Deep learning analysis of eye fundus images to support medical diagnosis

dc.contributor.advisorGonzález, Fabio A.spa
dc.contributor.authorPerdomo Charry, Oscar Juliánspa
dc.contributor.researchgroupMindLabspa
dc.date.accessioned2020-07-02T17:50:13Zspa
dc.date.available2020-07-02T17:50:13Zspa
dc.date.issued2020-06-30spa
dc.description.abstractMachine learning techniques have been successfully applied to support medical decision making of cancer, heart diseases and degenerative diseases of the brain. In particular, deep learning methods have been used for early detection of abnormalities in the eye that could improve the diagnosis of different ocular diseases, especially in developing countries, where there are major limitations to access to specialized medical treatment. However, the early detection of clinical signs such as blood vessel, optic disc alterations, exudates, hemorrhages, drusen, and microaneurysms presents three main challenges: the ocular images can be affected by noise artifact, the features of the clinical signs depend specifically on the acquisition source, and the combination of local signs and grading disease label is not an easy task. This research approaches the problem of combining local signs and global labels of different acquisition sources of medical information as a valuable tool to support medical decision making in ocular diseases. Different models for different eye diseases were developed. Four models were developed using eye fundus images: for DME, it was designed a two-stages model that uses a shallow model to predict an exudate binary mask. Then, the binary mask is stacked with the raw fundus image into a 4-channel array as an input of a deep convolutional neural network for diabetic macular edema diagnosis; for glaucoma, it was developed three deep learning models. First, it was defined a deep learning model based on three-stages that contains an initial stage for automatically segment two binary masks containing optic disc and physiological cup segmentation, followed by an automatic morphometric features extraction stage from previous segmentations, and a final classification stage that supports the glaucoma diagnosis with intermediate medical information. Two late-data-fusion methods that fused morphometric features from cartesian and polar segmentation of the optic disc and physiological cup with features extracted from raw eye fundus images. On the other hand, two models were defined using optical coherence tomography. First, a customized convolutional neural network termed as OCT-NET to extract features from OCT volumes to classify DME, DR-DME and AMD conditions. In addition, this model generates images with highlighted local information about the clinical signs, and it estimates the number of slides inside a volume with local abnormalities. Finally, a 3D-Deep learning model that uses OCT volumes as an input to estimate the retinal thickness map useful to grade AMD. The methods were systematically evaluated using ten free public datasets. The methods were compared and validated against other state-of-the-art algorithms and the results were also qualitatively evaluated by ophthalmology experts from Fundación Oftalmológica Nacional. In addition, the proposed methods were tested as a diagnosis support tool of diabetic macular edema, glaucoma, diabetic retinopathy and age-related macular degeneration using two different ocular imaging representations. Thus, we consider that this research could be potentially a big step in building telemedicine tools that could support medical personnel for detecting ocular diseases using eye fundus images and optical coherence tomography.spa
dc.description.abstractLas técnicas de aprendizaje automático se han aplicado con éxito para apoyar la toma de decisiones médicas sobre el cáncer, las enfermedades cardíacas y las enfermedades degenerativas del cerebro. En particular, se han utilizado métodos de aprendizaje profundo para la detección temprana de anormalidades en el ojo que podrían mejorar el diagnóstico de diferentes enfermedades oculares, especialmente en países en desarrollo, donde existen grandes limitaciones para acceder a tratamiento médico especializado. Sin embargo, la detección temprana de signos clínicos como vasos sanguíneos, alteraciones del disco óptico, exudados, hemorragias, drusas y microaneurismas presenta tres desafíos principales: las imágenes oculares pueden verse afectadas por artefactos de ruido, las características de los signos clínicos dependen específicamente de fuente de adquisición, y la combinación de signos locales y clasificación de la enfermedad no es una tarea fácil. Esta investigación aborda el problema de combinar signos locales y etiquetas globales de diferentes fuentes de adquisición de información médica como una herramienta valiosa para apoyar la toma de decisiones médicas en enfermedades oculares. Se desarrollaron diferentes modelos para diferentes enfermedades oculares. Se desarrollaron cuatro modelos utilizando imágenes de fondo de ojo: para DME, se diseñó un modelo de dos etapas que utiliza un modelo superficial para predecir una máscara binaria de exudados. Luego, la máscara binaria se apila con la imagen de fondo de ojo original en una matriz de 4 canales como entrada de una red neuronal convolucional profunda para el diagnóstico de edema macular diabético; para el glaucoma, se desarrollaron tres modelos de aprendizaje profundo. Primero, se definió un modelo de aprendizaje profundo basado en tres etapas que contiene una etapa inicial para segmentar automáticamente dos máscaras binarias que contienen disco óptico y segmentación fisiológica de la copa, seguido de una etapa de extracción de características morfométricas automáticas de segmentaciones anteriores y una etapa de clasificación final que respalda el diagnóstico de glaucoma con información médica intermedia. Dos métodos de fusión de datos tardíos que fusionaron características morfométricas de la segmentación cartesiana y polar del disco óptico y la copa fisiológica con características extraídas de imágenes de fondo de ojo crudo. Por otro lado, se definieron dos modelos mediante tomografía de coherencia óptica. Primero, una red neuronal convolucional personalizada denominada OCT-NET para extraer características de los volúmenes OCT para clasificar las condiciones DME, DR-DME y AMD. Además, este modelo genera imágenes con información local resaltada sobre los signos clínicos, y estima el número de diapositivas dentro de un volumen con anomalías locales. Finalmente, un modelo de aprendizaje 3D-Deep que utiliza volúmenes OCT como entrada para estimar el mapa de espesor retiniano útil para calificar AMD. Los métodos se evaluaron sistemáticamente utilizando diez conjuntos de datos públicos gratuitos. Los métodos se compararon y validaron con otros algoritmos de vanguardia y los resultados también fueron evaluados cualitativamente por expertos en oftalmología de la Fundación Oftalmológica Nacional. Además, los métodos propuestos se probaron como una herramienta de diagnóstico de edema macular diabético, glaucoma, retinopatía diabética y degeneración macular relacionada con la edad utilizando dos representaciones de imágenes oculares diferentes. Por lo tanto, consideramos que esta investigación podría ser potencialmente un gran paso en la construcción de herramientas de telemedicina que podrían ayudar al personal médico a detectar enfermedades oculares utilizando imágenes de fondo de ojo y tomografía de coherencia óptica.spa
dc.description.degreelevelDoctoradospa
dc.format.extent95spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationPerdomo Charry, O. J. Deep learning analysis of eye fundus images to support medical diagnosis (Doctoral dissertation, Universidad Nacional de Colombia-Sede Bogotá), 2020.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77729
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computaciónspa
dc.relation.references[20] Hernán Andrés Ríos et al. "Automatic prediction of capillarity patterns on Optical Coherence Tomography Angiography images". In: Investigative Ophthalmology & Visual Science 59.9 (2018), pp. 1741-1741.spa
dc.relation.references[21] Hernán Ríos et al. "Deep Learning Method to Identify Diabetic Retinopathy and Diabetic Macular Edema Characteristics". In: Investigative Ophthalmology & Visual Science 60.9 (2019).spa
dc.relation.references[22] Sandra Belalcazar et al. "Concordance between color photo interpretation of the optic nerve and an Unsupervised Learning Algorithm to determine optic nerve damage". In: Investigative Ophthalmology & Visual Science 60.9 (2019).spa
dc.relation.references[23] Carlos M. Pinilla et al. "Exactitud de una red neuronal arti cial para el diagnóstico del edema macular diabético con imágenes de tomografía de coherencia óptica". In: Revista Científica de la Sociedad Colombia de Oftalmología 1.1 (2018), pp. 8-9.spa
dc.relation.references[24] Sandra Belalcazar et al. "Convolutional Neural Networks for identification and classi cation of optic nerve damage features". In: Investigative Ophthalmology & Visual Science 59.9 (2018), pp. 1719.spa
dc.relation.references[25] Francisco J. Rodríguez et al. "Neural network for detection of diabetic macular edema in fundus color images". In: Investigative Ophthalmology & Visual Science 58.8 (2017), pp. 688.spa
dc.relation.references[26] Victor H Contreras et al. "Supervised online matrix factorization for histopathological multimodal retrieval". In: 14th International Symposium on Medical Information Processing and Analysis. Vol. 10975. International Society for Optics and Photonics. 2018, 109750Y.spa
dc.relation.references[27] Sebastian Otálora et al. "Determining the scale of image patches using a deep learning approach". In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE. 2018, pp. 843-846.spa
dc.relation.references[28] Nikita Gurudath, Mehmet Celenk, and H Bryan Riley. "Machine learning identi cation of diabetic retinopathy from fundus images". In: 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). IEEE. 2014, pp. 1-7.spa
dc.relation.references[29] Rojalina Priyadarshini, Nilamadhab Dash, and Rachita Mishra. "A Novel approach to predict diabetes mellitus using modified Extreme learning machine". In: 2014 International Conference on Electronics and Communication Systems (ICECS). IEEE. 2014, pp. 1-5.spa
dc.relation.references[30] Gwénolé Quellec et al. "Automated assessment of diabetic retinopathy severity using content-based image retrieval in multimodal fundus photographs". In: Investigative ophthalmology & visual science 52.11 (2011), pp. 8342-8348.spa
dc.relation.references[31] RA Welikala et al. "Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification". In: Computer methods and programs in biomedicine 114.3 (2014), pp. 247-261.spa
dc.relation.references[32] Sohini Roychowdhury, Dara D Koozekanani, and Keshab K Parhi. "DREAM: diabetic retinopathy analysis using machine learning". In: IEEE journal of biomedical and health informatics 18.5 (2013), pp. 1717-1728.spa
dc.relation.references[33] Dumskyj Usher et al. "Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening". In: Diabetic Medicine 21.1 (2004), pp. 84-90.spa
dc.relation.references[34] Sam Philip et al. "The efficacy of automated "disease/no disease" grading for diabetic retinopathy in a systematic screening programme". In: British Journal of Ophthalmology 91.11 (2007), pp. 1512-1517.spa
dc.relation.references[35] Shu-Chen Cheng and Yueh-Min Huang. "A novel approach to diagnose diabetes based on the fractal characteristics of retinal images". In: IEEE Transactions on Information Technology in Biomedicine 7.3 (2003), pp. 163-170.spa
dc.relation.references[36] María García et al. "Neural network based detection of hard exudates in retinal images". In: Computer Methods and programs in biomedicine 93.1 (2009), pp. 9-19.spa
dc.relation.references[37] Wei Lu et al. "Applications of arti cial intelligence in ophthalmology: general overview". In: Journal of ophthalmology 2018 (2018).spa
dc.relation.references[38] DCS Vandarkuzhali and T Ravichandran. "Elm based detection of abnormality in retinal image of eye due to diabetic retinopathy". In: Journal of theoretical and applied information technology 6 (2005), pp. 423-428.spa
dc.relation.references[39] Bálint Antal and András Hajdu. "An ensemble-based system for automatic screening of diabetic retinopathy". In: Knowledge-based systems 60 (2014), pp. 20-27.spa
dc.relation.references[40] Tae Keun Yoo and Eun-Cheol Park. "Diabetic retinopathy risk prediction for fundus examination using sparse learning: a cross-sectional study". In: BMC medical informatics and decision making 13.1 (2013), p. 106.spa
dc.relation.references[41] Leonor Guariguata et al. "An updated systematic review and meta-analysis on the social determinants of diabetes and related risk factors in the Caribbean". In: Revista Panamericana de Salud Pública 42 (2018).spa
dc.relation.references[42] Zhuo Zhang et al. "A survey on computer aided diagnosis for ocular diseases". In: BMC medical informatics and decision making 14.1 (2014), p. 80.spa
dc.relation.references[43] Alan D Fleming et al. "Automated microaneurysm detection using local contrast normalization and local vessel detection". In: IEEE transactions on medical imaging 25.9 (2006), pp. 1223-1232.spa
dc.relation.references[44] Prasanna Porwal et al. "Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research". In: Data 3.3 (2018), p. 25.spa
dc.relation.references[45] Rui Bernardes and José Cunha-Vaz. Optical coherence tomography: a clinical and technical update. Springer Science & Business Media, 2012.spa
dc.relation.references[46] Meindert Niemeijer et al. "Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs". In: IEEE transactions on medical imaging 29.1 (2009), pp. 185-195.spa
dc.relation.references[47] Pratul P Srinivasan et al. "Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images". In: Biomedical optics express 5.10 (2014), pp. 3568-3577.spa
dc.relation.references[48] Di Zhao et al. "Improving follow-up and reducing barriers for eye screenings in communities: the stop glaucoma study". In: American journal of ophthalmology 188 (2018), pp. 19-28.spa
dc.relation.references[49] Muthu Rama Krishnan Mookiah et al. "Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features". In: Knowledge-Based Systems 33 (2012), pp. 73-82.spa
dc.relation.references[50] Rüdiger Bock et al. "Glaucoma risk index: automated glaucoma detection from color fundus images". In: Medical image analysis 14.3 (2010), pp. 471-481.spa
dc.relation.references[51] Francisco Fumero et al. "RIM-ONE: An open retinal image database for optic nerve evaluation". In: Computer-Based Medical Systems (CBMS), 24th International Symposium on. IEEE. 2011, pp. 1-6.spa
dc.relation.references[52] Stefan Maetschke et al. "A feature agnostic approach for glaucoma detection in OCT volumes". In: PloS one 14.7 (2019), e0219126.spa
dc.relation.references[53] Eiko K de Jong, Maartje J Geerlings, and Anneke I den Hollander. "Age-related macular degeneration". In: Genetics and Genomics of Eye Disease. Elsevier, 2020, pp. 155-180.spa
dc.relation.references[54] Baidu. iChallenge-AMD. 2019. url: http://ai.baidu.com (visited on 11/04/2019).spa
dc.relation.references[55] Sina Farsiu et al. "Quantitative classification of eyes with and without intermediate agerelated macular degeneration using optical coherence tomography". In: Ophthalmology 121.1 (2014), pp. 162-172.spa
dc.relation.references[56] Helen Mactier, Michael S Bradnam, and Ruth Hamilton. "Dark-adapted oscillatory potentials in preterm infants with and without retinopathy of prematurity". In: Documenta Ophthalmologica 127.1 (2013), pp. 33-40.spa
dc.relation.references[57] Kavita P Dhamdhere et al. "Associations between local retinal thickness and function in early diabetes". In: Investigative ophthalmology & visual science 53.10 (2012), pp. 6122-6128.spa
dc.relation.references[58] Dobrila Karlica et al. "Visual evoked potential can be used to detect a prediabetic form of diabetic retinopathy in patients with diabetes mellitus type I". In: Collegium antropologicum 34.2 (2010), pp. 525-529.spa
dc.relation.references[59] Monica Lövestam-Adrian et al. "Multifocal visual evoked potentials (MFVEP) in diabetic patients with and without polyneuropathy". In: The open ophthalmology journal 6 (2012), p. 98.spa
dc.relation.references[60] Sangeeta Gupta et al. "Electrophysiological evaluation in patients with type 2 diabetes mellitus by pattern reversal visual evoked potentials". In: National Journal of Physiology, Pharmacy and Pharmacology 7.5 (2017), p. 527.spa
dc.relation.references[61] Javad Heravian et al. "Pattern visual evoked potentials in patients with type II diabetes mellitus". In: Journal of ophthalmic & vision research 7.3 (2012), p. 225.spa
dc.relation.references[62] Randy Kardon et al. "Chromatic pupillometry in patients with retinitis pigmentosa". In: Ophthalmology 118.2 (2011), pp. 376-381.spa
dc.relation.references[63] Maria Carolina Ortube et al. "Comparative regional pupillography as a noninvasive biosensor screening method for diabetic retinopathy". In: Investigative ophthalmology & visual science 54.1 (2013), pp. 9-18.spa
dc.relation.references[64] Jennifer Threatt et al. "Ocular disease, knowledge and technology applications in patients with diabetes". In: The American journal of the medical sciences 345.4 (2013), pp. 266-270.spa
dc.relation.references[65] Danny Mitry et al. "Crowdsourcing as a novel technique for retinal fundus photography classification: Analysis of Images in the EPIC Norfolk Cohort on behalf of the UKBiobank Eye and Vision Consortium". In: PloS one 8.8 (2013), e71154.spa
dc.relation.references[66] Joes Staal et al. "Ridge-based vessel segmentation in color images of the retina". In: IEEE transactions on medical imaging 23.4 (2004), pp. 501-509.spa
dc.relation.references[67] Tomi Kauppi et al. "DIARETDB0: Evaluation database and methodology for diabetic retinopathy algorithms". In: Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland 73 (2006), pp. 1-17.spa
dc.relation.references[68] Tomi Kauppi et al. "The diaretdb1 diabetic retinopathy database and evaluation protocol." In: BMVC. Vol. 1. 2007, pp. 1-10.spa
dc.relation.references[69] Luca Giancardo et al. "Microaneurysm detection with radon transform-based classification on retina images". In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. 2011, pp. 5939-5942.spa
dc.relation.references[70] Muhammad Moazam Fraz et al. "An ensemble classification-based approach applied to retinal blood vessel segmentation". In: IEEE Transactions on Biomedical Engineering 59.9 (2012), pp. 2538-2548.spa
dc.relation.references[71] Etienne Decenciére et al. "TeleOphta: Machine learning and image processing methods for teleophthalmology". In: Irbm 34.2 (2013), pp. 196-203.spa
dc.relation.references[72] EyePACS. Diabetic retinopathy detection of Kaggle. 2015. url: https://www.kaggle.com/c/diabetic-retinopathy-detection/data (visited on 11/04/2019).spa
dc.relation.references[73] APTOS. Aptos blindness detection. 2019. url: https://www.kaggle.com/c/aptos2019-blindness-detection/data (visited on 11/04/2019).spa
dc.relation.references[74] James Lowell et al. "Optic nerve head segmentation". In: IEEE Transactions on medical Imaging 23.2 (2004), pp. 256-264.spa
dc.relation.references[75] Attila Budai et al. "Robust vessel segmentation in fundus images". In: International journal of biomedical imaging 2013 (2013).spa
dc.relation.references[76] AD Hoover, Valentina Kouznetsova, and Michael Goldbaum. "Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response". In: IEEE Transactions on Medical imaging 19.3 (2000), pp. 203-210.spa
dc.relation.references[77] Adam Hoover and Michael Goldbaum. "Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels". In: IEEE transactions on medical imaging 22.8 (2003), pp. 951-958.spa
dc.relation.references[78] Damian JJ Farnell et al. "Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators". In: Journal of the Franklin institute 345.7 (2008), pp. 748-765.spa
dc.relation.references[79] Yalin Zheng, Mohd Hanafi Ahmad Hijazi, and Frans Coenen. "Automated "disease/no disease" grading of age-related macular degeneration by an image mining approach". In: Investigative ophthalmology & visual science 53.13 (2012), pp. 8310-8318.spa
dc.relation.references[80] Peyman Gholami et al. "OCTID: Optical Coherence Tomography Image Database". In: arXiv preprint arXiv:1812.07056 (2018).spa
dc.relation.references[81] Enrique J Carmona et al. "Identification of the optic nerve head with genetic algorithms". In: Artificial Intelligence in Medicine 43.3 (2008), pp. 243-259.spa
dc.relation.references[82] Zhuo Zhang et al. "Origa-light: An online retinal fundus image database for glaucoma analysis and research". In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE. 2010, pp. 3065-3068.spa
dc.relation.references[83] Meindert Niemeijer et al. "Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs". In: IEEE Transactions on medical imaging 30.11 (2011), pp. 1941-1950.spa
dc.relation.references[84] Zhuo Zhang et al. "ACHIKO-K: Database of fundus images from glaucoma patients". In: 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA). IEEE. 2013, pp. 228-231.spa
dc.relation.references[85] Jayanthi Sivaswamy et al. "A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis". In: JSM Biomedical Imaging Data Papers 2.1 (2015), p. 1004.spa
dc.relation.references[86] Jayanthi Sivaswamy et al. "Drishti-gs: Retinal image dataset for optic nerve head (onh) segmentation". In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE. 2014, pp. 53-56.spa
dc.relation.references[87] Ahmed Almazroa et al. "Retinal fundus images for glaucoma analysis: the RIGA dataset". In: Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications. Vol. 10579. International Society for Optics and Photonics. 2018, 105790B.spa
dc.relation.references[88] IEEE Dataport. REFUGE: Retinal Fundus Glaucoma Challenge. 2019. url: https://ieee-dataport.org/documents/refuge- retinal- fundus- glaucoma- challenge (visited on 11/04/2019).spa
dc.relation.references[89] Traci E Clemons et al. "National Eye Institute visual function questionnaire in the age-related eye disease study (AREDS): AREDS report no. 10". In: Archives of Ophthalmology 121.2 (2003), pp. 211-217.spa
dc.relation.references[90] Mahdi Kazemian Jahromi et al. "An automatic algorithm for segmentation of the boundaries of corneal layers in optical coherence tomography images using gaussian mixture model". In: Journal of medical signals and sensors 4.3 (2014), p. 171.spa
dc.relation.references[91] Luca Giancardo et al. "Exudate-based diabetic macular edema detection in fundus images using publicly available datasets". In: Medical image analysis 16.1 (2012), pp. 216-226.spa
dc.relation.references[92] Reza Rasti et al. "Macular OCT classification using a multi-scale convolutional neural network ensemble". In: IEEE transactions on medical imaging 37.4 (2017), pp. 1024-1034.spa
dc.relation.references[93] Daniel S Kermany et al. "Identifying medical diagnoses and treatable diseases by image-based deep learning". In: Cell 172.5 (2018), pp. 1122-1131.spa
dc.relation.references[94] Sandeep Paul, Lotika Singh, et al. "A review on advances in deep learning". In: 2015 IEEE Workshop on Computational Intelligence: Theories, Applications and Future Directions (WCI). IEEE. 2015, pp. 1-6.spa
dc.relation.references[95] Alex Krizhevsky, Ilya Sutskever, and Geofrrey E Hinton. "Imagenet classification with deep convolutional neural networks". In: Advances in neural information processing systems. 2012, pp. 1097-1105.spa
dc.relation.references[96] Matthew D Zeiler and Rob Fergus. "Visualizing and understanding convolutional networks". In: European conference on computer vision. Springer. 2014, pp. 818-833.spa
dc.relation.references[97] Karen Simonyan and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition". In: arXiv preprint arXiv:1409.1556 (2014).spa
dc.relation.references[98] Christian Szegedy et al. "Going deeper with convolutions". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, pp. 1-9.spa
dc.relation.references[99] Geofrey Hinton et al. "Deep neural networks for acoustic modeling in speech recognition". In: IEEE Signal processing magazine 29 (2012).spa
dc.relation.references[100] Ossama Abdel-Hamid et al. "Convolutional neural networks for speech recognition". In: IEEE/ACM Transactions on audio, speech, and language processing 22.10 (2014), pp. 1533-1545.spa
dc.relation.references[101] Tara N Sainath et al. "Deep convolutional neural networks for large-scale speech tasks". In: Neural Networks 64 (2015), pp. 39-48.spa
dc.relation.references[102] Kaggle. Kaggle: Higgs boson machine learning challenge. 2014. url: http://www.kaggle.com/c/higgs-boson (visited on 11/04/2019).spa
dc.relation.references[103] Alexander de Brebisson and Giovanni Montana. "Deep neural networks for anatomical brain segmentation". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2015, pp. 20-28.spa
dc.relation.references[104] Hoo-Chang Shin et al. "Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data". In: IEEE transactions on pattern analysis and machine intelligence 35.8 (2012), pp. 1930-1943.spa
dc.relation.references[105] Kaggle. Kaggle: 1000 Fundus images with 39 categories. 2019. url: https://www.kaggle.com/linchundan/fundusimage1000 (visited on 11/04/2019).spa
dc.relation.references[106] TCIA Collections. The cancer genome atlas. 2019. url: http://www.cancerimagingarchive.net/ (visited on 11/04/2019).spa
dc.relation.references[107] Spineweb. Spineweb: Collaborative platform for research on spine imaging and image analysis. 2019. url: http://spineweb.digitalimaginggroup.ca/ (visited on 11/04/2019).spa
dc.relation.references[108] M Usman Akram et al. "Detection and classification of retinal lesions for grading of diabetic retinopathy". In: Computers in biology and medicine 45 (2014), pp. 161-171.spa
dc.relation.references[109] AB Aujih et al. "Analysis of retinal vessel segmentation with deep learning and its effect on diabetic retinopathy classification". In: 2018 International conference on intelligent and advanced system (ICIAS). IEEE. 2018, pp. 1-6.spa
dc.relation.references[110] Yehui Yang et al. "Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks". In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer. 2017, pp. 533-540.spa
dc.relation.references[111] Zhentao Gao et al. "Diagnosis of Diabetic Retinopathy Using Deep Neural Networks". In: IEEE Access 7 (2018), pp. 3360-3370.spa
dc.relation.references[112] Gwenolé Quellec et al. "Deep image mining for diabetic retinopathy screening". In: Medical image analysis 39 (2017), pp. 178-193.spa
dc.relation.references[113] Varun Gulshan et al. "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs". In: Jama 316.22 (2016), pp. 2402-2410.spa
dc.relation.references[114] Shujun Wang et al. "Patch-based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation". In: arXiv preprint arXiv:1902.07519 (2019).spa
dc.relation.references[115] JR Harish Kumar, Aditya Kumar Pediredla, and Chandra Sekhar Seelamantula. "Active discs for automated optic disc segmentation". In: 2015 IEEE global conference on signal and information processing (GlobalSIP). IEEE. 2015, pp. 225-229.spa
dc.relation.references[116] Philippe M Burlina et al. "Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration". In: JAMA ophthalmology 136.12 (2018), pp. 1359-1366.spa
dc.relation.references[117] Peyman Gholami. "Developing algorithms for the analysis of retinal Optical Coherence Tomography images". MA thesis. University of Waterloo, 2018.spa
dc.relation.references[118] Weiwei Sun, Xiaoming Liu, and Zhou Yang. "Automated detection of age-related macular degeneration in OCT images using multiple instance learning". In: Ninth International Conference on Digital Image Processing (ICDIP 2017). Vol. 10420. International Society for Optics and Photonics. 2017, p. 104203V.spa
dc.relation.references[119] Christian Szegedy et al. "Rethinking the inception architecture for computer vision". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 2818-2826.spa
dc.relation.references[120] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation". In: International Conference on Medical image computing and computer-assisted intervention. Springer. 2015, pp. 234-241.spa
dc.relation.references[121] Cecilia S Lee, Doug M Baughman, and Aaron Y Lee. "Deep learning is effective for classifying normal versus age-related macular degeneration OCT images". In: Ophthalmology Retina 1.4 (2017), pp. 322-327.spa
dc.relation.references[122] Jeffrey De Fauw et al. "Clinically applicable deep learning for diagnosis and referral in retinal disease". In: Nature medicine 24.9 (2018), p. 1342.spa
dc.relation.references[123] Kaiming He et al. "Deep residual learning for image recognition". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770-778.spa
dc.relation.references[124] Mike Voets, Kajsa Mollersen, and Lars Ailo Bongo. "Replication study: Development and validation of deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs". In: arXiv preprint arXiv:1803.04337 (2018).spa
dc.relation.references[125] Frank B Hu, Ambika Satija, and JoAnn E Manson. "Curbing the diabetes pandemic: the need for global policy solutions". In: Jama 313.23 (2015), pp. 2319-2320.spa
dc.relation.references[126] Thomas C Gräsbeck et al. "Fundus photography as a screening method for diabetic retinopathy in children with type 1 diabetes: Outcome of the initial photography". In: American journal of ophthalmology 169 (2016), pp. 227-234.spa
dc.relation.references[127] Lihteh Wu et al. "Classification of diabetic retinopathy and diabetic macular edema". In: World journal of diabetes 4.6 (2013), p. 290.spa
dc.relation.references[128] Jie Ding and Tien Yin Wong. "Current epidemiology of diabetic retinopathy and diabetic macular edema". In: Current diabetes reports 12.4 (2012), pp. 346-354.spa
dc.relation.references[129] Kenneth W Tobin et al. "Detection of anatomic structures in human retinal imagery". In: IEEE transactions on medical imaging 26.12 (2007), pp. 1729-1739.spa
dc.relation.references[130] AP Shingade and AR Kasetwar. "A review on implementation of algorithms for detection of diabetic retinopathy". In: International Journal of Research in Engineering and Technology 3.3 (2014), pp. 87-94.spa
dc.relation.references[131] Thitiporn Chanwimaluang, Guoliang Fan, and Stephen R Fransen. "Hybrid retinal image registration". In: IEEE transactions on information technology in biomedicine 10.1 (2006), pp. 129-142.spa
dc.relation.references[132] Harihar Narasimha-Iyer et al. "Integrated analysis of vascular and nonvascular changes from color retinal fundus image sequences". In: IEEE Transactions on Biomedical Engineering 54.8 (2007), pp. 1436-1445.spa
dc.relation.references[133] S Vasanthi and RSD Wahida Banu. "Automatic segmentation and classification of hard exudates to detect macular edema in fundus images." In: Journal of Theoretical & Applied Information Technology 66.3 (2014).spa
dc.relation.references[134] M Usman Akram et al. "Automated detection of exudates and macula for grading of diabetic macular edema". In: Computer methods and programs in biomedicine 114.2 (2014), pp. 141-152.spa
dc.relation.references[135] Aditya Kunwar, Shrey Magotra, and M Partha Sarathi. "Detection of high-risk macular edema using texture features and classification using SVM classifier". In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE. 2015, pp. 2285-2289.spa
dc.relation.references[136] Yann LeCun et al. "Gradient-based learning applied to document recognition". In: Proceedings of the IEEE 86.11 (1998), pp. 2278-2324.spa
dc.relation.references[137] Yann LeCun. "Learning invariant feature hierarchies". In: Computer Vision-ECCV 2012. Workshops and Demonstrations. Springer. 2012, pp. 496-505.spa
dc.relation.references[138] Pengcheng Wu et al. "Online multimodal deep similarity learning with application to image retrieval". In: Proceedings of the 21st ACM international conference on Multimedia - MM '13. MM '13. ACM Press, 2013, pp. 153-162. isbn: 9781450324045. doi: 10.1145/2502081. 2502112.spa
dc.relation.references[139] N Ranjith, C Saravanan, and MR Bibin. "Glaucoma Diagnosis by Optic Cup to Disc Ratio Estimation". In: International Journal of Inventive Engineering and Sciences (IJIES) 3.5 (2015), pp. 1-5.spa
dc.relation.references[140] Sourav Samanta et al. "Haralick features based automated glaucoma classification using back propagation neural network". In: Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Springer. 2015, pp. 351-358.spa
dc.relation.references[141] Artem Sevastopolsky. "Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network". In: Pattern Recognition and Image Analysis 27.3 (2017), pp. 618-624.spa
dc.relation.references[142] Xiangyu Chen et al. "Glaucoma detection based on deep convolutional neural network". In: EMBC, 37th Annual International Conference of the IEEE. IEEE. 2015, pp. 715-718.spa
dc.relation.references[143] José Ignacio Orlando et al. "Convolutional neural network transfer for automated glaucoma identification". In: 12th International Symposium on Medical Information Processing and Analysis. Vol. 10160. International Society for Optics and Photonics. 2017, 101600U.spa
dc.relation.references[144] Huazhu Fu et al. "Joint optic disc and cup segmentation based on multi-label deep network and polar transformation". In: IEEE transactions on medical imaging 37.7 (2018), pp. 1597-1605.spa
dc.relation.references[145] Qing Liu et al. "DDNet: Cartesian-polar Dual-domain Network for the Joint Optic Disc and Cup Segmentation". In: arXiv preprint arXiv:1904.08773 (2019).spa
dc.relation.references[146] Qing Liu et al. "A spatial-aware joint optic disc and cup segmentation method". In: Neurocomputing 359 (2019), pp. 285-297.spa
dc.relation.references[147] Huazhu Fu et al. "Disc-aware ensemble network for glaucoma screening from fundus image". In: IEEE transactions on medical imaging 37.11 (2018), pp. 2493-2501.spa
dc.relation.references[148] Douglas G Altman. Practical statistics for medical research. CRC press, 1990.spa
dc.relation.references[149] George L Spaeth et al. "The disc damage likelihood scale: reproducibility of a new method of estimating the amount of optic nerve damage caused by glaucoma." In: Transactions of the American Ophthalmological Society 100 (2002), p. 181.spa
dc.relation.references[150] Ian JC MacCormick et al. "Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile". In: PloS one 14.1 (2019).spa
dc.relation.references[151] Kevis-Kokitsi Maninis et al. "Deep retinal image understanding". In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer. 2016, pp. 140-148.spa
dc.relation.references[152] José Ignacio Orlando et al. "REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs". In: Medical image analysis 59 (2020), p. 101570.spa
dc.relation.references[153] Shujun Wang, Lequan Yu, and Pheng-Ann Heng. "Optic Disc and Cup Segmentation with Output Space Domain Adaptation". In: Refuge reports ().spa
dc.relation.references[154] Pengshuai Yin et al. "Optic Disc and Cup Segmentation using Ensemble Deep Neural Networks". In: Refuge reports ().spa
dc.relation.references[155] Hong Kang et al. "Pixel quantification for robust segmentation of optic cup". In: Refuge reports ().spa
dc.relation.references[156] Zifeng Wu et al. "Optic Disc/Cup Segmentation and Glaucoma Classification from Fundus Images with Fully Convolutional Networks". In: Refuge reports ().spa
dc.relation.references[157] Xuesheng Bian et al. "Automatic Optic Disc/Cup Segmentation and Glaucoma Classification and Fovea Localization?" In: Refuge reports ().spa
dc.relation.references[158] Peng Liu and Ruogu Fang. "Regression and Learning with Pixel-wise Attention for Retinal Fundus Glaucoma Segmentation and Detection". In: arXiv preprint arXiv:2001.01815 (2020).spa
dc.relation.references[159] Apoorva Sikka, Sai Samarth R Phaye, and Deepti R Bathula. "REFUGE Challenge Submission: Using Dense U-Nets to Detect Glaucoma and Segment Optic Disc and Cup". In: Refuge reports ().spa
dc.relation.references[160] Joonseok Lee et al. "Development of an End-to-End Deep Learning System for Glaucoma Screening Using Color Fundus Images". In: Refuge reports ().spa
dc.relation.references[161] Sharath M Shankaranarayana et al. "Deep Learning based Retinal Image Analysis for evaluation of Glaucoma". In: Refuge reports ().spa
dc.relation.references[162] Yih-Chung Tham et al. "Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis". In: Ophthalmology 121.11 (2014), pp. 2081-2090.spa
dc.relation.references[163] Robert N Weinreb, Tin Aung, and Felipe A Medeiros. "The pathophysiology and treatment of glaucoma: a review". In: Jama 311.18 (2014), pp. 1901-1911.spa
dc.relation.references[164] Daniel M Stein, Gadi Wollstein, and Joel S Schuman. "Imaging in glaucoma". In: Ophthalmology clinics of North America 17.1 (2004), p. 33.spa
dc.relation.references[165] Pardha Saradhi Mittapalli and Giri Babu Kande. "Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma". In: Biomedical Signal Processing and Control 24 (2016), pp. 34-46.spa
dc.relation.references[166] Anindita Septiarini et al. "Automatic Glaucoma Detection Method Applying a Statistical Approach to Fundus Images". In: Healthcare informatics research 24.1 (2018), pp. 53-60.spa
dc.relation.references[167] Baidaa Al-Bander et al. "Automated glaucoma diagnosis using deep learning approach". In: SSD, 14th International Multi-Conference on. IEEE. 2017, pp. 207-210.spa
dc.relation.references[168] Qaisar Abbas. "Glaucoma-Deep: Detection of Glaucoma Eye Disease on Retinal Fundus Images using Deep Learning". In: International Journal of Advanced Computer Science and Applications 8.6 (2017), pp. 41-45.spa
dc.relation.references[169] Yoshua Bengio et al. "Curriculum learning". In: Proceedings of the 26th annual international conference on machine learning. ACM. 2009, pp. 41-48.spa
dc.relation.references[170] Jayanthi Sivaswamy et al. "A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis". In: JSM Biomedical Imaging Data Papers 2.1 (2015), p. 1004.spa
dc.relation.references[171] Undurti N Das. "Diabetic macular edema, retinopathy and age-related macular degeneration as inflammatory conditions". In: Archives of medical science: AMS 12.5 (2016), p. 1142.spa
dc.relation.references[172] Mads Fonager N rgaard and Jakob Grauslund. "Automated Screening for Diabetic Retinopathy-A Systematic Review". In: Ophthalmic research (2018).spa
dc.relation.references[173] Ryan Lee, Tien YWong, and Charumathi Sabanayagam. "Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss". In: Eye and vision 2.1 (2015), p. 17.spa
dc.relation.references[174] Yali Jia et al. "Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration". In: Ophthalmology 121.7 (2014), pp. 1435- 1444.spa
dc.relation.references[175] Ryan L Shelton et al. "Optical coherence tomography for advanced screening in the primary care office". In: Journal of biophotonics 7.7 (2014), pp. 525-533.spa
dc.relation.references[176] Martin M Nentwich and Michael W Ulbig. "Diabetic retinopathy-ocular complications of diabetes mellitus". In: World journal of diabetes 6.3 (2015), p. 489.spa
dc.relation.references[177] Desire Sidibe et al. "An anomaly detection approach for the identification of DME patients using spectral domain optical coherence tomography images". In: Computer methods and programs in biomedicine 139 (2017), pp. 109-117.spa
dc.relation.references[178] Gabriela Samagaio et al. "Automatic Macular Edema Identification and Characterization Using OCT Images". In: Computer Methods and Programs in Biomedicine (2018).spa
dc.relation.references[179] E Talisa et al. "Spectral-domain optical coherence tomography angiography of choroidal neovascularization". In: Ophthalmology 122.6 (2015), pp. 1228-1238.spa
dc.relation.references[180] Adeel M Syed et al. "Automated diagnosis of macular edema and central serous retinopathy through robust reconstruction of 3D retinal surfaces". In: Computer methods and programs in biomedicine 137 (2016), pp. 1-10.spa
dc.relation.references[181] Oliver Faust et al. "Deep learning for healthcare applications based on physiological signals: a review". In: Computer methods and programs in biomedicine (2018).spa
dc.relation.references[182] Eli Gibson et al. "NiftyNet: a deep-learning platform for medical imaging". In: Computer methods and programs in biomedicine 158 (2018), pp. 113-122.spa
dc.relation.references[183] Jose Ignacio Orlando et al. "An ensemble deep learning based approach for red lesion detection in fundus images". In: Computer methods and programs in biomedicine 153 (2018), pp. 115-127.spa
dc.relation.references[184] Yawen Xiao et al. "A deep learning-based multi-model ensemble method for cancer prediction". In: Computer methods and programs in biomedicine 153 (2018), pp. 1-9.spa
dc.relation.references[185] Xiaohong W Gao, Rui Hui, and Zengmin Tian. "Classification of CT brain images based on deep learning networks". In: Computer methods and programs in biomedicine 138 (2017), pp. 49-56.spa
dc.relation.references[186] Zhong Yin et al. "Recognition of emotions using multimodal physiological signals and an ensemble deep learning model". In: Computer methods and programs in biomedicine 140 (2017), pp. 93-110.spa
dc.relation.references[187] Hyungwoo Lee et al. "Automated Segmentation of Lesions Including Subretinal Hyperreflective Material in Neovascular Age-related Macular Degeneration". In: American journal of ophthalmology 191 (2018), pp. 64-75.spa
dc.relation.references[188] Sripad Krishna Devalla et al. "DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images". In: Biomedical optics express 9.7 (2018), pp. 3244-3265.spa
dc.relation.references[189] Freerk G Venhuizen et al. "Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks". In: Biomedical optics express 8.7 (2017), pp. 3292-3316.spa
dc.relation.references[190] Avi Ben-Cohen et al. "Retinal layers segmentation using Fully Convolutional Network in OCT images". In: RSIP Vision (2017).spa
dc.relation.references[191] Mike Pekala et al. "Deep Learning based Retinal OCT Segmentation". In: arXiv preprint arXiv:1801.09749 (2018).spa
dc.relation.references[192] Yufan He et al. "Topology guaranteed segmentation of the human retina from OCT using convolutional neural networks". In: arXiv preprint arXiv:1803.05120 (2018).spa
dc.relation.references[193] Muhammad Awais et al. "Classification of SD-OCT images using a Deep learning approach". In: Signal and Image Processing Applications (ICSIPA), 2017 IEEE International Conference on. IEEE. 2017, pp. 489-492.spa
dc.relation.references[194] Genevieve CY Chan et al. "Fusing Results of Several Deep Learning Architectures for Automatic Classification of Normal and Diabetic Macular Edema in Optical Coherence Tomography". In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2018, pp. 670-673.spa
dc.relation.references[195] Freerk G Venhuizen et al. "Automated age-related macular degeneration classification in OCT using unsupervised feature learning". In: Medical Imaging 2015: Computer-Aided Diagnosis. Vol. 9414. International Society for Optics and Photonics. 2015, p. 94141I.spa
dc.relation.references[196] Arunava Chakravarty, Divya Jyothi Gaddipati, and Jayanthi Sivaswamy. "Construction of a Retinal Atlas for Macular OCT Volumes". In: International Conference Image Analysis and Recognition. Springer. 2018, pp. 650-658.spa
dc.relation.references[197] R Natarajan et al. "Comparative analysis of optical coherence tomography retinal images using multidimensional and cluster methods." In: Biomedical Research 26.2 (2015).spa
dc.relation.references[198] Bolei Zhou et al. "Learning deep features for discriminative localization". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 2921-2929.spa
dc.relation.references[199] Ramprasaath R Selvaraju et al. "Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization." In: ICCV. 2017, pp. 618-626.spa
dc.relation.references[200] Carmelina Trimboli-Heidler, Kelly Vogt, and Avery Robert A. "Volume averaging of spectral-domain optical coherence tomography impacts retinal segmentation in children". In: Translational vision science & technology 5.4 (2016), pp. 1-9.spa
dc.relation.references[201] Muna Bhende et al. "Optical coherence tomography: A guide to interpretation of common macular diseases". In: Indian journal of ophthalmology 66.1 (2017), pp. 20-35.spa
dc.relation.references[202] SB Velaga et al. "Impact of optical coherence tomography scanning density on quantitative analyses in neovascular age-related macular degeneration". In: Eye 31.1 (2017), pp. 53-61.spa
dc.relation.references[203] Sijie Niu et al. "Automated detection of foveal center in SD-OCT images using the saliency of retinal thickness maps". In: Medical physics 44.12 (2017), pp. 6390-6403.spa
dc.relation.references[204] Punal M Arabi et al. "Identification of Age-Related Macular Degeneration Using OCT Images". In: IOP Conference Series: Materials Science and Engineering. Vol. 310. 1. IOP Publishing. 2018, p. 012096.spa
dc.relation.references[205] Leyuan Fang et al. "Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search". In: Biomedical optics express 8.5 (2017), pp. 2732-2744.spa
dc.relation.references[206] Abhijit Guha Roy et al. "ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks". In: Biomedical optics express 8.8 (2017), pp. 3627-3642.spa
dc.relation.references[1] NH1 Cho et al. "IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045". In: Diabetes research and clinical practice 138 (2018), pp. 271-281.spa
dc.relation.references[2] International Diabetes Federation. Diabetes Atlas 8th Edition. 2017. url: https://www.idf . org / e - library / epidemiology - research / diabetes - atlas . html (visited on 11/04/2019).spa
dc.relation.references[3] American Diabetes Association et al. "2. Classification and diagnosis of diabetes: standards of medical care in diabetes|2018". In: Diabetes care 41.Supplement 1 (2018), S13-S27.spa
dc.relation.references[4] Carl W Baker, Yi Jiang, and Thomas Stone. "Recent advancements in diabetic retinopathy treatment from the Diabetic Retinopathy Clinical Research Network". In: Current opinion in ophthalmology 27.3 (2016), p. 210.spa
dc.relation.references[5] Joanne WY Yau et al. "Global prevalence and major risk factors of diabetic retinopathy". In: Diabetes care 35.3 (2012), pp. 556-564.spa
dc.relation.references[6] Alan W Stitt et al. "Advances in our understanding of diabetic retinopathy". In: Clinical science 125.1 (2013), pp. 1-17.spa
dc.relation.references[7] Yuh-Fang Chen et al. "Macular Thickness and Aging in Retinitis Pigmentosa". In: Optometry and Vision Science 89.4 (2012), pp. 471-482.spa
dc.relation.references[8] Gojka Roglic et al. "WHO Global report on diabetes: A summary". In: International Journal of Noncommunicable Diseases 1.1 (2016), p. 3.spa
dc.relation.references[9] Oscar Perdomo and Fabio A. González. "A Systematic Review of Deep Learning Methods Applied to Ocular Images". In: Ciencia e Ingeniería Neogranadina 30.1 (2020).spa
dc.relation.references[10] Oscar Perdomo et al. "Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography". In: Computer Methods and Programs in Biomedicine (2019).spa
dc.relation.references[11] Andrés Pérez, Oscar J Perdomo, and Fabio A González. "A lightweight deep learning model for mobile eye fundus image quality assessment"". In: 15th International Symposium on Medical Information Processing and Analysis. Vol. 10975. International Society for Optics and Photonics. 2019, p. 109750I.spa
dc.relation.references[12] Oscar Perdomo et al. "3D deep convolutional neural network for predicting neurosensory retinal thickness map from spectral domain optical coherence tomography volumes". In: 14th International Symposium on Medical Information Processing and Analysis. Vol. 10975. International Society for Optics and Photonics. 2018, p. 109750I.spa
dc.relation.references[13] Oscar Perdomo et al. "Glaucoma diagnosis from eye fundus images based on deep morphometric feature estimation". In: Computational pathology and ophthalmic medical image analysis. Springer, 2018, pp. 319-327.spa
dc.relation.references[14] Oscar Perdomo et al. "OCT-NET: A convolutional network for automatic classification of normal and diabetic macular edema using sd-oct volumes". In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE. 2018, pp. 1423-1426.spa
dc.relation.references[15] Oscar Perdomo, John Arevalo, and Fabio A González. "Combining morphometric features and convolutional networks fusion for glaucoma diagnosis". In: 13th International Conference on Medical Information Processing and Analysis. Vol. 10572. International Society for Optics and Photonics. 2017, 105721G.spa
dc.relation.references[16] Oscar Perdomo, John Arevalo, and Fabio A González. "Convolutional network to detect exudates in eye fundus images of diabetic subjects". In: 12th International Symposium on Medical Information Processing and Analysis. Vol. 10160. International Society for Optics and Photonics. 2017, 101600T.spa
dc.relation.references[17] Oscar Perdomo et al. "A novel machine learning model based on exudate localization to detect diabetic macular edema". In: (2016), pp. 137-144.spa
dc.relation.references[18] Ravi M Kamble et al. "Automated diabetic macular edema (DME) analysis using ne tuning with Inception-Resnet-v2 on OCT images". In: 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE. 2018, pp. 442-446.spa
dc.relation.references[19] Sebastián Otálora et al. "Training deep convolutional neural networks with active learning for exudate classi cation in eye fundus images". In: Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Springer, 2017, pp. 146-154.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiologíaspa
dc.subject.proposalOcular diseaseseng
dc.subject.proposalEnfermedades ocularesspa
dc.subject.proposalFuentes de información médicaspa
dc.subject.proposaldeep learning modelseng
dc.subject.proposalmodelos de aprendizaje profundospa
dc.subject.proposalSources of medical informationeng
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalMachine learningeng
dc.titleDeep learning analysis of eye fundus images to support medical diagnosisspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1075213630.2020.pdf
Tamaño:
6.01 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: