Desarrollo de un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidante

dc.contributor.advisorCortés Rodríguez, Misael
dc.contributor.advisorHurtado Benavides, Andrés Mauricio
dc.contributor.authorEraso Grisales, Soany
dc.contributor.researchgroupAlimentos y Nutraceuticosspa
dc.contributor.researchgroupGaf (Grupo de Alimentos Funcionales)spa
dc.contributor.researchgroupTecnologías Emergentes en Agroindustria (TEA) - UDENARspa
dc.coverage.countryColombia
dc.date.accessioned2022-06-28T15:47:17Z
dc.date.available2022-06-28T15:47:17Z
dc.date.issued2022-06-28
dc.descriptionilustraciones. diagramas, tablasspa
dc.description.abstractLa uchuva (Physalis peruviana L.), es una fruta exótica de la región Andina, la cual presenta una demanda creciente debido a que posee características aromáticas y propiedades nutricionales favoreciendo su uso como alimento funcional. Colombia está entre los principales productores y exportadores de fruta exótica del mundo, principalmente gulupa y uchuva, por consiguiente, es la quinta fruta con mayor mercado después del banano en términos de exportación. La generación de nuevos productos, con sabores innovadores y con mejores características fisicoquímicas ha permitido el desarrollo y la implementación de nuevas metodologías para su obtención. Una alternativa a este contexto es el secado de la pulpa con el fin de obtener un producto en polvo, conservando las propiedades de la fruta. Algunos métodos de secado resultan inapropiados por afectar fuertemente las características sensoriales y las propiedades nutricionales de las frutas. El secado por aspersión, es un método usado en pulpas de frutas que son sensibles al calor, siendo sus principales ventajas el alto rendimiento y la reducción del daño térmico. El objetivo de la investigación fue desarrollar un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidante, contribuyendo a mejorar la competitividad de la agrocadena. En este contexto, la investigación se planteó en tres etapas: En la 1ª etapa se realizó la evaluación de la influencia del proceso de hidrólisis enzimática sobre la estabilidad fisicoquímica de un sistema coloidal a base de pulpa, piel y semilla de uchuva (CSU), con fines a ser utilizado en secado por aspersión. La pulpa con semilla y piel fue homogenizada inicialmente por cizalla en un sistema rotor-estator a 10000 rpm durante 10 minutos y para la evaluación enzimática, se empleó el complejo multienzimático Viscozyme L y se utilizó un diseño factorial completamente aleatorizado, considerando las variables independientes: concentración de enzima [Enzima] (50, 125 y 200 ppm) y tiempo de hidrólisis (TH) (0, 30, 60, 90 y 120 minutos), y las variables dependientes: viscosidad (), potencial zeta (ζ), tamaño de partícula (percentiles D10, D50 y D90), Span, índice de absorción espectral (R) y sólidos solubles (SS). La [Enzima] tuvo un efecto significativo (p < 0.05) sobre la μ, SS, D50, D90 y R, el TH sobre la μ, SS y D10; además, existe un efecto de la interacción [Enzima]-HT sobre el aumento de la μ y los SS. La optimización de la formulación presentó una deseabilidad del 74.2%, con una [Enzima] = 78.5 ppm y TH = 120 minutos; siendo las variables dependientes calculadas por un modelo cuadrático: µ = 356.9 cP, SS = 15.5,  = -18.5 mV, D10 = 3.2 m, D50 = 118.2 m; D90 = 480.8 m; Span = 4.1, R = 0.605. La combinación de procesos de homogenización por cizalla y el tratamiento enzimático aplicado, contribuyeron a la obtención de sistema coloidal estable fisicoquímicamente, sin embargo, se pretendía obtener una mayor reducción de tamaños de partícula, lo cual se logra mediante un proceso de homogenización de alta presión y adición de hidrocoloides que favorecieron la estabilidad de la suspensión. En la 2ª etapa se planteó la evaluación del proceso de secado por aspersión y la composición de la alimentación sobre los atributos de calidad de las microcápsulas de uchuva. El secado por aspersión operó en condiciones subatmosféricas a 0.37 kPa (1.5” H2O) y utilizando el equipo Vibrasec SA, referencia PASLAB1.5, con una capacidad de evaporación de 1.5L/h. El proceso de secado por aspersión se optimizó utilizando la metodología de superficie de respuesta, con un diseño experimental central compuesto cara centrada, teniendo en cuanta las variables independientes: goma arábiga (AG) (1 - 3%), maltodextrina (MD) (9.5 – 13.5%), temperatura de entrada de aire (TEA) (130-160°C), temperatura del aire de salida (TSA) (75-85°C) y velocidad del disco atomizador (VDA) (18000-22000 rpm), las variables dependientes evaluadas fueron: humedad (Xw), solubilidad (S), higroscopicidad (H), humectabilidad (Hu), coordenadas de color L* y b*, fenoles totales (FT), capacidad antioxidante (DPPH y ABTS) y rendimiento (Y). La optimización experimental de múltiples respuestas presentó una deseabilidad del 68.4%, definiendo las variables independientes: GA = 2.2%, MD = 10.1%, TEA = 160 °C, TSA = 77.8 °C y VDA = 21450 rpm, y las variables dependientes: Xw = 2.7±0.1%,.S = 86.2±2.3%, H = 16.2±0.0%, Hu = 4.0±013 s, L* = 43.9±0.1, b* = 35.7±0.9, TP = 284.2±1.8 mg AGE/100 g bs, DPPH = 99.8±2.5 mg TE/100 g bs, ABTS = 158.5±0.1 mg TE/100 g bs y Y = 56.1±1.6%. El secado por aspersión como proceso de microencapsulación del extracto de uchuva, fue una tecnología efectiva que permitió la obtención microcápsulas de uchuva con excelentes atributos de calidad. En el proceso se dio un mayor aprovechamiento de la estructura de la uchuva (pulpa, semilla y cáscara), que otorgó un alto contenido de solidos de uchuva al producto obtenido. En la 3ª etapa se evaluó el sistema de aglomeración por lecho fluidizado, el cual se optimizó utilizando la metodología de superficie de respuesta, con diseño experimental central compuesto cara centrada, teniendo en cuenta las variables independientes: temperatura del aire de fluidización (T) (50 – 70 °C), presión de atomización de la solución ligante (P) (1.0 – 2.0 bar) y tiempo de aglomeración (t) (20 – 40 min), y como variables dependientes: humedad (Xw), solubilidad (S), humectabilidad (Hu), higroscopicidad (H), densidad aparente (a), índice de Carr (IC), relación de Hausner (RH), tamaño de partícula D[4,3], fenoles totales (FT), flavonoides totales (FLT), capacidad antioxidante (DPPH y ABTS), vitamina C (Vit.C), -caroteno (-car) y el rendimiento (Y). La optimización experimental de múltiples repuestas presentó una deseabilidad del 63.8%, definiendo las variables independientes: T = 68.4 °C, P = 1.1 bar, t = 36.5 min, y las variables dependientes: Xw (4.3±0.1%), S (80.5±0.8%), H (14.4±0.5%), Hu (2.3±0.1 s), a (0.588±0.021 g/mL), IC (11.9 ± 2.5%), RH (1.11±0.02), D[4,3] (136.0 2.2 µm), FT (366.7±2.5 mg AGE/100 g bs), FLT (26.5±0.9 mg QE/100 g bs), DPPH (163.5±2.6 mg TE/100 g bs) y ABTS (133.0±1.1 mg TE/100 g bs), Vit.C (42.2±2.5 mg/100 g bs), -car (72.4±2.1 mg/100 g bs) y Y (62.5±3.3%). El proceso de aglomeración por lecho fluidizado del polvo de uchuva, fue efectivo, resultando en la mejora de las propiedades físicas relacionadas con las características funcionales de instantanización y fluidez. (Texto tomado de la fuente)spa
dc.description.abstractThe cape gooseberry (Physalis peruviana L.) is an exotic fruit from the Andean region, growing demand due to its aromatic characteristics and nutritional properties that favor its use as a functional food. Colombia is among the primary producers and exporters of exotic fruit globally, mainly purple passion fruit and cape gooseberry, and is, therefore, the fifth fruit with the largest market after bananas in terms of exports. The generation of new products with innovative flavors and better physicochemical characteristics has allowed the development and implementation of new methodologies. An alternative to this context is the drying of the pulp to obtain a powdered product, preserving the properties of the fruit. Some drying methods are inappropriate because they strongly affect its sensory characteristics and nutritional properties. Spray drying is a method used for fruit pulps that are sensitive to heat, its main advantages being high yield and reduction of thermal damage. The objective of the research was to develop an agglomerated cape gooseberry (Physalis peruviana L.) product with instantaneous characteristics and potential antioxidant effect, contributing to improving the competitiveness of the agribusiness chain. In this context, the research was carried out in three stages: In the first stage, the influence of the enzymatic hydrolysis process on the physicochemical stability of a colloidal system based on cape gooseberry pulp, skin, and seed (CSU), is to be used in spray drying, was evaluated. The pulp with seed and skin was initially homogenized by shearing in a rotor-stator system at 10000 rpm for 10 minutes. For the enzymatic evaluation, the multi-enzyme complex Viscozyme L and a completely randomized factorial design were used, considering the independent variables: [Enzyme] enzyme concentration (50, 125, and 200 ppm) and hydrolysis time (HT) (0, 30, 60, 90 and 120 minutes), and the dependent variables: viscosity (μ), zeta potential (ζ), particle size (percentiles D10, D50, and D90), Span, spectral absorption index (R) and soluble solids (SS). Enzyme] had a significant effect (p <0.05) on μ, SS, D50, D90 and R, HT on μ, SS and D10; furthermore, there is an effect of [Enzyme]-HT interaction on the increase of μ and SS. The formulation optimization presented a desirability of 74.2%, with [Enzyme] = 78.5 ppm and TH = 120 min; being the dependent variables calculated by a quadratic model: µ = 356.9 cP, SS = 15.5, ζ = -18.5 mV, D10 = 3.2 μm, D50 = 118.2 μm; D90 = 480.8 μm; Span = 4.1, R = 0.605. The combination of shear homogenization processes and the enzymatic treatment applied contributed to obtaining a physicochemically stable colloidal system; however, it was intended to reduce particle size, which is achieved through a high-pressure homogenization process and addition of hydrocolloids that favored the stability of the suspension. In the second stage, the evaluation of the spray drying process and the composition of the feed on the quality attributes of the cape gooseberry microcapsules was proposed. The spray drying process operated under subatmospheric conditions at 0.37 kPa (1.5" H2O) and using the Vibrasec SA equipment, reference PASLAB1.5, with an evaporation capacity of 1.5L/h. The spray drying process was optimized using the response surface methodology, with a face-centered central composite experimental design, taking into account the independent variables: gum arabic (GA) (1 - 3%), maltodextrin (MD) (9.5 - 13. 5%), air inlet temperature (AIT) (130 - 160°C), air outlet temperature (AOT) (75-85°C) and atomizing disk speed (ADS) (18000-22000 rpm), the dependent variables evaluated were: moisture (Xw), solubility (S), hygroscopicity (H), wettability (We), color coordinates L* and b*, total phenols (TP), antioxidant capacity (DPPH and ABTS) and yield (Y). The experimental optimization of multiple responses presented a desirability of 68.4%, defining the independent variables: GA = 2.2%, MD = 10.1%, AIT = 160 °C, AOT = 77.8 °C and ADS = 21450 rpm, and the dependent variables: Xw = 2.7±0.1%, S = 86.2±2.3%, H = 16.2±0.0%, We = 4.0±013 s, L* = 43.9±0.1, b* = 35.7±0.9, TP = 284.2±1.8 mg GAE/100 g bs, DPPH = 99.8±2.5 mg TE/100 g bs, ABTS = 158.5±0.1 mg TE/100 g bs and Y = 56.1±1.6%. Spray drying is a process of microencapsulation of cape gooseberry extract was an effective technology that allowed obtaining cape gooseberry microcapsules with excellent quality attributes. In the process, greater use was made of the structure of the cape gooseberry (pulp, seed, and peel), which gave a high content of cape gooseberry solids to the product obtained. In the third stage, the fluidized bed agglomeration system was evaluated, which was optimized using the response surface methodology, with face-centered central composite experimental design, taking into account the independent variables: fluidization air temperature (T) (50 - 70 °C), binder solution atomization pressure (P) (1.0 - 2. 0 bar) and agglomeration time (t) (20 - 40 min), and as dependent variables: moisture (Xw), solubility (S), wettability (We), hygroscopicity (H), bulk density (ρa), Carr's index (CI), Hausner's ratio (RH), particle size D[4,3], total phenols (TP), total flavonoids (TFL), antioxidant capacity (DPPH and ABTS), vitamin C (Vit.C), β-carotene (β-car) and yield (Y). The multiple-response experimental optimization presented a desirability of 63.8%, defining the independent variables: T = 68.4 °C, P = 1.1 bar, t = 36.5 min, and the dependent variables: Xw (4.3±0.1%), S (80.5±0.8%), H (14.4±0.5%), We (2.3±0.1 s), ρa (0.588±0.021 g/mL), CI (11.9±2.5%), RH (1.11±0.02), D[4,3] (136.0±2.2 µm), TP (366.7±2.5 mg GAE/100 g db), TFL (26.5±0.9 mg QE/100 g db), DPPH (163.5±2.6 mg TE/100 g db) and ABTS (133.0±1.1 mg TE/100 g db), Vit.C (42.2±2.5 mg/100 g db), β-car (72.4±2.1 mg/100 g db) and Y (62.5±3.3%). The fluidized bed agglomeration process of cape gooseberry powder was effective, resulting in improved physical properties related to the functional characteristics of instantaneousness and flowability.eng
dc.description.curricularareaÁrea Curricular en Ingeniería Agrícola y Alimentosspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.description.sponsorshipPROEXCAR SASspa
dc.format.extentxviii, 113 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81633
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Agrícola y Alimentosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.referencesAbberger, T., Seo, A., & Schæfer, T. (2002). The effect of droplet size and powder particle size on the mechanisms of nucleation and growth in fluid bed melt agglomeration. 249, 185–197.spa
dc.relation.referencesAgarwal, R., & Bosco, S. (2014). Optimization of Viscozyme-L assisted extraction of coconut milk and virgin coconut oil. Asian Journal of Dairy and Food Research, 33(4), 276–284. https://doi.org/10.5958/0976-0563.2014.00617.4spa
dc.relation.referencesAgronet. (2021). Estadísticas home. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1spa
dc.relation.referencesAhmad, S., Malik, A., Yasmin, R., Ullah, N., Gul, W., Muhammad, P., Nawaz, R., & Afza, N. (1999). Withanolides from Physalis peruviana. Phytochemistry, 50, 647–651.spa
dc.relation.referencesAkhavan, S., Mahdi, S., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin , gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379–385. https://doi.org/10.1016/j.ijbiomac.2016.01.011spa
dc.relation.referencesAlcantara, Y., Alcantara, Y., Tejada, A., & Ros, G. (2018). Effect of different concentrations of pulverized mesocarp of Citrus paradisi Macf. on the bromatological characteristics of spray-dried lemon juice powder. Food Science and Nutrition, 6(5), 1261–1268. https://doi.org/10.1002/fsn3.679spa
dc.relation.referencesÁlvarez García, C. (2018). Application of Enzymes for Fruit Juice Processing. In G. Rajauria & B. Tiwari (Eds.), Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 201–216). Academic Press. https://doi.org/10.1016/B978-0-12-802230-6.00011-4spa
dc.relation.referencesAmao, I. (2016). Health Benefits of Fruits and Vegetables: Review from Sub-Saharan Africa. In M. Asaduzzaman & T. Asao (Eds.), Vegetables. Importance of Quality Vegetables to Human Health: Vol. i (1st ed., p. 13). IntechOpen. https://doi.org/10.5772/intechopen.74472 Abstractspa
dc.relation.referencesAnaldex, A. N. de C. E. (2019). Comportamiento de la uchuva. 2018–2020.spa
dc.relation.referencesAnaldex, A. N. de C. E. (2021). Informe de las exportaciones de uchuva. In Analdex.org (Issue 13).spa
dc.relation.referencesAOAC, A. of O. A. C. (2012). Official Methods of Analysis (K. Helrich (ed.); 19th ed.).spa
dc.relation.referencesAraujo, H. C. S., Jesus, M. S., Leite Neta, M. T. S., Gualberto, N. C., Matos, C. M. S., Rajan, M., Rajkumar, G., Nogueira, J. P., & Narain, N. (2020). Effect of maltodextrin and gum arabic on antioxidant activity and phytochemical profiles of spray-dried powders of sapota (Manilkara zapota) fruit juice. Drying Technology, 39(3), 392–404. https://doi.org/10.1080/07373937.2020.1839487spa
dc.relation.referencesArias, F., & Rendón, S. (2015). Inteligencia de mercados para la cadena del lulo (Solanum quitoense). Journal of Agricultural and Animal Science, 3(2), 38–47.spa
dc.relation.referencesAreiza, N., Robles, J., Zamudio, J., Giraldez, L., Echeverria, V., Barrera, B., Aliev, G., Sahebkar, A., Ashraf, G., & Barreto, G. (2018). Extracts of Physalis peruviana protect astrocytic cells under oxidative stress with rotenone. Frontiers in Chemistry, 6(276), 1–13. https://doi.org/10.3389/fchem.2018.00276spa
dc.relation.referencesAtalar, I., Kurt, A., Saricaoğlu, F., Gül, O., & Gençcelep, H. (2021). Agglomerated mushroom (Agaricus bisporus) powder: Optimization of top spray fluidized bed agglomeration conditions. Journal of Food Process Engineering, 44(6), 1–12. https://doi.org/10.1111/jfpe.13687spa
dc.relation.referencesAtalar, I., & Yazici, F. (2018). Influence of top spray fluidized bed agglomeration conditions on the reconstitution property and structure modification of skim yoghurt powder. Journal of Food Processing and Preservation, 42(1), 1–10. https://doi.org/10.1111/jfpp.13414spa
dc.relation.referencesAtalar, I., & Yazici, F. (2019). Effect of different binders on reconstitution behaviors and physical, structural, and morphological properties of fluidized bed agglomerated yoghurt powder. Drying Technology, 37(13), 1656–1664. https://doi.org/10.1080/07373937.2018.1529038spa
dc.relation.referencesAtalar, I., & Yazici, F. (2021). Top-Spray Agglomeration Process Applications in Food Powders : A Review of Recent Research Applications in Food Products. European Food Science and Engineering, 2(1), 18–25.spa
dc.relation.referencesAugusto, P. E. D., Ibarz, A., & Cristianini, M. (2012). Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: Time-dependent and steady-state shear. Journal of Food Engineering, 111(4), 570–579. https://doi.org/10.1016/j.jfoodeng.2012.03.015spa
dc.relation.referencesBalaguera, H., Martínez, C., & Herrera, A. (2016). Comportamiento poscosecha de frutos de uchuva (Physalis peruviana L.): Efecto de diferentes dosis y tiempos de exposición al 1-metilciclopropeno. Bioagro, 28(1), 21–28.spa
dc.relation.referencesBazaria, B., & Kumar, P. (2018). Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). Journal of the Saudi Society of Agricultural Sciences, 17(4), 408–415. https://doi.org/10.1016/j.jssas.2016.09.007spa
dc.relation.referencesBarkouti, A., Turchiuli, C., Carcel, J. A., & Dumoulin, E. (2013). Milk powder agglomerate growth and properties in fluidized bed agglomeration. Dairy Science and Technology, 93(4–5), 523–535. https://doi.org/10.1007/s13594-013-0132-7spa
dc.relation.referencesBernal, C. A., Castellanos, L., Aragón, D. M., Martínez-Matamoros, D., Jiménez, C., Baena, Y., & Ramos, F. A. (2018). Peruvioses A to F, sucrose esters from the exudate of Physalis peruviana fruit as α-amylase inhibitors. Carbohydrate Research, 461, 4–10. https://doi.org/10.1016/j.carres.2018.03.003spa
dc.relation.referencesBhandari, B., Bansal, N., Zhang, M., & Schuck, P. (2013). Handbook of Food Powders: Processes and Properties. In Handbook of Food Powders: Processes and Properties. https://doi.org/10.1533/9780857098672spa
dc.relation.referencesBhusari, S. N., Muzaffar, K., & Kumar, P. (2014). Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technology, 266, 354–364. https://doi.org/10.1016/j.powtec.2014.06.038spa
dc.relation.referencesBorchani, M., Masmoudi, M., Ben Amira, A., Abbès, F., Yaich, H., Besbes, S., Blecker, C., Garvin, A., Ibarz, A., & Attia, H. (2019). Effect of enzymatic treatment and concentration method on chemical, rheological, microstructure and thermal properties of prickly pear syrup. LWT, 113, 108314. https://doi.org/10.1016/j.lwt.2019.108314spa
dc.relation.referencesBraga, V., Guidi, L. R., de Santana, R. C., & Zotarelli, M. F. (2020). Production and characterization of pineapple-mint juice by spray drying. Powder Technology, 375, 409–419. https://doi.org/10.1016/j.powtec.2020.08.012spa
dc.relation.referencesBravo, K., & Osorio, E. (2016). Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit. Food Chemistry, 197, 185–190. https://doi.org/10.1016/j.foodchem.2015.10.126spa
dc.relation.referencesBravo, K., Sepulveda-Ortega, S., Lara-Guzman, O., Navas-Arboleda, A. A., & Osorio, E. (2015). Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape gooseberry (Physalis peruviana L.). Journal of the Science of Food and Agriculture, 95(7), 1562–1569. https://doi.org/10.1002/jsfa.6866spa
dc.relation.referencesCabrera O, Y. A., Estrada M, E. M., & Cortés R, M. (2017). The influence of drying on the physiological quality of cape gooseberry (Physalis peruviana L.) fruits added with active components. Acta Agronomica, 66(4), 512–518. https://doi.org/10.15446/acag.v66n4.59507spa
dc.relation.referencesCal, K., & Sollohub, K. (2010). Spray Drying Technique . I : Hardware and Process Parameters. Journal of Pharmaceutical Sciences, 99(2), 575–586. https://doi.org/10.1002/jpsspa
dc.relation.referencesCano-Sarmiento, C., Téllez-Medina, D., Viveros-Contreras, R., Cornejo-Mazón, M., Figueroa-Hernández, C., García-Armenta, E., Alamilla-Beltrán, L., García, H., & Gutiérrez-López, G. (2018). Zeta Potential of Food Matrices. Food Engineering Reviews, 10(3), 113–138. https://doi.org/10.1007/s12393-018-9176-zspa
dc.relation.referencesCastro Sánchez, A. M., Puentes Montañez, G. A., & Botía Rodríguez, Y. (2017). Alternativas de procesamiento de uchuva (Physalis peruviana L) para el aprovechamiento de frutos no aptos para la comercialización en fresco. Revista de Investigación Agraria y Ambiental, 5(1), 121. https://doi.org/10.22490/21456453.939spa
dc.relation.referencesCerreti, M., Liburdi, K., Benucci, I., & Esti, M. (2016). The effect of pectinase and protease treatment on turbidity and on haze active molecules in pomegranate juice. LWT - Food Science and Technology, 73, 326–333. https://doi.org/10.1016/j.lwt.2016.06.030spa
dc.relation.referencesChang, L., Karim, R., Sabo, A., & Mohd, H. (2018). Characterization of enzyme-liquefied soursop (Annona muricata L.) puree. LWT - Food Science and Technology, 94, 40–49. https://doi.org/10.1016/j.lwt.2018.04.027spa
dc.relation.referencesChen, Q., Bi, J., Zhou, Y., Liu, X., Wu, X., & Chen, R. (2014). Multi-objective Optimization of Spray Drying of Jujube (Zizyphus jujuba Miller) Powder Using Response Surface Methodology. Food and Bioprocess Technology, 7(6), 1807–1818. https://doi.org/10.1007/s11947-013-1171-zspa
dc.relation.referencesCheng, Y., Lan, H., Zhao, L., Wang, K., & Hu, Z. (2018). Characterization and Prebiotic Potential of Longan Juice Obtained by Enzymatic Conversion of Constituent Sucrose into Fructo-Oligosaccharides. Molecules, 23(10), 2596. https://doi.org/10.3390/molecules23102596spa
dc.relation.referencesCorazza, G. O., Bilibio, D., Zanella, O., Nunes, A. L., Bender, J. P., Carniel, N., dos Santos, P. P., & Priamo, W. L. (2018). Pressurized liquid extraction of polyphenols from Goldenberry: Influence on antioxidant activity and chemical composition. Food and Bioproducts Processing, 112, 63–68. https://doi.org/10.1016/j.fbp.2018.09.001spa
dc.relation.referencesCortés, M., Hernández, G., & Estrada, E. (2017). Optimization of the spray drying process for obtaining cape gooseberry powder: an innovative and promising functional food. VITAE, 24(1), 59–67.spa
dc.relation.referencesCortés R, M., Estrada M, E. M., & Hernández, G. (2017). Optimization of the Spray Drying Process for Obtaining Cape Gooseberry Powder: an Innovative and Promising Functional Food. Revista Vitae, 24(1), 59–67. https://doi.org/10.17533/udea.vitae.v24n1a07spa
dc.relation.referencesCortés, M., Herrera, E. A., & Gil, J. (2016). Impregnación de uchuva Impregnación de uchuva (Physalis peruviana L.) de forma semiesférica con una emulsión fortificante. Biotecnología En El Sector Agropecuario y Agroindustrial, 14(1), 27–36.spa
dc.relation.referencesCuq, B., Mandato, S., Jeantet, R., Saleh, K., & Ruiz, T. (2013). Agglomeration/granulation in food powder production. In Handbook of Food Powders: Processes and Properties. Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672.1.150spa
dc.relation.referencesDacanal, G. C., & Menegalli, F. C. (2010). Selection of operational parameters for the production of instant soy protein isolate by pulsed fluid bed agglomeration. Powder Technology, 203(3), 565–573. https://doi.org/10.1016/j.powtec.2010.06.023spa
dc.relation.referencesDag, D., Kilercioglu, M., & Oztop, M. H. (2017). Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT - Food Science and Technology, 83, 86–94. https://doi.org/10.1016/j.lwt.2017.05.007spa
dc.relation.referencesDahdouh, L., Delalonde, M., Ricci, J., Ruiz, E., & Wisnewski, C. (2018). Influence of high shear rate on particles size, rheological behavior and fouling propensity of fruit juices during crossflow microfiltration: Case of orange juice. Innovative Food Science and Emerging Technologies, 48(March), 304–312. https://doi.org/10.1016/j.ifset.2018.07.006spa
dc.relation.referencesDahdouh, L., Wisniewski, C., Ricci, J., Vachoud, L., Dornier, M., & Delalonde, M. (2016). Rheological study of orange juices for a better knowledge of their suspended solids interactions at low and high concentration. Journal of Food Engineering, 174, 15–20. https://doi.org/10.1016/j.jfoodeng.2015.11.008spa
dc.relation.referencesDaza, L. D., Fujita, A., Fávaro-Trindade, C. S., Rodrigues-Ract, J. N., Granato, D., & Genovese, M. I. (2016). Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20–29. https://doi.org/10.1016/j.fbp.2015.10.001spa
dc.relation.referencesDecco, N. P. (2019). Claves para reducir las pérdidas poscosecha. Claves Para Reducir Las Pérdidas Poscosecha. https://www.deccoiberica.es/claves-para-reducir-las-perdidas-poscosecha/spa
dc.relation.referencesde Figueiredo, V., Yamashita, F., Vanzela, A., Ida, E., & Kurozawa, L. (2018). Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara. Journal of Food Science and Technology, 55(4), 1508–1517. https://doi.org/10.1007/s13197-018-3067-4spa
dc.relation.referencesDe la Vega, J., Cañarejo, M., Cabascango, O., & Lara, M. (2019). Dehydrated Physalis peruviana L. In Two Ripening States and its Effect on Total Phenolic Compounds, Antioxidant Capacity, Carotenes, Color and Ascorbic acid. Informacion Tecnologica, 30(5), 91–100. https://doi.org/10.4067/S0718-07642019000500091spa
dc.relation.referencesde los Rios, C., Cortés, M., & Arango, J. (2021). Physicochemical quality and antioxidant activity of blackberry suspensions: Compositional and process effects. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.15498spa
dc.relation.referencesde Moraes Crizel, T., Jablonski, A., de Oliveira Rios, A., Rech, R., & Flôres, S. (2013). Dietary fiber from orange byproducts as a potential fat replacer. LWT - Food Science and Technology, 53(1), 9–14. https://doi.org/10.1016/j.lwt.2013.02.002spa
dc.relation.referencesde Souza, M. M. B., Santos, A. M. P., Converti, A., & Maciel, M. I. S. (2020). Optimisation of umbu juice spray drying, and physicochemical, microbiological and sensory evaluation of atomised powder. Journal of Microencapsulation, 37(3), 230–241. https://doi.org/10.1080/02652048.2020.1720031spa
dc.relation.referencesDewhirst, R. A., & Fry, S. C. (2018). The oxidation of dehydroascorbic acid and 2 , 3- diketogulonate by distinct reactive oxygen species. 0, 3451–3470.spa
dc.relation.referencesDhanalakshmi, K., Ghosal, S., & Bhattacharya, S. (2011). Agglomeration of food powder and applications. Critical Reviews in Food Science and Nutrition, 51(5), 432–441. https://doi.org/10.1080/10408391003646270spa
dc.relation.referencesDiab, M. M. S., Aref, A. M., Othman, M. S., Al-Quraishy, S., Abdel Moneim, A. E., & Dkhil, M. A. (2014). The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity. Food and Chemical Toxicology, 74, 98–106. https://doi.org/10.1016/j.fct.2014.09.013spa
dc.relation.referencesDuque, A., Giraldo, G., & Quintero, V. (2018). Caracterización de la fruta, pulpa y concentrado de uchuva (Physalis peruviana L.). Temas Agrarios, 16(1), 75. https://doi.org/10.21897/rta.v16i1.686spa
dc.relation.referencesEl Sheikha, A. F., Mohammed S, Z., Bakr, A. A., El Habashy, M. M., & Montet, D. (2010). Biochemical and sensory quality of physalis (physalis pubescens l.) juice. Journal of Food Processing and Preservation, 34(3), 541–555. https://doi.org/10.1111/j.1745-4549.2009.00382.xspa
dc.relation.referencesElahi Jan, N., & Kawabata, S. (2011). Relationship between fruit soluble solid content and the sucrose concentration of the phloem sap at different leaf to fruit ratios in tomato. J. Japan. Soc. Hort. Sci, 80(3), 314–321. www.jstage.jst.go.jp/browse/jjshs1JSHSspa
dc.relation.referencesEllong, E. N., Billard, C., Adenet, S., & Rochefort, K. (2015). Polyphenols, Carotenoids, Vitamin C Content in Tropical Fruits and Vegetables and Impact of Processing Methods. Food and Nutrition Sciences, 06(03), 299–313. https://doi.org/10.4236/fns.2015.63030spa
dc.relation.referencesErmiş, E. (2015). Food Powders: Properties and Characterization. In E. Ermiş (Ed.), Food Engineering Series. https://doi.org/https://doi.org/10.1007/978-3-030-48908-3spa
dc.relation.referencesEstrada, M., Cortés, M., & Gil, J. (2017). Guacamole powder: Standardization of the spray drying process. Vitae, 24(2), 102–112. https://doi.org/10.17533/udea.vitae.v24n2a03spa
dc.relation.referencesEtzbach, L., Meinert, M., Faber, T., Klein, C., Schieber, A., & Weber, F. (2020). Effects of carrier agents on powder properties, stability of carotenoids, and encapsulation efficiency of goldenberry (Physalis peruviana L.) powder produced by co-current spray drying. Current Research in Food Science, 3(November 2019), 73–81. https://doi.org/10.1016/j.crfs.2020.03.002spa
dc.relation.referencesEtzbach, L., Pfeiffer, A., Schieber, A., & Weber, F. (2019). Effects of thermal pasteurization and ultrasound treatment on the peroxidase activity, carotenoid composition, and physicochemical properties of goldenberry (Physalis peruviana L.) puree. LWT - Food Science and Technology, 100, 69–74. https://doi.org/10.1016/j.lwt.2018.10.032spa
dc.relation.referencesEun, J. B., Maruf, A., Das, P. R., & Nam, S. H. (2020). A review of encapsulation of carotenoids using spray drying and freeze drying. Critical Reviews in Food Science and Nutrition, 60(21), 3547–3572. https://doi.org/10.1080/10408398.2019.1698511spa
dc.relation.referencesFAO. (1995). Codex Alimentarius : Food Additives. In General standard for food additives (p. 480). https://sis.binus.ac.id/2016/12/15/pasar-monopoli/spa
dc.relation.referencesFAO, F. and A. O. of the U. N. (2003). Food energy – methods of analysis and conversion factors. In FOOD AND NUTRITION PAPER 77.spa
dc.relation.referencesFavaro, R., Gomes, J., Andreola, K., & Pereira, O. (2020). Wettability improvement of pea protein isolate agglomerated in pulsed fluid bed. Particulate Science and Technology, 38(4), 511–521. https://doi.org/10.1080/02726351.2019.1574940spa
dc.relation.referencesFazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A., & Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667–675. https://doi.org/10.1016/j.fbp.2012.04.006spa
dc.relation.referencesFennema, O., & Tannenbaum, S. (2010). Introducción a la química de los alimentos. Quimica de Los Alimentos, 3–27.spa
dc.relation.referencesFerrari, C., Marconi, S., Alvim, I., & de Aguirre, J. (2013). Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Drying Technology, 31(4), 470–478. https://doi.org/10.1080/07373937.2012.742103spa
dc.relation.referencesFerrari, C., Marconi, S., Alvim, I., Vissotto, F., & de Aguirre, J. (2012). Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International Journal of Food Science and Technology, 47(6), 1237–1245. https://doi.org/10.1111/j.1365-2621.2012.02964.xspa
dc.relation.referencesFigueroa, P. M., Ceballos, M. A., & Hurtado, A. M. (2016). Microencapsulação por secagem por atomização de óleo de amora (Rubus glaucus) extraído com CO2 supercrítico. Revista Colombiana de Quimica, 45(2), 39–47. https://doi.org/10.15446/rev.colomb.quim.v45n2.57481spa
dc.relation.referencesFINAGRO. (2014). Perspectiva del sector agropecuario Colombiano. Fondo Para El Finanaciamiento Del Sector Agropecuario, 28. https://www.finagro.com.co/sites/default/files/2014_09_09_perspectivas_agropecuarias.pdfspa
dc.relation.referencesFischer, G., Almanza-Merchán, P., & Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura, 36(1), 40. https://doi.org/10.1590/0100-2945-441/13spa
dc.relation.referencesFischer, G., Herrera, A., & Almanza, P. (2011). Cape gooseberry ( Physalis peruviana L.). In Elsevier (Ed.), Postharvest Biology and Technology of Tropical and Subtropical Fruits (pp. 374-397e). Woodhead Publishing Limited. https://doi.org/10.1533/9780857092762.374spa
dc.relation.referencesFischer, Gerhard, Almanza-merchán, P. J., & Miranda, D. (2014). Importancia y cultivo de la Uchuva ( Physalis peruviana L .). Scielo, 36(1), 1–15. https://doi.org/10.1590/0100-2945-441/13spa
dc.relation.referencesFischer, Gerhard, Miranda, D., Piedrahita, W., & Romero, J. (2005). Avances en cultivo, poscosecha y exportación de la uchuva en Colombia. Universidad Nacional de Colombia, Unibiblos.spa
dc.relation.referencesFitzpatrick, J., Salmon, J., Ji, J., & Miao, S. (2017). Characterisation of the wetting behaviour of poor wetting food powders and the influence of temperature and film formation. KONA Powder and Particle Journal, 34(34), 282–289. https://doi.org/10.14356/kona.2017019spa
dc.relation.referencesFlórez, V., Fischer, G., & Sora, Á. (2000). Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.). Universidad Nacional de Colombia, Unibiblos.spa
dc.relation.referencesFuente, F., Nocetti, D., Sacristán, C., Ruiz, P., Guerrero, J., Jorquera, G., Uribe, E., Bucarey, J. L., Espinosa, A., & Puente, L. (2020). Physalis peruviana l. Pulp prevents liver inflammation and insulin resistance in skeletal muscles of diet-induced obese mice. Nutrients, 12(3), 700. https://doi.org/10.3390/nu12030700spa
dc.relation.referencesFustier, P., Taherian, A. R., & Ramaswamy, H. S. (2010). Emulsion delivery systems for functional foods. In J. Smith & E. Charter (Eds.), Functional Food Product Development (pp. 79–97). Blackwell Publishing Ltd. https://doi.org/10.1002/9781444323351.ch4spa
dc.relation.referencesGallón, M., Cortés, M., & Gil, J. (2020). Physicochemical stability of colloidal systems using the cape gooseberry, strawberry, and blackberry for spray drying. Journal of Food Processing and Preservation, 44(9), 1–10. https://doi.org/10.1111/jfpp.14705spa
dc.relation.referencesGarcía, J., Giuffrida, D., Dugo, P., Mondello, L., & Osorio, C. (2018). Development and characterisation of carotenoid-rich microencapsulates from tropical fruit by-products and yellow tamarillo (Solanum betaceum Cav.). Powder Technology, 339, 702–709. https://doi.org/10.1016/j.powtec.2018.08.061spa
dc.relation.referencesGarofulic, I. E., Zoric, Z., Pedisic, S., & Dragovic-Uzelac, V. (2016). Optimization of sour cherry juice spray drying as affected by carrier material and temperature. Food Technology and Biotechnology, 54(4), 441–449. https://doi.org/10.17113/ft b.54.04.16.4601spa
dc.relation.referencesGenovese, D., & Lozano, J. (2006). Contribution of colloidal forces to the viscosity and stability of cloudy apple juice. Food Hydrocolloids 20, 20, 767–773. https://doi.org/10.1016/j.foodhyd.2005.07.003spa
dc.relation.referencesGhosal, S., Indira, T. N., & Bhattacharya, S. (2010). Agglomeration of a model food powder: Effect of maltodextrin and gum Arabic dispersions on flow behavior and compacted mass. Journal of Food Engineering, 96(2), 222–228. https://doi.org/10.1016/j.jfoodeng.2009.07.016spa
dc.relation.referencesGomes, W. F., França, F. R. M., Denadai, M., Andrade, J. K. S., da Silva Oliveira, E. M., de Brito, E. S., Rodrigues, S., & Narain, N. (2018). Effect of freeze- and spray-drying on physico-chemical characteristics, phenolic compounds and antioxidant activity of papaya pulp. Journal of Food Science and Technology, 55(6), 2095–2102. https://doi.org/10.1007/s13197-018-3124-zspa
dc.relation.referencesGouvêa, R. F., Ribeiro, L. O., Souza, É. F., Penha, E. M., Matta, V. M., & Freitas, S. P. (2017). Effect of enzymatic treatment on the rheological behavior and vitamin C content of Spondias tuberosa (umbu) pulp. Journal of Food Science and Technology, 54(7), 2176–2180. https://doi.org/10.1007/s13197-017-2630-8spa
dc.relation.referencesGranados, W., Muñoz, C., & Aguillón, D. (2019). Cadena de la uchuva. In Ministerio de agricultura. https://sioc.minagricultura.gov.co/Pasifloras/Documentos/2019-06-30 Cifras Sectoriales UCHUVA.pdfspa
dc.relation.referencesGülçin, I. (2012). Antioxidant activity of food constituents: An overview. Archives of Toxicology, 86(3), 345–391. https://doi.org/10.1007/s00204-011-0774-2spa
dc.relation.referencesHaas, K., Dohnal, T., Andreu, P., Zehetner, E., Kiesslich, A., Volkert, M., Fryer, P., & Jaeger, H. (2020). Particle engineering for improved stability and handling properties of carrot concentrate powders using fluidized bed granulation and agglomeration. Powder Technology, 370, 104–115. https://doi.org/10.1016/j.powtec.2020.04.065spa
dc.relation.referencesHandique, J., Bora, S., & Sit, N. (2019). Optimization of banana juice extraction using combination of enzymes. Journal of Food Science and Technology, 56(8), 3732–3743. https://doi.org/10.1007/s13197-019-03845-zspa
dc.relation.referencesHassan, H. A., Serag, H. M., Qadir, M. S., & Ramadan, M. F. (2017). Cape gooseberry (Physalis peruviana) juice as a modulator agent for hepatocellular carcinoma-linked apoptosis and cell cycle arrest. Biomedicine and Pharmacotherapy, 94(2017), 1129–1137. https://doi.org/10.1016/j.biopha.2017.08.014spa
dc.relation.referencesHennart, S., Wildeboer, W., van Hee, P., & Meesters, G. (2010). Stability of particle suspensions after fine grinding. Powder Technology, 199(3), 226–231. https://doi.org/10.1016/j.powtec.2010.01.010spa
dc.relation.referencesHincapié, M. A., & Zapata, J. E. (2019). Study of the dehydration kinetics of uchuva (physalis peruviana l.) in a fluidized bed dryer. Informacion Tecnológica, 30(2), 115–124. https://doi.org/10.4067/S0718-07642019000200115spa
dc.relation.referencesHirata, T. A. M., Dacanal, G. C., & Menegalli, F. C. (2013). Effect of operational conditions on the properties of pectin powder agglomerated in pulsed fluid bed. Powder Technology, 245, 174–181. https://doi.org/10.1016/j.powtec.2013.04.047spa
dc.relation.referencesHorie, K., Tanaka, S., & Akabori, T. (1976). Determination of Emulsion Stability by Spectal Absorption; Part 1. Journal of Society of Cosmetic Chemists of Japan, 10(1–2), 28–33. https://doi.org/10.5107/sccj1976.10.28spa
dc.relation.referencesHua, X., Xu, S., Wang, M., Chen, Y., Yang, H., & Yang, R. (2017). Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers. Food Chemistry, 232, 443–449. https://doi.org/10.1016/j.foodchem.2017.04.003spa
dc.relation.referencesHuang, X., Liu, Q., Yang, Y., & He, W. Q. (2020). Effect of high pressure homogenization on sugar beet pulp: Rheological and microstructural properties. LWT, 125, 109245. https://doi.org/10.1016/j.lwt.2020.109245spa
dc.relation.referencesICONTEC. (1999). Fresh fruits. Cape gooseberry. Specifications. In Norma técnica colombiana (p. 17). https://repository.agrosavia.co/bitstream/handle/20.500.12324/1271/81660_58968.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesIgual, M., Contreras, C., Camacho, M. M., & Martínez-Navarrete, N. (2014). Effect of Thermal Treatment and Storage Conditions on the Physical and Sensory Properties of Grapefruit Juice. Food and Bioprocess Technology, 7(1), 191–203. https://doi.org/10.1007/s11947-013-1088-6spa
dc.relation.referencesIslam, M. Z., Kitamura, Y., Kokawa, M., Monalisa, K., Tsai, F. H., & Miyamura, S. (2017). Effects of micro wet milling and vacuum spray drying on the physicochemical and antioxidant properties of orange (Citrus unshiu) juice with pulp powder. Food and Bioproducts Processing, 101(2012), 132–144. https://doi.org/10.1016/j.fbp.2016.11.002spa
dc.relation.referencesIzli, N., Yildiz, G., Ünal, H., Işik, E., & Uylaşer, V. (2014). Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of Goldenberry (Physalis peruviana L.). International Journal of Food Science and Technology, 49(1), 9–17. https://doi.org/10.1111/ijfs.12266spa
dc.relation.referencesJafari, S. M., Ghalegi Ghalenoei, M., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology, 311, 59–65. https://doi.org/10.1016/j.powtec.2017.01.070spa
dc.relation.referencesJaniszewska, E. (2017). Carotenoids microencapsulation by spray drying method and supercritical micronization. Food Research International, 99, 891–901. https://doi.org/10.1016/j.foodres.2017.02.001spa
dc.relation.referencesJeoh, T., Cardona, M. J., Karuna, N., Mudinoor, A. R., & Nill, J. (2017). Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review. Biotechnology and Bioengineering, 114(7), 1369–1385. https://doi.org/10.1002/bit.26277spa
dc.relation.referencesJinapong, N., Suphantharika, M., & Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2), 194–205. https://doi.org/10.1016/j.jfoodeng.2007.04.032spa
dc.relation.referencesJuarez, E., Olivas, G., Zamudio, P., Ortega, E., Perez, S., & Sepulveda, D. (2017). Effect of water content on the flowability of hygroscopic powders. Journal of Food Engineering, 205, 12–17. https://doi.org/10.1016/j.jfoodeng.2017.02.024spa
dc.relation.referencesJunqueira, J. R. de J., Corrêa, J. L. G., de Oliveira, H. M., Ivo Soares Avelar, R., & Salles Pio, L. A. (2017). Convective drying of cape gooseberry fruits: Effect of pretreatments on kinetics and quality parameters. LWT - Food Science and Technology, 82, 404–410. https://doi.org/10.1016/j.lwt.2017.04.072spa
dc.relation.referencesJurado, T. B., Aparcana Ataurima, I., Villarreal Inca, L., Ramos Llica, E., Calixto Cotos, M., Hurtado Manrique, P., & Acosta Alfaro, K. (2016). Evaluación del contenido de polifenoles totales y la capacidad antioxidante de los extractos etanólicos de los frutos de aguaymanto (Physalis peruviana L.) de diferentes lugares del Perú. Revista de La Sociedad Química Del Perú, 82(3), 272–279. https://doi.org/10.1016/j.jadohealth.2005.06.010spa
dc.relation.referencesKaderides, K., & Goula, A. M. (2017). Development and characterization of a new encapsulating agent from orange juice by-products. Food Research International, 100(July), 612–622. https://doi.org/10.1016/j.foodres.2017.07.057spa
dc.relation.referencesKaufman, V., & Garti, N. (1981). Spectral absorption measurements for determination of ease of formation and stability of oil in water emulsions. Journal of Dispersion Science and Technology, 2(4), 475–490. https://doi.org/10.1080/01932698108943925spa
dc.relation.referencesKhazraji, A. C., & Robert, S. (2013). Interaction Effects between Cellulose and Water in Nanocrystalline and Amorphous Regions: A Novel Approach Using Molecular Modeling. Journal of Nanomaterials, 2013. https://doi.org/10.1155/2013/409676spa
dc.relation.referencesKhenpet, u K., Charoenjarasrerk, N., Jaijit, S., Arayapoonpong, S., & Jittanit, W. (2016). Investigation of suitable spray drying conditions for sugarcane juice powder production with an energy consumption study. Agriculture and Natural Resources, 50(2), 139–145. https://doi.org/10.1016/j.anres.2015.08.003spa
dc.relation.referencesKitrytė, V., Kraujalienė, V., Šulniūtė, V., Pukalskas, A., & Venskutonis, P. R. (2017). Chokeberry pomace valorization into food ingredients by enzyme-assisted extraction: Process optimization and product characterization. Food and Bioproducts Processing, 105, 36–50. https://doi.org/10.1016/j.fbp.2017.06.001spa
dc.relation.referencesKoley, T. K., Walia, S., Nath, P., Awasthi, O. P., & Kaur, C. (2011). Nutraceutical composition of Zizyphus mauritiana Lamk (Indian ber ): effect of enzyme-assisted processing. International Journal of Food Sciences and Nutrition, 62(3), 276–279. https://doi.org/10.3109/09637486.2010.526930spa
dc.relation.referencesLan, Y., Chang, F., Pan, M., Wu, C., Wu, S., Chen, S., Wang, S., Wu, M., & Wu, Y. (2009). New cytotoxic withanolides from Physalis peruviana. Food Chemistry, 116(2), 462–469. https://doi.org/10.1016/j.foodchem.2009.02.061spa
dc.relation.referencesLanchero, O., Velandia, G., Fischer, G., Varela, N., & García, H. (2007). Comportamiento de la uchuva (Physalis peruviana L.) en poscosecha bajo condiciones de atmósfera modificada activa. Revista Corpoica - Ciencia y Tecnologiía Agropecuaria, 8(1), 61–68.spa
dc.relation.referencesLargo, E., Cortés, M., & Ciro, H. (2015). Influence of Maltodextrin and Spray Drying Process Conditions on Sugarcane Juice Powder Quality. Revista Facultad Nacional de Agronomía Medellín, 68(1), 7509–7520. https://doi.org/10.15446/rfnam.v68n1.47839spa
dc.relation.referencesLee, K., Eun, J., & Hwang, J. (2016). Physicochemical properties and sensory evaluation of mandarin (Citrus unshiu) beverage powder spray-dried at different inlet air temperatures with different amounts of a mixture of maltodextrin and corn syrup. Food Science and Biotechnology, 25(5), 1345–1351. https://doi.org/10.1007/s10068-016-0211-7spa
dc.relation.referencesLee, K., Yoon, S., Li, F., & Eun, J. (2017). Effects of inlet air temperature and concentration of carrier agents on physicochemical properties , sensory evaluation of spray-dried mandarin ( Citrus unshiu ) beverage powder. Applied Biological Chemistry, 60(33–40). https://doi.org/10.1007/s13765-016-0246-8spa
dc.relation.referencesLeite, T., Augusto, P., & Cristianini, M. (2015). Using High Pressure Homogenization (HPH) to Change the Physical Properties of Cashew Apple Juice. Food Biophysics, 10(2), 169–180. https://doi.org/10.1007/s11483-014-9385-9spa
dc.relation.referencesLiu, Y., Chen, F., & Guo, H. (2017). Optimization of bayberry juice spray drying process using response surface methodology. Food Science and Biotechnology, 26(5), 1235–1244. https://doi.org/10.1007/s10068-017-0169-0spa
dc.relation.referencesLoan, N. T. ., Hoa, N. D. ., & Ha, N. V. . (2016). Effects of Spray-Drying Conditions on Antioxidant Properties of Mango. Journal of Biotechnology, 14(1A), 427–438.spa
dc.relation.referencesLópez-Esparza, R., Balderas, M., Pérez, E., & Goicochea, A. G. (2015). Importance of Molecular Interactions in Colloidal Dispersions. Advances in Condensed Matter Physics, 2015, 1–8. https://doi.org/10.1155/2015/683716spa
dc.relation.referencesLópez, V. (2017). Vista de La uchuva en el contexto de la producción agrícola colombiana y los TLC’s. Ensayos, 10(10), 131–144. https://revistas.unal.edu.co/index.php/ensayos/article/view/72501/66251spa
dc.relation.referencesLópez-Gaytán, E., Ayala-Hernández, J. J., Ponce-Aguirre, D., Mora-Aguilar, R., & Peña-Lomelí, A. (2006). Agrofenología de Physalis peruviana L. en invernadero y fertirriego. Revista Chapingo Serie Horticultura, 12(1), 57–63. https://doi.org/10.5154/r.rchsh.2005.10.011spa
dc.relation.referencesLourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2020). Microencapsulation of pineapple peel extract by spray drying using maltodextrin, inulin, and Arabic gum as wall matrices. Foods, 9(6), 1–17. https://doi.org/10.3390/FOODS9060718spa
dc.relation.referencesLucas, J. C., Tobon, C., & Cortes, M. (2018). Influence of the Composition of Coconut-Based Emulsions on the Stability of the Colloidal System. Advance Journal of Food Science and Technology, 14(3), 77–92. https://doi.org/10.19026/ajfst.14.5841spa
dc.relation.referencesLuchese, C. L., Gurak, P. D., & Marczak, L. D. F. (2015). Osmotic dehydration of physalis (Physalis peruviana L.): Evaluation ofwater loss and sucrose incorporation and the quantification ofcarotenoids. LWT - Food Science and Technology, 63(2), 1128–1136. https://doi.org/10.1016/j.lwt.2015.04.060spa
dc.relation.referencesMachado, B., Costa, A., Oliveira, R., Barreto, G., Silva, R., & Umsza-Guez, M. (2016). Effect of applying pectinolytic enzymes in Spondias tuberosa Arr. Cam. Pulp. Revista Virtual de Quimica, 8(4), 1067–1078. https://doi.org/10.21577/1984-6835.20160076spa
dc.relation.referencesMachado, V. G., Hirata, T. A. M., & Menegalli, F. C. (2014). Agglomeration of soy protein isolate in a pulsed fluidized bed: Experimental study and process optimization. Powder Technology, 254, 248–255. https://doi.org/10.1016/j.powtec.2014.01.040spa
dc.relation.referencesMaktouf, S., Neifar, M., Drira, S. J., Baklouti, S., Fendri, M., & Châabouni, S. E. (2014). Lemon juice clarification using fungal pectinolytic enzymes coupled to membrane ultrafiltration. Food and Bioproducts Processing, 92(1), 14–19. https://doi.org/10.1016/j.fbp.2013.07.003spa
dc.relation.referencesMareček, V., Mikyška, A., Hampel, D., Čejka, P., Neuwirthová, J., Malachová, A., & Cerkal, R. (2017). ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. Journal of Cereal Science, 73, 40–45. https://doi.org/10.1016/j.jcs.2016.11.004spa
dc.relation.referencesMarín, Z., Cortés, M., & Montoya, O. (2010). Capegooseberry (Physalis peruvian L.) Colombian ecotype, minimally processed inoculated with native strain lactobacillus plantarum lpbm10 by means of vaccum impregnation technique. Revista Chilena de Nutricion, 37(4), 461–472. https://doi.org/10.4067/s0717-75182010000400007spa
dc.relation.referencesMatusiak, J., & Grządka, E. (2017). Stability of colloidal systems - a review of the stability measurements methods. Annales Universitatis Mariae Curie-Sklodowska, Sectio AA – Chemia, 72(1), 33. https://doi.org/10.17951/aa.2017.72.1.33spa
dc.relation.referencesMathlouthi, M. (2001). Water content, water activity, water structure and the stability of foodstuffs. Food Control, 12(7), 409–417. https://doi.org/10.1016/S0956-7135(01)00032-9spa
dc.relation.referencesMehr, H. M., Elahi, M., & Razavi, S. M. A. (2012). Experimental Study on Optimization of the Agglomeration Process for Producing Instant Sugar by Conical Fluidized Bed Agglomerator. Drying Technology, 30(5), 505–515. https://doi.org/10.1080/07373937.2011.647995spa
dc.relation.referencesMendoza, H., Rodriguez, A., & Millán, P. (2012). Caracterización físico química de la uchuva (physalis peruviana) en la región de Silvia Cauca. Biotecnología En El Sector Agropecuario y Agroindustrial: BSAA, 10(2), 188–196.spa
dc.relation.referencesMettler Toledo. (2014). Brix - Sugar determination by density and refractometry. In Density and Refractometry. https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/technical-bulletins/mettler-toledo-brix-sugar-determination-techinical-bulletin.pdfspa
dc.relation.referencesMidilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503–1513. https://doi.org/10.1081/DRT-120005864spa
dc.relation.referencesMinSalud, M. de salud y protección social. (2021). Resolución No. 810 de 2021 (p. 50).spa
dc.relation.referencesMirhosseini, H., Tan, C. P., Hamid, N. S. A., & Yusof, S. (2008). Effect of Arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315(1–3), 47–56. https://doi.org/10.1016/j.colsurfa.2007.07.007spa
dc.relation.referencesMishra, P., Mishra, S., & Mahanta, C. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing, 92(3), 252–258. https://doi.org/10.1016/j.fbp.2013.08.003spa
dc.relation.referencesMishra, Poonam, Mishra, S., & Mahanta, C. L. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing, 92(3), 252–258. https://doi.org/10.1016/j.fbp.2013.08.003spa
dc.relation.referencesMoelants, K., Cardinaels, R., Jolie, R., Verrijssen, T., Van Buggenhout, S., Zumalacarregui, L., Van Loey, A., Moldenaers, P., & Hendrickx, M. (2013). Relation Between Particle Properties and Rheological Characteristics of Carrot-derived Suspensions. Food and Bioprocess Technology, 6(5), 1127–1143. https://doi.org/10.1007/s11947-011-0718-0spa
dc.relation.referencesMoghaddam, A. D., Pero, M., & Askari, G. R. (2017). Optimizing spray drying conditions of sour cherry juice based on physicochemical properties, using response surface methodology (RSM). Journal of Food Science and Technology, 54(1), 174–184. https://doi.org/10.1007/s13197-016-2449-8spa
dc.relation.referencesMokhtar, S. M., Swailam, H. M., & Embaby, H. E. S. (2018). Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: Composition of goldenberry juice waste. Food Chemistry, 248, 1–7. https://doi.org/10.1016/j.foodchem.2017.11.117spa
dc.relation.referencesMuzaffar, K., Nayik, A., & Kumar, P. (2018). Production of Fruit Juice Powders by Spray Drying Technology. International Journal of Advance Research in Science and Engineering, 7(3), 59–67.spa
dc.relation.referencesMuzaffar, K., & Kumar, P. (2015). Parameter optimization for spray drying of tamarind pulp using response surface methodology. Powder Technology, 279, 179–184. https://doi.org/10.1016/j.powtec.2015.04.010spa
dc.relation.referencesMuzaffar, K., Nayik, G. A., & Kumar, P. (2015). Stickiness Problem Associated with Spray Drying of Sugar and Acid Rich Foods: A Mini Review. https://doi.org/10.4172/2155-9600.1000S12003spa
dc.relation.referencesMuzaffar, K., Wani, S. A., Dinkarrao, B. V., & Kumar, P. (2016). Determination of production efficiency, color, glass transition, and sticky point temperature of spray-dried pomegranate juice powder. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1144444spa
dc.relation.referencesNarváez, C., Mateus, Á., & Restrepo, L. (2014). Antioxidant capacity and total phenolic content of air-dried cape gooseberry (Physalis peruviana L.) at different ripeness stages. In Agronomía Colombiana (Vol. 32, Issue 2).spa
dc.relation.referencesNeikov, O. (2019). Safety Engineering in the Production of Powders. In O. Neikov, S. Naboychenko, & N. Yefimov (Eds.), Handbook of Non-Ferrous Metal Powders (2nd ed., pp. 865–928). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-100543-9.00027-0spa
dc.relation.referencesNishad, J., Selvan, C. J., Mir, S. A., & Bosco, S. J. D. (2017). Effect of spray drying on physical properties of sugarcane juice powder (Saccharum officinarum L.). Journal of Food Science and Technology, 54(3), 687–697. https://doi.org/10.1007/s13197-017-2507-xspa
dc.relation.referencesNocetti, D., Núñez, H., Puente, L., Espinosa, A., & Romero, F. (2020). Composition and biological effects of goldenberry byproducts: an overview. Journal of the Science of Food and Agriculture, 100(12), 4335–4346. https://doi.org/10.1002/jsfa.10386spa
dc.relation.referencesNovozymes. (2001). Product Sheet Viscozyme ® L Description. www.novozymes.comspa
dc.relation.referencesOjovan, M. I. (2004). Glass formation in amorphous SiO2 as a percolation phase transition in a system of network defects. JETP Letters, 79(12), 632–634. https://doi.org/10.1134/1.1790021spa
dc.relation.referencesOlivares, M., Dekker, M., Verkerk, R., & van Boekel, M. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology, 57(Part A), 83–92. https://doi.org/10.1016/j.tifs.2016.09.009spa
dc.relation.referencesOlivares, M. (2017). Exploring The Potential of An Andean fruit: An Interdisciplinary Study On The Cape Gooseberry (Physalis peruviana L.) Value Chain [Wageningen University by]. https://doi.org/10.18174/393622spa
dc.relation.referencesOrdóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry, 233, 96–100. https://doi.org/10.1016/j.foodchem.2017.04.114spa
dc.relation.referencesOzkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272(August 2018), 494–506. https://doi.org/10.1016/j.foodchem.2018.07.205spa
dc.relation.referencesOzyurt, V. H., & Ötles, S. (2016). Effect of food processing on the physicochemical properties of dietary fibre. Acta Scientiarum Polonorum, Technologia Alimentaria, 15(3), 233–245. https://doi.org/10.17306/J.AFS.2016.3.23spa
dc.relation.referencesPatil, V., Chauhan, A. K., & Singh, R. P. (2014). Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technology, 253, 230–236. https://doi.org/10.1016/j.powtec.2013.11.033spa
dc.relation.referencesPalzer, S. (2007). Chapter 13 Agglomeration of dehydrated consumer foods. Handbook of Powder Technology, 11, 591–671. https://doi.org/10.1016/S0167-3785(07)80048-0spa
dc.relation.referencesPatiño, D., Garcia, E., Barrera, E., Quejada, O., Rodriguez, H., & Arroyave, I. (2014). Manual del Cultivo de Técnico Uchuva Buenas Prácticas. In Fransiscovelez (Vol. 0, Issue colombia). file:///C:/Users/USUARIO/Documents/cultivo de zona de origen/CULTIVO DE UCHUVA/cartilla de uchuva.pdfspa
dc.relation.referencesPérez, A., Martínez, G., León, F., & Sánchez, M. (2020). The effect of the presence of seeds on the nutraceutical, sensory and rheological properties of Physalis spp. Fruits jam: A comparative analysis. Food Chemistry, 302(July 2019), 125141. https://doi.org/10.1016/j.foodchem.2019.125141spa
dc.relation.referencesPhisut, N. (2012). Spray drying technique of fruit juice powder: some factors influencing the properties of product. In International Food Research Journal (Vol. 19, Issue 4).spa
dc.relation.referencesPhuong, N., & Tuan, Q. (2016). Application of hydrolytic enzymes for improvement of red dragon fruit juice processing. Asia Pacific Journal of Sustainable Agriculture Food and Energy (APJSAFE), 4(1), 1–4.spa
dc.relation.referencesPragati, S., & Preeti, B. (2014). Technological Revolution in Drying of Fruit and Vegetables. International Hournal of Science and Research, 3(10), 705–711.spa
dc.relation.referencesProcolombia. (2020). Uchuva. Procolombia, 2.spa
dc.relation.referencesPuente, L., Pinto, C., Castro, E., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733–1740. https://doi.org/10.1016/j.foodres.2010.09.034spa
dc.relation.referencesPuente, L., Spolmann, O., Nocetti, D., Zura, L., & Lemus, R. (2020). Effects of infrared-assisted refractance windowTM drying on the drying kinetics, microstructure, and color of Physalis fruit purée. Foods, 9(343). https://doi.org/10.3390/foods9030343spa
dc.relation.referencesQuek, S., Chok, N., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46(5), 386–392. https://doi.org/10.1016/j.cep.2006.06.020spa
dc.relation.referencesQuirino, E., De Araújo, V., Monteiro, M., Finotelli, V., Guedes, A., & Perrone, D. (2016). Starch , inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500–510. https://doi.org/10.1016/j.carbpol.2016.05.093spa
dc.relation.referencesRamadan, M., & Morsel, J. (2003). Oil goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry, 51(4), 969–974. https://doi.org/10.1021/jf020778zspa
dc.relation.referencesRamadan, M., & Moersel, J. (2007). Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. Journal of the Science of Food and Agriculture, 87(3), 452–460. https://doi.org/10.1002/jsfa.2728spa
dc.relation.referencesRamadan, M., & Morsel, J. (2003). Oil goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry, 51(4), 969–974. https://doi.org/10.1021/jf020778zspa
dc.relation.referencesRamadan, M. (2011a). Physalis peruviana: A rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Reviews International, 27(3), 259–273. https://doi.org/10.1080/87559129.2011.563391spa
dc.relation.referencesRamadan, M. (2011a). Physalis peruviana: A rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Reviews International, 27(3), 259–273. https://doi.org/10.1080/87559129.2011.563391spa
dc.relation.referencesRamadan, M., Sitohy, M., & Moersel, J. (2008). Solvent and enzyme-aided aqueous extraction of goldenberry (Physalis peruviana L.) pomace oil: Impact of processing on composition and quality of oil and meal. European Food Research and Technology, 226(6), 1445–1458. https://doi.org/10.1007/s00217-007-0676-yspa
dc.relation.referencesRamadan, M. (2011b). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International, 44(7), 1830–1836. https://doi.org/10.1016/j.foodres.2010.12.042spa
dc.relation.referencesRamadan, M. (2018). Enzymes in fruit juice processing. In M. Kuddus (Ed.), Enzymes in Food Biotechnology: Production, Applications, and Future Prospects (pp. 45–59). Elsevier. https://doi.org/10.1016/B978-0-12-813280-7.00004-9spa
dc.relation.referencesRamakrishnan, Y., Adzahan, N. M., Yusof, Y. A., & Muhammad, K. (2018). Effect of wall materials on the spray drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technology, 328, 406–414. https://doi.org/10.1016/j.powtec.2017.12.018spa
dc.relation.referencesRamírez, M., Giraldo, G., & Orrego, C. (2015). Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates. Powder Technology, 277, 89–96. https://doi.org/10.1016/j.powtec.2015.02.060spa
dc.relation.referencesRayo, L., Chaguri, L., Sardá, F., Dacanal, G., Menezes, E., & Tadini, C. (2015). Production of instant green banana flour (Musa cavendischii, var. Nanicão) by a pulsed- fluidized bed agglomeration. LWT - Food Science and Technology, 63, 461–469. https://doi.org/10.1016/j.lwt.2015.03.059spa
dc.relation.referencesRestrepo, A., Cortés, M., & Márquez, C. (2009). Uchuvas (Physalis peruviana L.) mínimamente procesadas fortificadas con vitamina E. VITAE, 16(1), 19–30. http://www.scielo.org.co/pdf/vitae/v16n1/v16n1a03spa
dc.relation.referencesReyes-Medina, A. J., Pinzón, E. H., & Álvarez-Herrera, J. G. (2017). Effect of calcium chloride and refrigeration on the quality and organoleptic characteristics ospa
dc.relation.referencesReyes, M. E. D., Guanilo, C. K., Ibáñez, M. W., García, C. E., Idrogo, J. J., & Huamán, J. J. (2015). Efecto del conumo de Physalis peruviana L. (aguaymanto) sobre el pérfil lípido de pacientes con hiperemia. Acta Médica Peruana, 32(4), 195–201.spa
dc.relation.referencesRieck, C., Bück, A., & Tsotsas, E. (2020). Estimation of the dominant size enlargement mechanism in spray fluidized bed processes. AIChE Journal, 66(January), 1–18. https://doi.org/10.1002/aic.16920spa
dc.relation.referencesRigon, R., & Zapata, C. (2016). Microencapsulation by spray-drying of bioactive compounds extracted from blackberry (rubus fruticosus). Journal of Food Science and Technology, 53(3), 1515–1524. https://doi.org/10.1007/s13197-015-2111-xspa
dc.relation.referencesRíos, E. V, Giraldo G, G. A., & Lucia Duque, A. C. (2007). Predicción de la Actividad de Agua en Frutas Tropicales. In Revista de Investigaciones (Issue 17).spa
dc.relation.referencesRondet, E., Cuq, B., Cassan, D., & Ruiz, T. (2016). Agglomeration of wheat powders by a novel reverse wet agglomeration process. Journal of Food Engineering, 173, 92–105. https://doi.org/10.1016/j.jfoodeng.2015.10.046spa
dc.relation.referencesRodrigues, G., Gomes, L., Nitz, M., & Andreola, K. (2020). A protein powder agglomeration process using açaí pulp as the binder: An analysis of the process parameters. Advanced Powder Technology, 31(8), 3551–3561. https://doi.org/10.1016/j.apt.2020.07.001spa
dc.relation.referencesRodríguez, N., & Bueno, M. (2006). Study of the cytogenetic diversity of physalis peruviana L. (Solanaceae). Acta Biológica Colombiana, 11(2), 75–85.spa
dc.relation.referencesRoos, Y., & Drusch, S. (2015). Phase Transitions in Foods (Academic Press (ed.); Second Edi). Elsevier Inc. https://doi.org/10.1016/C2012-0-06577-5spa
dc.relation.referencesSaad, M. M., Barkouti, A., Rondet, E., Ruiz, T., & Cuq, B. (2011). Study of agglomeration mechanisms of food powders: Application to durum wheat semolina. Powder Technology, 208(2), 399–408. https://doi.org/10.1016/j.powtec.2010.08.035spa
dc.relation.referencesSablani, S. S., Kasapis, S., & Rahman, M. S. (2007). Evaluating water activity and glass transition concepts for food stability. Journal of Food Engineering, 78(1), 266–271. https://doi.org/10.1016/j.jfoodeng.2005.09.025spa
dc.relation.referencesSadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. In Bioresources and Bioprocessing (Vol. 5, Issue 1, p. 1). Springer. https://doi.org/10.1186/s40643-017-0187-zspa
dc.relation.referencesSagar, V. R., & Suresh, P. (2010). Recent advances in drying and dehydration of fruits and vegetables: A review. Journal of Food Science and Technology, 47(1), 15–26. https://doi.org/10.1007/s13197-010-0010-8spa
dc.relation.referencesSamborska, K., Boostani, S., Geranpour, M., Hosseini, H., Dima, C., Khoshnoudi-Nia, S., Rostamabadi, H., Falsafi, S. R., Shaddel, R., Akbari-Alavijeh, S., & Jafari, S. M. (2021). Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends in Food Science and Technology, 108(January), 297–325. https://doi.org/10.1016/j.tifs.2021.01.008spa
dc.relation.referencesSanthalakshmy, S., Don Bosco, S. J., Francis, S., & Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, 274, 37–43. https://doi.org/10.1016/j.powtec.2015.01.016spa
dc.relation.referencesSang-Ngern, M., Youn, U. J., Park, E. J., Kondratyuk, T. P., Simmons, C. J., Wall, M. M., Ruf, M., Lorch, S. E., Leong, E., Pezzuto, J. M., & Chang, L. C. (2016). Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 26(12), 2755–2759. https://doi.org/10.1016/j.bmcl.2016.04.077spa
dc.relation.referencesSantos, D., Maurício, A., Sencadas, V., Santos, J., Fernandes, M., & Gomes, P. (2018). Spray Drying: An Overview. In Biomaterials - Physics and Chemistry - New Edition. InTech. https://doi.org/10.5772/intechopen.72247spa
dc.relation.referencesSarabandi, K., Jafari, S., Mahoonak, A., & Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of egg plant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140, 59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133spa
dc.relation.referencesSathyashree, H., Ramachandra, C., Udaykumar, N., Mathad, P., & Nagaraj, N. (2018). Rehydration properties of spray dried sweet orange juice. ~ 120 ~ Journal of Pharmacognosy and Phytochemistry, 7(3), 120–124.spa
dc.relation.referencesSchuck, P. (2011). Dehydrated Dairy Products: Milk Powder: Physical and Functional Properties of Milk Powders. Encyclopedia of Dairy Sciences: Second Edition, 117–124. https://doi.org/10.1016/B978-0-12-374407-4.00122-9spa
dc.relation.referencesSelvamuthukumaran, M., & Khanum, F. (2014). Optimization of spray drying process for developing seabuckthorn fruit juice powder using response surface methodology. Journal of Food Science and Technology, 51(12), 3731–3739. https://doi.org/10.1007/s13197-012-0901-yspa
dc.relation.referencesShishir, M., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006spa
dc.relation.referencesShittu, T. A., & Lawal, M. O. (2007). Factors affecting instant properties of powdered cocoa beverages. Food Chemistry, 100(1), 91–98. https://doi.org/10.1016/j.foodchem.2005.09.013spa
dc.relation.referencesShofinita, D., Feng, S., & Langrish, T. A. G. (2015). Comparing yields from the extraction of different citrus peels and spray drying of the extracts. Advanced Powder Technology, 26(6), 1633–1638. https://doi.org/10.1016/j.apt.2015.09.007spa
dc.relation.referencesShrivastava, A., Tripathi, A. D., Paul, V., & Chandra Rai, D. (2021). Optimization of spray drying parameters for custard apple (Annona squamosa L.) pulp powder development using response surface methodology (RSM) with improved physicochemical attributes and phytonutrients. Lwt, 151(May), 112091. https://doi.org/10.1016/j.lwt.2021.112091spa
dc.relation.referencesSilva, V. M., Sato, A. C. K., Barbosa, G., Dacanal, G., Ciro-Velásquez, H. J., & Cunha, R. L. (2010). The effect of homogenisation on the stability of pineapple pulp. International Journal of Food Science & Technology, 45(10), 2127–2133. https://doi.org/10.1111/j.1365-2621.2010.02386.xspa
dc.relation.referencesSobulska, M., & Zbicinski, I. (2020). Advances in spray drying of sugar-rich products. Drying Technology, 0(0), 1–26. https://doi.org/10.1080/07373937.2020.1832513spa
dc.relation.referencesSonam, K. S., & Guleria, S. (2017). Synergistic antioxidant activity of natural products. Annals of Pharmacology and Pharmaceutics, 2(8), 1–6.spa
dc.relation.referencesSuescún, L., Erika, P., Betancourt, S., Gómez, M., Francy, M., García, L., Víctor, A., & Zarantes, M. N. (2011). Physalis peruviana. www.kimpres.com.cospa
dc.relation.referencesSun, T., Powers, J. R., & Tang, J. (2007). Effect of Enzymatic Macerate Treatment on Rutin Content, Antioxidant Activity, Yield, and Physical Properties of Asparagus Juice. Journal of Food Science, 72(4), S267–S271. https://doi.org/10.1111/j.1750-3841.2007.00345.xspa
dc.relation.referencesStrenzke, G., Dürr, R., Bück, A., & Tsotsas, E. (2020). Influence of operating parameters on process behavior and product quality in continuous spray fluidized bed agglomeration. Powder Technology, 375, 210–220. https://doi.org/10.1016/j.powtec.2020.07.083spa
dc.relation.referencesSzulc, K., & Lenart, A. (2013). Surface modification of dairy powders : Effects of fluid-bed agglomeration and coating. International Dairy Journal, 33(1), 55–61. https://doi.org/10.1016/j.idairyj.2013.05.021spa
dc.relation.referencesTamnak, S., Mirhosseini, H., Tan, C. P., Ghazali, H. M., & Muhammad, K. (2016). Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocolloids, 56, 405–416. https://doi.org/10.1016/j.foodhyd.2015.12.033spa
dc.relation.referencesTan, H. S., Salman, A. D., & Hounslow, M. J. (2006). Kinetics of fluidised bed melt granulation I : The effect of process variables. Chemical Engineering Science, 61, 1585–1601. https://doi.org/10.1016/j.ces.2005.09.012spa
dc.relation.referencesTontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science and Technology, 63, 91–102. https://doi.org/10.1016/j.tifs.2017.03.009spa
dc.relation.referencesTorres-Ossandón, M. J., Vega-Gálvez, A., López, J., Stucken, K., Romero, J., & Di Scala, K. (2018). Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). Journal of Supercritical Fluids, 138(March), 215–220. https://doi.org/10.1016/j.supflu.2018.05.005spa
dc.relation.referencesUzuner, S., & Cekmecelioglu, D. (2018). Enzymes in the beverage industry. In M. Kuddus (Ed.), Enzymes in Food Biotechnology: Production, Applications, and Future Prospects (pp. 29–43). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813280-7.00003-7spa
dc.relation.referencesValenzuela, A., & Ronco, A. (2004). Fitoesteroles y fitoestanoles: aliados naturales para la protección de la salud cardiovascular. Revista Chilena de Nutrición, 21(1), 161–169. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-75182004031100003&lng=es&nrm=iso&tlng=esspa
dc.relation.referencesVásquez, J., Ochoa, C., & Bustos, M. (2013). Effect of chemical and physical pretreatments on the convective drying of cape gooseberry fruits (Physalis peruviana). Journal of Food Engineering, 119(3), 648–654. https://doi.org/10.1016/j.jfoodeng.2013.06.037spa
dc.relation.referencesVengateson, U., & Mohan, R. (2016). Experimental and modeling study of fluidized bed granulation: Effect of binder flow rate and fluidizing air velocity. Resource-Efficient Technologies, 2, S124–S135. https://doi.org/10.1016/j.reffit.2016.10.003spa
dc.relation.referencesVega-Gálvez, A., Díaz, R., López, J., Galotto, M. J., Reyes, J. E., Perez-Won, M., Puente-Díaz, L., & Di Scala, K. (2016). Assessment of quality parameters and microbial characteristics of Cape gooseberry pulp (Physalis peruviana L.) subjected to high hydrostatic pressure treatment. Food and Bioproducts Processing, 97, 30–40. https://doi.org/10.1016/j.fbp.2015.09.008spa
dc.relation.referencesVerma, A., & Singh, S. V. (2015). Spray Drying of Fruit and Vegetable Juices—A Review. Critical Reviews in Food Science and Nutrition, 55(5), 701–719. https://doi.org/10.1080/10408398.2012.672939spa
dc.relation.referencesVijayanand, P., Kulkarni, S. G., & Prathibha, G. V. (2010). Effect of pectinase treatment and concentration of litchi juice on quality characteristics of litchi juice. Journal of Food Science and Technology, 47(2), 235–239. https://doi.org/10.1007/s13197-010-0023-3spa
dc.relation.referencesVidović, S. S., Vladić, J. Z., Vaštag, Ž. G., Zeković, Z. P., & Popović, L. M. (2014). Maltodextrin as a carrier of health benefit compounds in Satureja montana dry powder extract obtained by spray drying technique. Powder Technology, 258, 209–215. https://doi.org/10.1016/j.powtec.2014.03.038spa
dc.relation.referencesVong, W. C., & Liu, S. Q. (2019). The effects of carbohydrase, probiotic Lactobacillus paracasei and yeast Lindnera saturnus on the composition of a novel okara (soybean residue) functional beverage. LWT, 100, 196–204. https://doi.org/10.1016/j.lwt.2018.10.059spa
dc.relation.referencesWan, Y.-J., Xu, M.-M., Gilbert, R. G., Yin, J.-Y., Huang, X.-J., Xiong, T., & Xie, M.-Y. (2018). Colloid chemistry approach to understand the storage stability of fermented carrot juice. https://doi.org/10.1016/j.foodhyd.2018.11.017spa
dc.relation.referencesWan, Y., Xu, M., Gilbert, R., Yin, J., Huang, X., Xiong, T., & Xie, M. (2019). Colloid chemistry approach to understand the storage stability of fermented carrot juice. Food Hydrocolloids, 89, 623–630. https://doi.org/10.1016/j.foodhyd.2018.11.017spa
dc.relation.referencesWardy, W., Pujols, K., Xu, Z., No, H., & Prinyawiwatkul, W. (2014). Viscosity changes of chitosan solution affect physico-functional properties and consumer perception of coated eggs during storage. LWT - Food Science and Technology, 55(1), 67–73. https://doi.org/10.1016/j.lwt.2013.07.013spa
dc.relation.referencesWellala, C. K. D., Bi, J., Liu, X., Liu, J., Lyu, J., Zhou, M., Marszałek, K., & Trych, U. (2020). Effect of high pressure homogenization combined with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. Innovative Food Science and Emerging Technologies, 60, 102279. https://doi.org/10.1016/j.ifset.2019.102279spa
dc.relation.referencesWu, D., & Sun, D. (2013). Colour measurements by computer vision for food quality control e A review. Trends in Food Science & Technology, 29, 5–20. https://doi.org/10.1016/j.tifs.2012.08.004spa
dc.relation.referencesYıldız, G., İzli, N., Ünal, H., & Uylaşer, V. (2015). Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). Journal of Food Science and Technology, 52(4), 2320–2327. https://doi.org/10.1007/s13197-014-1280-3spa
dc.relation.referencesYu, Z., Jiang, S., Cao, X., Jiang, S., & Pan, L. (2016). Effect of high pressure homogenization (HPH) on the physical properties of taro (Colocasia esculenta (L). Schott) pulp. Journal of Food Engineering, 177, 1–8. https://doi.org/10.1016/j.jfoodeng.2015.10.042spa
dc.relation.referencesYüksel, H., Çalışkan Koç, G., & Dirim, S. N. (2019). Physical characterization of spray-dried milk powders and their agglomerates with the addition of carob, cinnamon, and ginger powders. Pamukkale University Journal of Engineering Sciences, 25(7), 824–833. https://doi.org/10.5505/pajes.2019.56798spa
dc.relation.referencesYuksel, H., & Dirim, N. (2018). Agglomeration process in the fluidized bed, the effecting parameters and some applications. Hrvatski Časopis Za Prehrambenu Tehnologiju, Biotehnologiju i Nutricionizam, 13(3–4), 159–163. https://doi.org/10.31895/hcptbn.13.3-4.10spa
dc.relation.referencesYuksel, H., & Dirim, S. N. (2021). Application of the agglomeration process on spinach juice powders obtained using spray drying method. Drying Technology, 39(1), 19–34. https://doi.org/10.1080/07373937.2020.1832515spa
dc.relation.referencesZapata, J., Ciro, G., & Marulanda, P. (2016). Optimization of pulsed vacuum osmotic dehydration of the cape gooseberry (Physalis peruviana L.) using the response surface methodology. Agronomia Colombiana, 34(2), 228–238. https://doi.org/10.15446/agron.colomb.v34n2.54920spa
dc.relation.referencesZhang, J., Zhang, C., Chen, X., & Quek, S. Y. (2020). Effect of spray drying on phenolic compounds of cranberry juice and their stability during storage. Journal of Food Engineering, 269(October 2019), 109744. https://doi.org/10.1016/j.jfoodeng.2019.109744spa
dc.relation.referencesZhang, M., Chen, H., Mujumdar, A. S., Tang, J., Miao, S., & Wang, Y. (2017). Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical Reviews in Food Science and Nutrition, 57(6), 1239–1255. https://doi.org/10.1080/10408398.2014.97928spa
dc.relation.referencesZhou, L., Guan, Y., Bi, J., Liu, X., Yi, J., Chen, Q., Wu, X., & Zhou, M. (2017). Change of the rheological properties of mango juice by high pressure homogenization. LWT - Food Science and Technology, 82, 121–130. https://doi.org/10.1016/j.lwt.2017.04.038spa
dc.relation.referencesZhu, D., Shen, Y., Wei, L., Xu, L., Cao, X., Liu, H., & Li, J. (2020). Effect of particle size on the stability and flavor of cloudy apple juice. Food Chemistry, 126967. https://doi.org/10.1016/j.foodchem.2020.126967spa
dc.relation.referencesZiyani, L., & Fatah, N. (2014). Use of experimental designs to optimize fluidized bed granulation of maltodextrin. Advanced Powder Technology, 25(3), 1069–1075. https://doi.org/10.1016/j.apt.2014.02.013spa
dc.relation.referencesZotarelli, M. F., da Silva, V. M., Durigon, A., Hubinger, M. D., & Laurindo, J. B. (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technology, 305, 447–454. https://doi.org/10.1016/j.powtec.2016.10.027spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidasspa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lembFrutas Deshidratadasspa
dc.subject.lembUchuvas deshidratadasspa
dc.subject.lembDried fruiteng
dc.subject.proposalAntioxidantesspa
dc.subject.proposalSistemas coloidalesspa
dc.subject.proposalDeshidratación de alimentosspa
dc.subject.proposalGranulación de polvos de frutasspa
dc.subject.proposalPhysalis peruviana L.spa
dc.titleDesarrollo de un producto aglomerado de uchuva (Physalis peruviana L.) con características instantáneas y potencial efecto antioxidantespa
dc.title.translatedDevelopment of an agglomerated cape gooseberry (Physalis peruviana L.) product with instantaneous characteristics and potential antioxidant effecteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleMacroproyecto Fortalecimiento de la competitividad de las cadenas productivas de mora, fresa y uchuva en el departamento de Antioquia, mediante el desarrollo y escalamiento industrial de alimentos funcionales aglomerados con potencial efecto antioxidante.spa
oaire.fundernameMinisterio de Ciencia Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085289304.2022.pdf
Tamaño:
4.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: