Análisis morfométrico aplicado a la caracterización de actividad tectónica relativa en el dúplex de Ocaña, departamentos de Cesar y Norte de Santander. Aproximación desde la ciencia de datos

dc.contributor.advisorOchoa Gutierrez, Luis Hernanspa
dc.contributor.authorCastellanos Sanchez, Laura Estefaniaspa
dc.coverage.regionCésarspa
dc.coverage.regionNorte de Santanderspa
dc.coverage.temporalColombiaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/7002477
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/7002476
dc.date.accessioned2025-10-31T14:04:48Z
dc.date.available2025-10-31T14:04:48Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractEste estudio caracterizó la actividad tectónica relativa en el dúplex de Ocaña mediante el análisis de índices morfométricos y geomorfológicos, integrando evidencias estructurales desde la perspectiva de la ciencia de datos. Para ello, se calcularon y clasificaron los índices utilizando dos métodos: Jenks – Natural Breaks y clasificación de clústeres, con el objetivo de evaluar sus diferencias y determinar su relación con la geología estructural de la zona. Los resultados se categorizaron en tres niveles de actividad tectónica, donde la categoría 3 representa los valores más altos y la categoría 1 los más bajos. La comparación entre los dos métodos, mediante una matriz de confusión, mostró una similitud del 54 %, indicando una correspondencia moderada. El método Jenks – Natural Breaks presentó una aplicación más sencilla y una adecuada relación con las estructuras del dúplex de Ocaña. Por su parte, la clasificación por clustering, aunque requiere mayor procesamiento, permitió identificar relaciones adicionales entre los índices morfométricos. En particular, se evidenció una relación inversa entre los índices de forma y los de relieve, lo que sugiere que la actividad tectónica influye de manera diferenciada en la morfometría de las cuencas. Su relación con la geología estructural en general también es adecuada. Las cuencas de las quebradas Múcuras, Santa Inés y Los Llanos mostraron un control estructural claro, generado por fallas transversales del dúplex de Ocaña. Por otro lado, el río San Alberto y la quebrada El Páramo, también con marcado control tectónico, están controladas principalmente por el sistema de falla Bucaramanga – El Carmen. Estos hallazgos resaltan la importancia de utilizar enfoques basados en ciencia de datos para el análisis estructural y abren la posibilidad de integrar metodologías que optimicen la interpretación de la actividad tectónica relativa en otras regiones. (Texto tomado de la fuente).spa
dc.description.abstractThis study characterized the relative tectonic activity in the Ocaña duplex through the analysis of morphometric and geomorphological indices, integrating structural evidence from a data science perspective. To achieve this, indices were calculated and classified using two methods: Jenks – Natural Breaks and cluster classification, with the aim of evaluating their differences and determining their relationship with the structural geology of the area. The results were categorized into three levels of tectonic activity, where Category 3 represents the highest values and Category 1 the lowest. A confusion matrix comparison between the two methods showed a 54% similarity, indicating a moderate correspondence. The Jenks – Natural Breaks method proved to be simpler to apply and showed a strong correlation with the structural features of the Ocaña duplex. On the other hand, cluster classification, while requiring more computational processing, allowed for the identification of additional relationships between morphometric indices. In particular, an inverse relationship was observed between shape indices and relief indices, suggesting that tectonic activity influences the morphology of the basins in different ways. Its correlation with structural geology was also found to be appropriate. The basins of the Múcuras, Santa Inés, and Los Llanos streams exhibited clear structural control, primarily influenced by transverse faults within the Ocaña duplex. Meanwhile, the San Alberto River and El Páramo stream, which also exhibit strong tectonic control, are mainly influenced by the Bucaramanga – El Carmen fault system. These findings highlight the importance of data science-based approaches in structural analysis and open the possibility of integrating new methodologies to enhance the interpretation of relative tectonic activity in other regions.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Geologíaspa
dc.description.researchareaCiencia de datosspa
dc.description.researchareaGeomorfologíaspa
dc.format.extentxviii, 87 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89087
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geologíaspa
dc.relation.referencesAdhikari, S. (2020). Morphometric Analysis of a Drainage Basin: A Study of Ghatganga River, Bajhang District, Nepal. The Geographic Base, 7, 127–144. https://doi.org/10.3126/tgb.v7i0.34280
dc.relation.referencesAhmed, F., & Rao, K. S. (2015). Prioritization of Sub-watersheds based on Morphometric Analysis using Remote Sensing and Geographic Information System Techniques. International Journal of Remote Sensing and GIS, 4(2), 51–65. www.rpublishing.org
dc.relation.referencesAmazon AWS. (2023). ¿Qué es la ciencia de datos? - Explicación de la ciencia de datos - AWS. https://aws.amazon.com/es/what-is/data-science/
dc.relation.referencesAmirruddin, A. D., Muharam, F. M., Ismail, M. H., Ismail, M. F., Tan, N. P., & Karam, D. S. (2020). Hyperspectral remote sensing for assessment of chlorophyll sufficiency levels in mature oil palm (Elaeis guineensis) based on frond numbers: Analysis of decision tree and random forest. Computers and Electronics in Agriculture, 169. https://doi.org/10.1016/j.compag.2020.105221
dc.relation.referencesAnand, A. K., & Pradhan, S. P. (2019). Assessment of active tectonics from geomorphic indices and morphometric parameters in part of Ganga basin. Journal of Mountain Science, 16(8), 1943–1961. https://doi.org/10.1007/s11629-018-5172-2
dc.relation.referencesAnders, N. S., Seijmonsbergen, A. C., & Bouten, W. (2009). Multi-scale and object-oriented image analysis of high-res LiDAR data for geomorphological mapping in Alpine mountains. Proceedings of Geomorphometry. https://www.researchgate.net/publication/242148293
dc.relation.referencesArias, A., & Morales, C. (1997). Geología del Departamento de Cesar
dc.relation.referencesAvinash, K., Deepika, B., & Jayappa, K. S. (2014). Basin geomorphology and drainage morphometry parameters used as indicators for groundwater prospect: Insight from geographical information system (GIS) technique. Journal of Earth Science, 25(6), 1018–1032. https://doi.org/10.1007/s12583-014-0505-8
dc.relation.referencesBates, R. L., & Jackson, J. A. (1980). Glossary of Geology. American Geological Institute.
dc.relation.referencesBeltran Calvo, M. Z., & Romero Mahecha, M. L. (1992). ANALISIS GEOMETRICO DE LAS ESTRUCTURAS PRINCIPALES QUE ENMARCAN LA PARTE NORTE DEL VALLE MEDIO DEL MAGDALENA CON ENFASIS EN EL ANTICLINAL DE LA TIGRA. Universidad Nacional de Colombia.
dc.relation.referencesCastilla, A. P., Contreras Osses, M. C., & Corral Calleja, I. (2024). Conjugate Riedel shears in a volcanic caldera: the case of the Laguna del Maule Volcanic Complex, Central Chile. Andean Geology, 51(3), 460–474. https://doi.org/10.5027/andgeov51n3-3669
dc.relation.referencesChiba, T., Kaneta, S.-I., & Suzuki, Y. (2008). RED RELIEF IMAGE MAP 1 : NEW VISUALIZATION METHOD FOR THREE DIMENSIONAL DATA. Remote Sensing and Spatial Information Sciences, XXXVII(B2).
dc.relation.referencesClavijo, J., Barbosa, G., Camacho, J. A., Bernal, L. E., Royero, J. M., & Castro, E. (1992). Geología de la Plancha 75 Aguachica.
dc.relation.referencesClavijo Torres, J. (1997). MAPA GEOLÓGICO GENERALIZADO DEL DEPARTAMENTO DE NORTE DE SANTANDER.
dc.relation.referencesCooke, M. L., Schottenfeld, M. T., & Buchanan, S. W. (2013). Evolution of fault efficiency at restraining bends within wet kaolin analog experiments. Journal of Structural Geology, 51, 180–192. https://doi.org/10.1016/j.jsg.2013.01.010
dc.relation.referencesDaconte, R., & Salinas, R. (1980). Geología de la Plancha 76 Ocaña
dc.relation.referencesDar, R. A., Romshoo, S. A., Chandra, R., & Ahmad, I. (2014). Tectono-geomorphic study of the Karewa Basin of Kashmir Valley. Journal of Asian Earth Sciences, 92, 143–156. https://doi.org/10.1016/j.jseaes.2014.06.018
dc.relation.referencesDaxer, C. (2020). Topographic Openness Maps and Red Relief Image Maps in QGIS Lacustrine paleoseismology in Carinthia (Austria) and improved seismic intensity assessment based on lake sediments View project Beyond Lake Villages View project. https://doi.org/10.13140/RG.2.2.18958.31047
dc.relation.referencesDiederix, H., Bohórquez, O. P., Mora–Páez, H., Peláez, J. R., Cardona, L., Corchuelo, Y., Ramírez, J., & Díaz–Mila, F. (2020). Quaternary Activity of the Bucaramanga Fault in the Departments of Santander and Cesar. In A. O. Gómez, J. & Pinilla–Pachon (Ed.), The Geology of Colombia (Vol. 4, pp. 453–477). Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38. https://doi.org/https://doi.org/10.32685/pub.esp.38.2019.13
dc.relation.referencesDiederix, H., Hernández, C., Torres, E., Osorio, J. A., & Botero, P. (2009). RESULTADOS PRELIMINARES DEL PRIMER ESTUDIO PALEOSISMOLÓGICO A LO LARGO DE LA FALLA DE BUCARAMANGA, COLOMBIA. I+D, 9(2), 18–23.
dc.relation.referencesEl Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J., & Keller, E. A. (2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, 96(1–2), 150–173. https://doi.org/10.1016/j.geomorph.2007.08.004
dc.relation.referencesGautam, P. K., Kumar, D., Singh, A. K., & Singh, D. S. (2023). Drainage Network Analysis and Tectonics Interference of the Reth River, Central Ganga Plain (India) Using Geospatial Technology. Geotectonics. https://doi.org/10.1134/S0016852123030032
dc.relation.referencesGautam, P. K., & Singh, A. K. (2023). Evaluation of Active Tectonic Features of Nandakini River Basin, Lesser Himalaya, India by Using Morphometric Indices: A GIS Approach. Advances in Environmental and Engineering Research, 04(01), 1–24. https://doi.org/10.21926/aeer.2301014
dc.relation.referencesGonzález Pacheco, D. A. (2018). Cartografía y Análisis Estructural de las Tectonitas Asociadas a la Falla El Carmen, en el Segmento El Arado –La Sabana, municipio de Rio de Oro, Cesar. Universidad Industrial de Santander.
dc.relation.referencesGupta, L., Agrawal, N., Dixit, J., & Dutta, S. (2022). A GIS-based assessment of active tectonics from morphometric parameters and geomorphic indices of Assam Region, India. Journal of Asian Earth Sciences: X, 8(July 2021). https://doi.org/10.1016/j.jaesx.2022.100115
dc.relation.referencesHack, J. T. (1973). STREAM-PROFILE ANALYSIS AND STREAM-GRADIENT INDEX. Journal Research of United States Geological Survey, 1(4), 421–429.
dc.relation.referencesHan, J., Pei, J., & Tong, H. (2023). Data Mining: Concepts and Techniques.
dc.relation.referencesHan, Z., Wu, L., Ran, Y., & Ye, Y. (2003). The concealed active tectonics and their characteristics as revealed by drainage density in the North China plain (NCP). Journal of Asian Earth Sciences, 21(9), 989–998. https://doi.org/10.1016/S1367-9120(02)00175-X
dc.relation.referencesHarvey, A. M. (2022). Introducing geomorphology : a guide to landforms and processes (Second edition). Dunedin Academic Press Ltd.
dc.relation.referencesHorton, R. E. (1945). Erosional development of streams and their drainage basins, hydrophysical approach to quantitative morphology. BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA, 56, 275–370. https://doi.org/10.1130/0016-7606(1945)56
dc.relation.referencesIzenman, A. J. (2008). Modern Multivariate Statistical Techniques. Springer New York. https://doi.org/10.1007/978-0-387-78189-1
dc.relation.referencesJenks, G. F. (1967). The Data Model Concept in Statistical Mapping. International Yearbook of Cartography, 7, 186–190.
dc.relation.referencesKeller, E. A., & Pinter, N. (2002). Active Tectonics Earthquakes, Uplift, and Landscape (Second). Prentice Hall. https://doi.org/10.2113/gseegeosci.iii.3.463
dc.relation.referencesLiem, N. Van, Dat, N. P., Dieu, B. T., Phai, V. Van, Trinh, P. T., Vinh, H. Q., & Phong, T. Van. (2016). ASSESSMENT OF GEOMORPHIC PROCESSES AND ACTIVE TECTONICS IN CON VOI MOUNTAIN RANGE AREA (NORTHERN VIETNAM) USING THE HYPSOMETRIC CURVE ANALYSIS METHOD. VIETNAM JOURNAL OF EARTH SCIENCES, 38(2). https://doi.org/10.15625/0866-7187/38/2/8602
dc.relation.referencesMagesh, N. S., Jitheshlal, K. V., Chandrasekar, N., & Jini, K. V. (2012). GIS based morphometric evaluation of Chimmini and Mupily watersheds, parts of Western Ghats, Thrissur District, Kerala, India. Earth Science Informatics, 5(2), 111–121. https://doi.org/10.1007/s12145-012-0101-3
dc.relation.referencesMengjia, Z., Guangzeng, W., Sanzhong, L., Yongjiang, L., Pengcheng, W., Lingli, G., Li, Z., Xingpeng, C., & Taihai, S. (2024). An overview of structures associated with bends of strike-slip faults: Focus on analogue and numerical models. In Marine and Petroleum Geology (Vol. 167). Elsevier Ltd. https://doi.org/10.1016/j.marpetgeo.2024.106983
dc.relation.referencesMerriam-Webster. (2023). Classification Definition & Meaning - Merriam-Webster. https://www.merriam-webster.com/dictionary/classification
dc.relation.referencesOsorio Naranjo, J. A., Hernández Moreno, C., Torres Jaimes, E. M., & Botero Santa, P. A. (2008). MODELO GEODINÁMICO DEL MACIZO DE SANTANDER.
dc.relation.referencesPage, W. D. (1986). GEOLOGIA SISMICA Y SISMICIDAD DEL NOROESTE DE COLOMBIA.
dc.relation.referencesParis, G., Machette, M. N., Dart, R. L., & Haller, K. M. (2000). Map and Database of Quaternary Faults and Folds in Colombia and its Offshore Regions Open-File Report 00-0284 MAP AND DATABASE OF QUATERNARY FAULTS AND FOLDS IN COLOMBIA AND ITS OFFSHORE REGIONS A project of the International Lithosphere Program Task Group II-2, Major Active Faults of the World.
dc.relation.referencesParís, G., & Romero, J. A. (1994). FALLAS ACTIVAS EN COLOMBIA. BOLETIN GEOLOGICO, 34(2–3), 3–25.
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830. http://scikit-learn.sourceforge.net.
dc.relation.referencesPiacentini, D., Troiani, F., Servizi, T., Nesci, O., & Veneri, F. (2020). SLIX: A GIS toolbox to support along‐stream knickzones detection through the computation and mapping of the stream length‐gradient (SL) index. ISPRS International Journal of Geo-Information, 9(2). https://doi.org/10.3390/ijgi9020069
dc.relation.referencesPrabhakaran, A., & Jawahar Raj, N. (2018). Drainage morphometric analysis for assessing form and processes of the watersheds of Pachamalai hills and its adjoinings, Central Tamil Nadu, India. Applied Water Science, 8(1). https://doi.org/10.1007/s13201-018-0646-5
dc.relation.referencesRóżycka, M., & Migoń, P. (2021). Morphometric properties of river basins as indicators of relative tectonic activity – Problems of data handling and interpretation. Geomorphology, 389. https://doi.org/10.1016/j.geomorph.2021.107807
dc.relation.referencesSimovici, D. A. (2022). CLUSTERING Theoretical and Practical Aspects. World Scientific Publishing Co. Pte. Ltd.
dc.relation.referencesSingh, P., Singh, N., Singh, K. K., & Singh, A. (2021). Chapter 5 - Diagnosing of disease using machine learning. In K. K. Singh, M. Elhoseny, A. Singh, & A. A. Elngar (Eds.), Machine Learning and the Internet of Medical Things in Healthcare (pp. 89–111). Academic Press.
dc.relation.referencesStrahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America, 63(11), 1117–1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
dc.relation.referencesSukristiyanti, S., Maria, R., & Lestiana, H. (2018). Watershed-based Morphometric Analysis: A Review. IOP Conference Series: Earth and Environmental Science, 118(1). https://doi.org/10.1088/1755-1315/118/1/012028
dc.relation.referencesVargas, R., & Arias, A. (1981a). Geología de la Plancha 86 Ábrego.
dc.relation.referencesVargas, R., & Arias, A. (1981b). Geología de la Plancha 97 Cáchira
dc.relation.referencesVelandia Patiño, F. A. (2017). Cinemática de las fallas mayores del Macizo de Santander-énfasis en el modelo estructural y temporalidad al sur de la Falla de Bucaramanga. Universidad Nacional de Colombia.
dc.relation.referencesWakabayashi, J. (2007). Stepovers that migrate with respect to affected deposits: Field characteristics and speculation on some details of their evolution. Geological Society Special Publication, 290, 169–188. https://doi.org/10.1144/SP290.4
dc.relation.referencesWoodcock, N. H., & Fischer, M. (1986). Strike-slip duplexes. In Journal of Structural Geology (Vol. 8, Issue 7).
dc.relation.referencesYokoyama, R., Shirasawa, M., & Pike, R. J. (2002). Visualizing topography by openness: a new application of image processing to digital elevation models. Photogrammetric Engineering and Remote Sensing, 68(3), 257–266.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.subject.proposalActividad tectónica relativaspa
dc.subject.proposalCiencia de datosspa
dc.subject.proposalDúplex de Ocañaspa
dc.subject.proposalRelative tectonic activityeng
dc.subject.proposalData scienceeng
dc.subject.proposalOcaña duplexeng
dc.subject.unescoAnálisis de datosspa
dc.subject.unescoData analysiseng
dc.subject.unescoGeomorfologíaspa
dc.subject.unescoGeomorphologyeng
dc.subject.unescoTectónicaspa
dc.subject.unescoTectonicseng
dc.subject.unescoSismicidadspa
dc.subject.unescoSeismicityeng
dc.titleAnálisis morfométrico aplicado a la caracterización de actividad tectónica relativa en el dúplex de Ocaña, departamentos de Cesar y Norte de Santander. Aproximación desde la ciencia de datosspa
dc.title.translatedMorphometric analysis applied to the characterization of relative tectonic activity in the Ocaña duplex, Cesar and Norte de Santander departments. A data science approacheng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
documento_tesis_2025_mod_sep_2025_3.pdf
Tamaño:
9.84 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Geología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: