject.proposalClostridium butyricumspa
dc.subject.proposalModelo metabólico centralspa
dc.subject.proposalHydrogeneng
dc.subject.proposalCathodeeng
dc.subject.proposalElementary mode analysiseng
dc.subject.proposalCentral metabolic modeleng
dc.subject.wikidataPropano-1,3-diolspa
dc.titleEstudio de un sistema bio-electroquímico de fermentación para la producción de 1,3-propanodiol a partir de glicerina crudaspa
dc.title.translatedStudy of a bio-electrochemical fermentation system to produce 1,3-propanediol from crude glycerineng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79788352 2023.pdf
Tamaño:
2.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: