Evolución tectónica y metamórfica del complejo raspas (sur oeste de Ecuador)

dc.contributor.advisorZuluaga Castrillón, Carlos Augusto
dc.contributor.advisorIbáñez Mejía, Mauricio
dc.contributor.authorArrieta Prieto, Mayda Catalina
dc.coverage.countryEcuador
dc.date.accessioned2023-12-12T15:49:21Z
dc.date.available2023-12-12T15:49:21Z
dc.date.issued2023-12
dc.descriptionilustraciones, mapas, planosspa
dc.description.abstractLos complejos de alta Presión que se encuentran a lo largo de la superficie terrestre proporcionan evidencia de los procesos involucrados tanto en la cristalización de las rocas en el canal de subducción como en su exhumación. Dichos procesos son clave para comprender la dinámica y la evolución de las zonas de subducción (por ejemplo, a través de la reconstrucción de trayectorias P-T). El complejo Raspas (suroeste de Ecuador) contiene rocas de alta Presión como eclogitas y esquistos anfibólicos con las asociaciones minerales estables correspondientes a glaucofana + granate + epidota + onfacita + mica blanca + rutilo ± cuarzo ± apatita ± pirita ± calcita. Este complejo se ha relacionado genéticamente con los procesos de acreción y subducción de los montes submarinos, que ocurrieron en América del Sur durante el Jurásico Superior - Cretácico Inferior, y la exhumación del complejo probablemente estuvo relacionada con la dinámica dentro de los canales de subducción. Este trabajo muestra una combinación de nuevas observaciones petrográficas, datos de química de rocas completas y datos de química mineral utilizados para determinar las condiciones metamórficas máximas para las rocas de alta Presión del complejo y para reconstruir las trayectorias P-T. El modelado termodinámico muestra que después del pico de metamorfismo en la facies eclogita (ca. 15.5-21 Kbar y 630 - 700°C) algunas de las rocas del Complejo registraron un evento retrógrado probablemente causado por su exhumación. La interpretación del proceso retrógrado es consistente con los resultados de termometría de zircón en rutilo, barometría elástica de inclusiones cuarzo en granate, modelado PT con múltiples reacciones y la presencia de microestructuras retrógradas como anfíbol reemplazando piroxeno, cloritización de granate, cristalización de plagioclasa y reemplazo de rutilo por titanita. (Texto tomado de la fuente)spa
dc.description.abstractHigh-pressure complexes along the Earth's surface provide evidence of the processes involved in both the crystallization of rocks in the subduction channel and its exhumation. Such processes are key to understand the dynamics and evolution of subduction zones (e.g., through reconstruction of P-T trajectories). The Raspas complex (southwestern Ecuador) contains high pressure rocks such as eclogites and amphibolic schists with the mineral assemblages glaucophane + garnet + epidote + omphacite + white mica + rutile ± quartz ± apatite ± pyrite ± calcite stabilized. This complex has been genetically related to accretion and subduction processes of seamounts, which occurred in South America during Late Jurassic - Early Cretaceous, and the exhumation of the complex was probably related to dynamics within subduction channels. This work shows a combination of new petrographic observations, whole-rock chemistry data, and mineral chemistry data used to determine peak metamorphic conditions for the high-pressure rocks of the complex and to reconstruct P-T trajectories. Thermodynamic modelling shows that after peak metamorphism in eclogite facies (ca. 15.5- 21 Kbar and 630 - 700°C) some of the rocks from the Complex recorded a retrograde event probably caused by its exhumation. The interpretation of the retrograde process is consistent with results from zircon in rutile thermometry, quartz in garnet elastic barometry, PT modeling with multiple reactions and the presence of retrograde microstructures such as amphibole replacing pyroxene, garnet chloritization, plagioclase crystallization and rutile replacement by titanite.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaGeoquímica y petrología metamórficaspa
dc.format.extent123 páginaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85071
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geologíaspa
dc.relation.referencesAngel, R. J., Gilio, M., Mazzucchelli, M., & Alvaro, M. (2022). Garnet EoS: a critical review and synthesis. Contributions to Mineralogy and Petrology, 177(5), 1–22. https://doi.org/10.1007/s00410-022-01918-5spa
dc.relation.referencesAngel, R. J., Mazzucchelli, M. L., Alvaro, M., & Nestola, F. (2017). EosFit-Pinc: A simple GUI for host-inclusion elastic thermobarometry. American Mineralogist, 102(9), 1957–1960. https://doi.org/10.2138/am-2017-6190spa
dc.relation.referencesAngel, R. J., Mazzucchelli, M. L., Alvaro, M., Nimis, P., & Nestola, F. (2014). Letter. Geobarometry from host-inclusion systems: The role of elastic relaxation. American Mineralogist, 99(10), 2146–2149. https://doi.org/10.2138/am-2014-5047spa
dc.relation.referencesAngel, R. J., Murri, M., Mihailova, B., & Alvaro, M. (2019). Stress, strain and Raman shifts. Zeitschrift Fur Kristallographie - Crystalline Materials, 234(2), 129–140. https://doi.org/10.1515/zkri-2018-2112spa
dc.relation.referencesArculus, R. J., Lapierre, H., & Jaillard, É. (1999). Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador. Geology, 27(6), 547–550. https://doi.org/10.1130/0091-7613(1999)027<0547:GWISAA>2.3.CO;2spa
dc.relation.referencesAspden, J. A., Clarke, M., Jemielita, R., & Litherland, M. (1994). Geological and metal occurrence maps of the southern Cordillera Real and El Oro Metamorphic belts, Ecuador.spa
dc.relation.referencesAtherton, M. P., & Edmunds, W. M. (1966). An electron microprobe study of some zoned garnets from metamorphic rocks. Earth and Planetary Science Letters, 1(4), 185–193. https://doi.org/10.1016/0012-821X(66)90066-5spa
dc.relation.referencesBosch, D., Gabriele, P., Lapierre, H., Malfere, J. L., & Jaillard, E. (2002). Geodynamic significance of the Raspas Metamorphic Complex (SW Ecuador): Geochemical and isotopic constraints. Tectonophysics, 345(1–4), 83–102. https://doi.org/10.1016/S0040-1951(01)00207-4spa
dc.relation.referencesCastellanos-Alarcón, Ó. M. (2020). Caracterización del metamorfismo de alta presión para eclogitas y esquistos azules, emplazados dentro del Complejo Arquía, en el sector Pijao – Génova (Quindío), flanco oeste, Cordillera Central, Colombia. (Tesis doctoral). Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesCastellanos-Alarcón, O. M., Cedeño Villarreal, K. M., Toro Hernández, R. A., Ríos-Reyes, C. A., Henao-Martínez, J. A., & Zuluaga-Castrillón, C. A. (2022). Crystal-Chemical and Structural Characterization of Omphacite in High-Pressure Eclogites From the Arquía Complex on Southwestern Pijao, Central Cordillera (Colombian Andes). Frontiers in Earth Science, 10(January). https://doi.org/10.3389/feart.2022.694939spa
dc.relation.referencesCLARK, & PAPIKE JJ. (1968). Crystal-Chemical Characterization of Omphacites. American Mineralogist, 53(5–6), 840–868.spa
dc.relation.referencesCloos, M. (1993). Lithospheric bouyancy and collisional orogenesis subduction of continental margins, island arcs and oceanic plateaus (abstract). Geological Society of America, 1993 Annual Meeting, Abstracts with Programms/Meeting Oct. 25 - 28/ 1993 Boston, MA, 25(6), 70–71. https://doi.org/10.1130/0016-7606(1993)105<0715spa
dc.relation.referencesDuque, P. (1993). Duque, P. (1993). Petrology, metamorphic history and structure of El Oro Ophiolitic Complex, Ecuador. In 2nd Internat. Symp. Andean Geodyn.-ISAG, Oxford 1993 (pp.359-362). ORSTOM Publ Paris.spa
dc.relation.referencesEssene, E. J., & Fyfe, W. S. (1967). Omphacite in Californian metamorphic rocks. Contributions to Mineralogy and Petrology, 15(1), 1–23. https://doi.org/10.1007/BF01167213spa
dc.relation.referencesFeininger, T. (1980). Eclogite and related high-pressure regional metamorphic rocks from the andes of ecuador. Journal of Petrology, 21(1), 107–140. https://doi.org/10.1093/petrology/21.1.107spa
dc.relation.referencesFeininger, T., & Silberman, M. L. (1982). DEPARTMENT OF THE INTERIOR K-Ar GEOCHRONOLOGY OF BASEMENT ROCKS ON THE NORTHERN FLANK OF THE HUANCABAMBA DEFLECTION , ECUADOR This report is preliminary and has not been reviewed for conformity with U . S . Geological Survey editorial standards and strati. U.S. Geological Survey, Open-File Report., 82, 206.spa
dc.relation.referencesFisher, G. W. (1975). Petrogenesis of metamorphic rocks. In Geochimica et Cosmochimica Acta (Vol. 39, Issue 9). https://doi.org/10.1016/0016-7037(75)90141-6spa
dc.relation.referencesGabriele, P., Ballèvre, M., Jaillard, E., & Hernandez, J. (2004). Garnet-chloritoid-kyanite metapelites from the Raspas Complex (SW Ecuador): a key eclogite-facies assemblage. European Journal of Mineralogy, 15(6), 977–989. https://doi.org/10.1127/0935-1221/2003/0015-0977spa
dc.relation.referencesGonzalez, J. P., Mazzucchelli, M. L., Angel, R. J., & Alvaro, M. (2021). Elastic Geobarometry for Anisotropic Inclusions in Anisotropic Host Minerals: Quartz-in-Zircon. Journal of Geophysical Research: Solid Earth, 126(6). https://doi.org/10.1029/2021JB022080spa
dc.relation.referencesGreen, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B., & Palin, R. M. (2016). Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34(9), 845–869. https://doi.org/10.1111/jmg.12211spa
dc.relation.referencesGrüneisen, E. (1926). Zustand des festen Körpers. Thermische Eigenschaften Der Stoffe, 1–59. https://doi.org/10.1007/978-3-642-99531-6_1spa
dc.relation.referencesHolland, T. J. B., & Powell, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3), 333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.xspa
dc.relation.referencesInstituto Nacional de Investigación Geológico Minero Metalúrgico. (2017). Hoja geológica Santa Rosa de El Oro, escala 1:100000. Quito.spa
dc.relation.referencesJanoušek, V., Farrow, C. M., & Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6), 1255–1259. https://doi.org/10.1093/petrology/egl013spa
dc.relation.referencesJohn, T., Scherer, E. E., Schenk, V., Herms, P., Halama, R., & Garbe-Schönberg, D. (2010). Subducted seamounts in an eclogite-facies ophiolite sequence: The Andean Raspas Complex, SW Ecuador. Contributions to Mineralogy and Petrology, 159(2), 265–284. https://doi.org/10.1007/s00410-009-0427-0spa
dc.relation.referencesKapp, P., Manning, C. E., & Tropper, P. (2009). Phase-equilibrium constraints on titanite and rutile activities in mafic epidote amphibolites and geobarometry using titanite-rutile equilibria. Journal of Metamorphic Geology, 27(7), 509–521. https://doi.org/10.1111/j.1525-1314.2009.00836.xspa
dc.relation.referencesKlemd, R. (2013). Metasomatism during high-pressure metamorphism: Eclogites and blueschist-facies rocks. In Lecture Notes in Earth System Sciences (Vol. 0, Issue 9783642283932). https://doi.org/10.1007/978-3-642-28394-9_10spa
dc.relation.referencesKovács, G., Radovics, B. G., & Tóth, T. M. (2016). Petrologic comparison of the Gyód and Helesfa serpentinite bodies (Tisia Mega Unit, SW Hungary). Journal of Geosciences (Czech Republic), 61(3), 255–263. https://doi.org/10.3190/jgeosci.218spa
dc.relation.referencesKronbichler, M., Heister, T., & Bangerth, W. (2012). High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International, 191(1), 12–29. https://doi.org/10.1111/j.1365-246X.2012.05609.xspa
dc.relation.referencesLeake, B. E., Woolley, A. R., Birch, W. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Petersburg, S., Linthout, R. K., & LAmD, J. (1994). Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61(December 1994), 295–321.spa
dc.relation.referencesLifshin, E., & Gauvin, R. (2001). Minimizing Errors in Electron Microprobe Analysis. Microscopy and Microanalysis, 7(2), 168–177. https://doi.org/10.1007/s100050010084spa
dc.relation.referencesLinghao, Z., Lingsen, Z., Li-e, G. A. O., Mingyue, H. U., & Dongyang, S. U. N. (2005). Rutile to titanite transformation in eclogites and its geochemical consequences : An example from the Sumdo eclogite , Tibet. https://doi.org/10.1111/1755-6724.14919spa
dc.relation.referencesMazzucchelli, M. L., Angel, R. J., & Alvaro, M. (2021). EntraPT: An online platform for elastic geothermobarometry. American Mineralogist, 106(5), 830–837. https://doi.org/10.2138/am-2021-7693CCBYNCNDspa
dc.relation.referencesMcDonough, W. F., & Sun, S. s. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4spa
dc.relation.referencesMorimoto, N. (1989). Nomenclature of pyroxenes. Mineralogical Journal, 14(5), 198-221.spa
dc.relation.referencesMurri, M., Mazzucchelli, M. L., Campomenosi, N., Korsakov, A. V., Prencipe, M., Mihailova, B. D., Scambelluri, M., Angel, R. J., & Alvaro, M. (2018). Raman elastic geobarometry for anisotropic mineral inclusions. American Mineralogist, 103(11), 1869–1872. https://doi.org/10.2138/am-2018-6625CCBYspa
dc.relation.referencesNur, A., Jones, D., & Cox, A. (2016). Continental Accretion : From Oceanic Plateaus to Allochthonous Terranes Author ( s ): Z . Ben-Avraham , A . Nur , D . Jones and A . Cox Published by : American Association for the Advancement of Science Stable URL : http://www.jstor.org/stable/1687004 JST. 213(4503), 47–54.spa
dc.relation.referencesPearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1–4), 14–48. https://doi.org/10.1016/j.lithos.2007.06.016spa
dc.relation.referencesPowell, R., Holland, T., & Worley, B. (1998). Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology, 16(4), 577–588. https://doi.org/10.1111/j.1525-1314.1998.00157.xspa
dc.relation.referencesQuinquis, M. T. (2014). A numerical study of subduction zone dynamics using linear viscous to thermo-mechanical model setups including (de) hydration processes.spa
dc.relation.referencesReed, S. J. B. (2000). Quantitative trace analysis by wavelength-dispersive EPMA. Mikrochimica Acta, 132(2–4), 145–151. https://doi.org/10.1007/s006040050055spa
dc.relation.referencesRiel, N., Guillot, S., Jaillard, E., Martelat, J. E., Paquette, J. L., Schwartz, S., Goncalves, P., Duclaux, G., Thebaud, N., Lanari, P., Janots, E., & Yuquilema, J. (2013). Metamorphic and geochronogical study of the Triassic El Oro metamorphic complex, Ecuador: Implications for high-temperature metamorphism in a forearc zone. Lithos, 156–159, 41–68. https://doi.org/10.1016/j.lithos.2012.10.005spa
dc.relation.referencesRiel, Nicolas, Mercier, J., & Weinberg, R. (2016). Convection in a partially molten metasedimentary crust? Insights from the El Oro complex (Ecuador). Geology, 44(1), 31–34. https://doi.org/10.1130/G37208.1spa
dc.relation.referencesRollinson, H., & Pease, V. (2021). Using Geochemical Data. Cambridge University Press. https://doi.org/10.1017/9781108777834spa
dc.relation.referencesSchmidt, C., & Ziemann, M. A. (2000). In-situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. American Mineralogist, 85(11–12), 1725–1734. https://doi.org/10.2138/am-2000-11-1216spa
dc.relation.referencesStern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40(4), 3-1-3–38. https://doi.org/10.1029/2001RG000108spa
dc.relation.referencesSun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society Special Publication, 42(1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19spa
dc.relation.referencesThomas, J. B., & Spear, F. S. (2018). Experimental study of quartz inclusions in garnet at pressures up to 3.0 GPa: evaluating validity of the quartz-in-garnet inclusion elastic thermobarometer. Contributions to Mineralogy and Petrology, 173(5), 1–14. https://doi.org/10.1007/s00410-018-1469-yspa
dc.relation.referencesTomkins, H. S., Powell, R., & Ellis, D. J. (2007). The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology, 25(6), 703–713. https://doi.org/10.1111/j.1525-1314.2007.00724.xspa
dc.relation.referencesTurcotte, D., & Schubert, G. (2014). Geodynamics. Cambridge University Press. https://doi.org/10.1017/CBO9780511843877spa
dc.relation.referencesWhite, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., & Green, E. C. R. (2014). New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3), 261–286. https://doi.org/10.1111/jmg.12071spa
dc.relation.referencesWhitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. https://doi.org/10.2138/am.2010.3371spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.lembGeotectónicaspa
dc.subject.lembGeology, structuraleng
dc.subject.lembFallas (geología)spa
dc.subject.lembFaults (geology)eng
dc.subject.proposalComplejospa
dc.subject.proposalCanal de subducciónspa
dc.subject.proposalMetamorfismospa
dc.subject.proposalMetamorfismo retrógradospa
dc.subject.proposalEclogitasspa
dc.subject.proposalComplexeng
dc.subject.proposalSubduction channeleng
dc.subject.proposalMetamorphismeng
dc.subject.proposalRetrograde metamorphismeng
dc.subject.proposalEclogiteseng
dc.titleEvolución tectónica y metamórfica del complejo raspas (sur oeste de Ecuador)spa
dc.title.translatedMetmorphic and tectonic evolution of raspas complex (southwestern Ecuadoreng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032475459.2023.pdf
Tamaño:
13.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Geología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: