Diagnosis of incipient failures in rolling element bearings under nonstationary operation conditions by vibration analysis

dc.contributor.advisorGuevara Carazas, Fernando Jesús
dc.contributor.advisorRestrepo Martínez, Alejandro
dc.contributor.authorArango Castrillón, Juan David
dc.contributor.orcidRestrepo Martínez, Alejandro [0000-0001-8978-2077]spa
dc.contributor.orcidArango Castrillón, Juan David [0000-0002-4615-9186]spa
dc.contributor.orcidGuevara Carazas, Fernando Jesús [0000-0001-8529-4383]spa
dc.contributor.researchgroupGestión, Operación y Mantenimiento de Activos - Gomacspa
dc.date.accessioned2023-07-27T16:44:03Z
dc.date.available2023-07-27T16:44:03Z
dc.date.issued2023-01-31
dc.descriptionilustraciones, diagramasspa
dc.description.abstractRolling Element Bearings –REB are a fundamental part of most of rotating machines. Consequently, their fault detection and timely diagnosis are of great interest to improve the reliability and maintainability of rotational equipment. Vibration analysis is the most widely used tool for bearing diagnostics. Despite advances in algorithms and digital signal processing for diagnosis, it is common to find great advances for cases in which operating conditions remain stationary. This is not the case with many rotating equipment, where the angular velocity can be variable over time. In general, operation under variable speed conditions generates vibratory responses at which angle-periodic phenomena are combined with time-periodic phenomena. This work presents a method for the diagnosis of bearing failures, using "Computer Order Tracking" algorithms, Cycle-Non-Stationarity analysis and Spectral Kurtosis analysis. The method was evaluated using a series of signals captured under variable speed conditions and a series of simulated signals, under different load and speed conditions. Additionally, a signal demodulation strategy is proposed, and a classifier is presented, trained with a combination between simulated signals and captured signals for the diagnosis of types of failures.eng
dc.description.abstractLos rodamientos, son una parte fundamental de la mayoría de máquinas rotativas, consecuentemente, la detección de fallas y el diagnóstico temprano de estos elementos son de gran interés para incrementar los niveles de confiabilidad y mantenibilidad de los equipos rotativos. El análisis de vibraciones es la herramienta más utilizada para el diagnóstico de rodamientos. Pese a los avances en los algoritmos y procesamiento digital de señales para el diagnóstico, es común encontrar grandes avances para casos en los cuales las condiciones operativas se mantienen estacionarias. Este no es el caso de muchos equipos rotativos, donde la velocidad angular puede resultar variable en el tiempo. En general, la operación bajo condiciones de velocidad variable genera respuestas vibratorias en las cuales se combinan fenómenos ángulo-periódicos con fenómenos tiempo-periódicos. Este trabajo presenta un método para el diagnóstico de fallas en rodamientos, utilizando algoritmos de “Computer Order Tracking”, análisis de Ciclo-No-Estacionareidad y análisis de Kurtosis Espectral. El método fue evaluado utilizando una serie de señales capturadas bajo condiciones de velocidad variable y una serie de señales simuladas, bajo diferentes condiciones de carga y velocidad. Adicionalmente se propone una estrategia para la demodulación de señales, y se presenta un clasificador, entrenado con una combinación entre señales simuladas y señales capturadas para el diagnóstico de tipos de fallas. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Ingeniería Mecánicaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería Mecánicaspa
dc.description.researchareaPredictive Maintenancespa
dc.format.extent167 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84318
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesR. Potter and M. Gribler, “Computed order tracking obsoletes older methods,” SAE Tech. Pap., no. l, pp. 63–67, 1989.spa
dc.relation.referencesR. B. Randall and J. Antoni, “Rolling element bearing diagnostics---A tutorial,” Mech. Syst. Signal Process., vol. 25, no. 2, pp. 485–520, 2011.spa
dc.relation.referencesF. Bonnardot, R. B. Randall, and J. Antoni, “Enhanced unsupervised noise cancellation using angular resampling for planetary bearing fault diagnosis,” Int. J. Acoust. Vib., vol. 9, no. 2, pp. 51–60, 2004.spa
dc.relation.referencesP. D. McFadden, “Interpolation techniques for time domain averaging of gear vibration,” Mech. Syst. Signal Process., vol. 3, no. 1, pp. 87–97, 1989.spa
dc.relation.referencesC. Peeters et al., “Review and comparison of tacholess instantaneous speed estimation methods on experimental vibration data,” Mech. Syst. Signal Process., vol. 129, pp. 407–436, 2019.spa
dc.relation.referencesP. D. McFadden and J. D. Smith, “Model for the vibration produced by a single point defect in a rolling element bearing,” J. Sound Vib., vol. 96, no. 1, pp. 69–82, 1984.spa
dc.relation.referencesI. Howard, “A Review of Rolling Element Bearing Vibration ‘Detection, Diagnosis and Prognosis,’” DSTO-AMRL Report, DSTO-RR-00113, no. October 1994, pp. 35–41, 1994.spa
dc.relation.referencesB. P. Graney and K. Starry, “Rolling element bearing analysis,” Mater. Eval., vol. 70, no. 1, 2012.spa
dc.relation.referencesD. Abboud, M. Elbadaoui, W. A. Smith, and R. B. Randall, “Advanced bearing diagnostics: A comparative study of two powerful approaches,” Mechanical Systems and Signal Processing, vol. 114. pp. 604–627, 2019.spa
dc.relation.referencesD. Abboud, J. Antoni, M. Eltabach, and S. Sieg-Zieba, “Angle\time cyclostationarity for the analysis of rolling element bearing vibrations,” Meas. J. Int. Meas. Confed., vol. 75, pp. 29–39, 2015.spa
dc.relation.referencesN. K. Verma and T. S. S. Subramanian, “Cost benefit analysis of intelligent condition based maintenance of rotating machinery,” 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA). 2012.spa
dc.relation.referencesB. Al-Najjar and I. Alsyouf, “Enhancing a company’s profitability and competitiveness using integrated vibration-based maintenance: A case study,” Eur. J. Oper. Res., vol. 157, no. 3, pp. 643–657, 2004.spa
dc.relation.referencesB. Al-Najjar, “The lack of maintenance and not maintenance which costs: A model to describe and quantify the impact of vibration-based maintenance on company’s business,” Int. J. Prod. Econ., vol. 107, no. 1, pp. 260–273, May 2007.spa
dc.relation.referencesR. B. Randall, Vibration-based Condition Monitoring: Industrial, Aerospace and Automotive Applications. John Wiley & Sons, 2011.spa
dc.relation.referencesP. D. McFadden and J. D. Smith, “Vibration monitoring of rolling element bearings by the high-frequency resonance technique --- a review,” Tribology International, vol. 17, no. 1. pp. 3–10, 1984.spa
dc.relation.referencesM. J. Dowling, “Application of non-stationary analysis to machinery monitoring,” in 1993 {IEEE} International Conference on Acoustics, Speech, and Signal Processing, 1993, vol. 1, pp. 59--62 vol.1.spa
dc.relation.referencesD. Rémond, J. Antoni, and R. B. Randall, “Editorial for the special issue on Instantaneous Angular Speed ({IAS}) processing and angular applications,” Mechanical Systems and Signal Processing, vol. 44, no. 1–2. pp. 1–4, 2014.spa
dc.relation.references{OREDA}: Offshore Reliability Data Handbook. OREDA Participants, 2009.spa
dc.relation.referencesM. El Hachemi Benbouzid, “A review of induction motors signature analysis as a medium for faults detection,” IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 984–993, 2000.spa
dc.relation.referencesR. R. Schoen, T. G. Habetler, F. Kamran, and R. G. Bartfield, “Motor bearing damage detection using stator current monitoring,” IEEE Trans. Ind. Appl., vol. 31, no. 6, pp. 1274–1279, 1995.spa
dc.relation.referencesC. Peeters, P. Guillaume, and J. Helsen, “Vibration-based bearing fault detection for operations and maintenance cost reduction in wind energy,” Renew. Energy, vol. 116, pp. 74–87, 2018.spa
dc.relation.referencesW. A. Smith and R. B. Randall, “Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study,” Mech. Syst. Signal Process., vol. 64–65, pp. 100–131, 2015.spa
dc.relation.referencesJ. Antoni, F. Bonnardot, A. Raad, and M. El Badaoui, “Cyclostationary modelling of rotating machine vibration signals,” Mech. Syst. Signal Process., vol. 18, no. 6, pp. 1285–1314, 2004.spa
dc.relation.referencesE. Mendel et al., “Automatic bearing fault pattern recognition using vibration signal analysis,” IEEE Int. Symp. Ind. Electron., pp. 955–960, 2008.spa
dc.relation.referencesD. Wang, X. Zhao, L. L. Kou, Y. Qin, Y. Zhao, and K. L. Tsui, “A simple and fast guideline for generating enhanced/squared envelope spectra from spectral coherence for bearing fault diagnosis,” Mech. Syst. Signal Process., vol. 122, no. January, pp. 754–768, 2019.spa
dc.relation.referencesO. Janssens et al., “Convolutional Neural Network Based Fault Detection for Rotating Machinery,” J. Sound Vib., vol. 377, pp. 331–345, 2016.spa
dc.relation.referencesW. Zhang, M. P. Jia, L. Zhu, and X. A. Yan, “Comprehensive Overview on Computational Intelligence Techniques for Machinery Condition Monitoring and Fault Diagnosis,” Chinese J. Mech. Eng. (English Ed., vol. 30, no. 4, pp. 782–795, 2017.spa
dc.relation.referencesR. Zhang, H. Tao, L. Wu, and Y. Guan, “Transfer Learning With Neural Networks for Bearing Fault Diagnosis in Changing Working Conditions,” IEEE Access, vol. 5, pp. 14347–14357, 2017.spa
dc.relation.referencesJ. Antoni, “The spectral kurtosis: A useful tool for characterising non-stationary signals,” Mech. Syst. Signal Process., vol. 20, no. 2, pp. 282–307, 2006.spa
dc.relation.referencesJ. Antoni and R. B. Randall, “The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines,” Mech. Syst. Signal Process., vol. 20, no. 2, pp. 308–331, 2006.spa
dc.relation.referencesJ. Antoni, “Fast computation of the kurtogram for the detection of transient faults,” Mech. Syst. Signal Process., vol. 21, no. 1, pp. 108–124, 2007.spa
dc.relation.referencesR. B. Randall, J. Antoni, and S. Chobsaard, “The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals,” Mech. Syst. Signal Process., vol. 15, no. 5, pp. 945–962, 2001.spa
dc.relation.referencesA. C. McCormick and A. K. Nandi, “Cyclostationarity in Rotating Machine Vibrations 1 Introduction 2 Wide-sense Cyclostationarity,” Mech. Syst. Signal Process., vol. 12, no. 2, pp. 225–242, 1998.spa
dc.relation.referencesJ. Antoni, “Cyclic spectral analysis in practice,” Mech. Syst. Signal Process., vol. 21, no. 2, pp. 597–630, 2007.spa
dc.relation.referencesM. D. Coats and R. B. Randall, “Order-Tracking with and without a tacho signal for gear fault diagnostics,” Aust. Acoust. Soc. Conf. 2012, Acoust. 2012 Acoust. Dev. Environ., no. November, pp. 447–454, 2012.spa
dc.relation.referencesK. R. Fyfe and E. D. S. Munck, “Analysis of computed order tracking,” Mech. Syst. Signal Process., vol. 11, no. 2, pp. 187–205, 1997.spa
dc.relation.referencesS. J. Idehara, A. Luiz, A. Mesquita, U. A. Miranda, M. D. Jr, and D. Ph, “Order tracking methods analysis,” no. 1, 2003.spa
dc.relation.referencesS. Schmidt, P. S. Heyns, and J. P. de Villiers, “A tacholess order tracking methodology based on a probabilistic approach to incorporate angular acceleration information into the maxima tracking process,” Mech. Syst. Signal Process., vol. 100, pp. 630–646, 2018.spa
dc.relation.referencesJ. Urbanek, T. Barszcz, and J. Antoni, “A two-step procedure for estimation of instantaneous rotational speed with large fluctuations,” Mech. Syst. Signal Process., vol. 38, no. 1, pp. 96–102, 2013.spa
dc.relation.referencesQ. Leclère, H. André, and J. Antoni, “A multi-order probabilistic approach for Instantaneous Angular Speed tracking debriefing of the CMMNO?14 diagnosis contest,” Mech. Syst. Signal Process., vol. 81, pp. 375–386, 2016.spa
dc.relation.referencesD. Abboud, J. Antoni, S. Sieg-Zieba, and M. Eltabach, “Deterministic-random separation in nonstationary regime,” J. Sound Vib., vol. 362, pp. 305–326, 2016.spa
dc.relation.referencesP. Borghesani, P. Pennacchi, R. B. Randall, N. Sawalhi, and R. Ricci, “Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions,” Mech. Syst. Signal Process., vol. 36, no. 2, pp. 370–384, 2013.spa
dc.relation.referencesD. Abboud, S. Baudin, J. Antoni, D. Rémond, M. Eltabach, and O. Sauvage, “The spectral analysis of cyclo-non-stationary signals,” Mech. Syst. Signal Process., 2016.spa
dc.relation.referencesG. D’Elia, Z. Daher, and J. Antoni, “A novel approach for the cyclo-non-stationary analysis of speed varying signals,” Proc. ISMA 2010 - Int. Conf. Noise Vib. Eng. Incl. USD 2010, pp. 2801–2814, 2010.spa
dc.relation.referencesW. A. Smith, R. B. Randall, X. de C. du Mée, and P. Peng, “Use of cyclostationary properties to diagnose planet bearing faults in variable speed conditions,” in 10th {DST} group international conference on health and usage monitoring systems, 17th Australian aerospace congress, 2017, pp. 26–28.spa
dc.relation.referencesJ. Berntsen, A. Brandt, and K. Gryllias, “Enhanced demodulation band selection based on Operational Modal Analysis (OMA) for bearing diagnostics,” Mech. Syst. Signal Process., vol. 181, no. July, p. 109300, 2022.spa
dc.relation.referencesA. Mauricio, D. Helm, M. Timusk, J. Antoni, and K. Gryllias, “Novel Cyclo-Nonstationary Indicators for Monitoring of Rotating Machinery Operating Under Speed and Load Varying Conditions,” J. Eng. Gas Turbines Power, vol. 144, no. 4, Apr. 2022.spa
dc.relation.referencesA. Mauricio et al., “Bearing diagnostics under strong electromagnetic interference based on Integrated Spectral Coherence,” Mech. Syst. Signal Process., vol. 140, p. 106673, 2020.spa
dc.relation.referencesM. Nakhaeinejad and M. D. Bryant, “Dynamic modeling of rolling element bearings with surface contact defects using bond graphs,” J. Tribol., vol. 133, no. 1, pp. 1–12, 2011.spa
dc.relation.referencesJ. D. Arango and A. Restrepo-martinez, “Rolling Element Bearing Diagnosis by Improved Envelope Spectrum : Optimal Frequency Band Selection,” vol. 15, no. 8, pp. 322–330, 2021.spa
dc.relation.referencesA. Mauricio, W. A. Smith, R. B. Randall, J. Antoni, and K. Gryllias, “Improved Envelope Spectrum via Feature Optimisation-gram (IESFOgram): A novel tool for rolling element bearing diagnostics under non-stationary operating conditions,” Mech. Syst. Signal Process., vol. 144, p. 106891, 2020.spa
dc.relation.referencesF. Cong, J. Chen, G. Dong, and M. Pecht, “Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis,” J. Sound Vib., vol. 332, no. 8, pp. 2081–2097, 2013.spa
dc.relation.referencesL. R. Kahn, “Single-Sideband Transmission by Envelope Elimination and Restoration,” Proc. IRE, vol. 40, no. 7, pp. 803–806, 1952.spa
dc.relation.referencesC. Mishra, A. K. Samantaray, and G. Chakraborty, “Ball bearing defect models: A study of simulated and experimental fault signatures,” J. Sound Vib., vol. 400, no. July, pp. 86–112, 2017.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc530 - Física::534 - Sonido y vibraciones relacionadasspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembIngeniería mecánica
dc.subject.lembVibración - Mediciones
dc.subject.proposalRolling Element Bearingeng
dc.subject.proposalVibration Analysiseng
dc.subject.proposalNon-stationary Speedeng
dc.subject.proposalCyclo-non-stationary analysiseng
dc.subject.proposalComputer order trackingeng
dc.subject.proposalSpectral Kurtosiseng
dc.subject.proposalRodamientospa
dc.subject.proposalAnálisis de Vibracionesspa
dc.subject.proposalVelocidad variablespa
dc.subject.proposalCyclo-No Estacionareidadspa
dc.subject.proposalOrder Tracking Computarizadospa
dc.subject.proposalKurtosis Espectralspa
dc.titleDiagnosis of incipient failures in rolling element bearings under nonstationary operation conditions by vibration analysiseng
dc.title.translatedDiagnóstico de fallas incipientes en rodamientos bajo condiciones de operación no estacionarias mediante análisis de vibracionesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2023-04-20 - Tesis Final JDA.pdf
Tamaño:
13.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: