Efecto de fuentes de calcio en parámetros fisiológicos y rendimiento de papa (Solanum tuberosum L., grupo Phureja) en condiciones de déficit hídrico

dc.contributor.advisorMoreno Fonseca, Liz Patriciaspa
dc.contributor.advisorRodriguez Molano, Luis Ernestospa
dc.contributor.authorCárdenas Pira, Wendy Tatianaspa
dc.contributor.researchgroupFisiología y Estrés Abiótico en Plantasspa
dc.date.accessioned2021-01-14T20:23:55Zspa
dc.date.available2021-01-14T20:23:55Zspa
dc.date.issued2020-11-05spa
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractCon la variabilidad climática se espera un aumento en la ocurrencia de sequías, que disminuyen significativamente el rendimiento del cultivo de papa, por lo cual es necesario generar estrategias para mitigar los efectos del déficit hídrico. El objetivo de este trabajo fue evaluar el efecto de la aplicación de calcio (Ca) en las respuestas fisiológicas y rendimiento de Solanum tuberosum L. grupo Phureja cultivar Criolla Colombia en déficit hídrico. Se realizaron dos ensayos bajo invernadero en la Universidad Nacional de Colombia (Bogotá). En el primero, entre los 44 y 54 días después de siembra (dds), se realizaron aplicaciones de Ca de forma edáfica (E): CaCl2 (3 g planta-1), CaCl2 (4,5 g planta-1), Ca(NO3)2 (4,5 g planta-1), Ca(NO3)2 (7 g planta-1), Ca(NO3)2+B (6 g planta-1) y Ca(NO3)2+B (9 g planta-1), y foliar (F): CaCl2 (10 mM planta-1), CaCl2 (20 mM planta-1), Ca(NO3)2 (10 mMplanta-1) y Ca(NO3)2 (20 mM planta-1). 55 dds las plantas se sometieron a riego continuo (BR) y déficit hídrico durante siete días (DH). DH redujo el contenido relativo de agua (CRA, 22,1%) y el rendimiento de tubérculo (RT, 26,7%), mientras que aumentó la pérdida de electrolitos (PE, 97,3%). Se observó una rápida recuperación al estrés tras la rehidratación y mitigación con aplicaciones de CaCl2–20-F-DH, CaCl2–4,5-E-DH y Ca(NO3)2–7-E-DH, presentando menor PE (<21,2%), mayor CRA (>12,6%) y RT (>15,6%), respecto a DH. En el segundo ensayo, entre los 34 y 44 dds se realizaron aplicaciones edáficas (E) de CaO (2,4 g planta-1), CaCl2 (4,5 g planta-1) y Ca(NO3)2 (7 g planta-1), y foliares (F) de Gluconato de Ca (4,6 cm3L-1), CaCl2 (20 mM planta-1) y Ca(NO3)2 (20 mM planta-1). 45 dds se sometieron a BR y DH por diez días. DH redujo el CRA (30,4%) y la conductancia estomática (CE, 89,1%), incrementó la PE (40,3%) y disminuyó el RT (44,3%). Las plantas con CaCl2–4,5-E-DH, CaCl2–20-F-DH y Ca(NO3)2–20-F-DH presentaron rendimientos e índices de tolerancia similares a las plantas BR. CaCl2–4,5-E-DH presentó mejor respuesta en las variables evaluadas con menor PE (25,2%), mayor CRA (10,5%) y RT (30,5%), respecto a DH. Las aplicaciones de CaCl2–20- F-DH, CaCl2–4,5-E-DH, Ca(NO3)2–20-F-DH y Ca(NO3)2–7-E-DH, mitigaron los efectos del déficit hídrico en papa, lo que puede estar relacionado con las funciones del Ca en el metabolismo celular, a través de la mejora del estado hídrico foliar, la estabilidad de las membranas celulares y la conductancia estomática, aumentando así el rendimiento. (Texto tomado de la fuente).spa
dc.description.abstractChanges in weather patterns lead to an increase in drought occurrence, which reduces tuber yield in potato. Therefore, it is necessary to generate new alternatives for mitigating the water deficit effects on potato plants. The objective of this work was to assess the impact of calcium (Ca) sources applications on physiological and yield parameters under water deficit in Solanum tuberosum L. Phureja Group cultivar Criolla Colombia. Two research works were conducted in a greenhouse located in Universidad Nacional de Colombia (Bogotá). In the first test, 44 and 54 days after sowing (das), calcium was applied in edaphic (E) sources: CaCl2 (3 g plant-1), CaCl2 (4.5 g plant-1), Ca(NO3)2 (4.5 g plant-1), Ca(NO3)2 (7 g plant-1), Ca(NO3)2+B (6 g plant-1) and Ca(NO3)2+B (9 g plant-1); and foliar (F): CaCl2 (10 mM plant-1), CaCl2 (20 mM plant-1), Ca(NO3)2 (10 mM plant-1) y Ca(NO3)2 (20 mM plant-1). Fifty-five das the plants were subjected to two water regimes: Well-Watered (WW), and Water Deficit (WD), under irrigation suspension for seven days. WD reduced the relative water content (RWC, 22.1%) and tuber yield (TY, 26.7%); meanwhile, electrolyte leakage increased (EL, 97.3%). Recovery was observed in DH treatments after rewatering. Stress mitigation was reported with CaCl2–20-F-DH, CaCl2–4.5-E-DH, and Ca(NO3)2–7-E-DH applications. It presented lower EL (<21.2%), higher RWC (>12.6%), and higher TY (>15.6%), compared to WD plants. In the second test, between 34 and 44 das, calcium was applied in edaphic (E) sources: CaO (2.4 g plant-1), CaCl2 (4.5 g plant-1), and Ca(NO3)2 (7 g plant-1), and foliar (F): Ca gluconate (4.6 cm3 L-1), CaCl2 (20 mM plant-1) and Ca(NO3)2 (20 mM plant-1). Forty-five das, the plants were subjected to WW and WD for ten days. WD reduced RWC (30.4%) and stomatal conductance (gs, 89.1%); electrolyte leakage increased (40.3%), and TY decreased (55.3%), compared to plants WW. Plants with CaCl2–4.5-E-DH, CaCl2–20-F-DH, and Ca(NO3)2–20-F-DH presented TY and stress tolerance index similar to BR. CaCl2–4.5-E-DH had the best effect with lower EL (25.2%), higher RWC (10.5%), and TY (30.5%), compared to WD plants. CaCl2–20- F-DH, CaCl2–4.5-E-DH, Ca(NO3)2–20-F-DH and Ca(NO3)2–7-E-DH, mitigated the effects of water deficit in potato. These responses can be related to the Ca effect on cellular metabolism, which increased yield, as it improves leaf water status, membrane integrity, and stomatal conductance.eng
dc.description.curricularareaCiencias Agronómicasspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.format.extentxix, 99 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78743
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAhmadi, S., Andersen, M., Flauborg, F., Poulsen, R., Jensen, C., Sepaskhak, A., Hansen, S. 2010. Effects of irrigation strategies and soils on field-grown potatoes: gas exchange and xylem ABA. Agricultural Water Management. 97(10): 1486–1494. DOI: https://doi.org/10.1016/j.agwat.2010.05.002spa
dc.relation.referencesAriza, W. 2017. Respuestas fisiológicas, bioquímicas y rendimiento en tres variedades de papa criolla (Solanum tuberosum grupo Phureja) en déficit hídrico. Tesis de Maestría. Universidad Nacional de Colombia. Bogotá, Colombia. 72 pp.spa
dc.relation.referencesAriza, W., Rodriguez, L., Moreno-Echeverry, D., Guerrero, C., Moreno, L. 2020. Effect of wáter deficit on some physiological and bichemical responses of the yellow dipoloid potato (Solanum tuberosum L. Griup Phureja). Agronomía Colombiana. 38(1): 48. DOI: 10.15446/agron.colomb.v38n1.78982spa
dc.relation.referencesAshraf, M., Akram, N., Al-Qurainy, F., Foolad, M. 2011. Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Advances in Agronomy. 111: 249–296. DOI: https://doi.org/10.1016/B978-0-12-387689-8.00002-3spa
dc.relation.referencesAtif, R., Shahid, L., Waqas, M., Ali, B., Rehman, M., Azeem, F., Nawaz, M., Wani, S., Chung, G. 2019. Insights on calcium-dependent protein kinases (CPKs) signaling for abiotic stress tolerance in plants. International Journal of Molecular Sciences. 20: 5298. DOI: 10.3390/ijms20215298spa
dc.relation.referencesBanerjee, A., Roychoudhury, A. 2018. Abiotic Stress, Generation of Reactive Oxygen Species, and Their Consequences: An Overview. En: Singh, V., Singh, S., Tripathi, D., Prasad, S., Chauhan, D. Reactive Oxygen Species in Plants. Primera Edición. Pondicherry, India. 339 pp.spa
dc.relation.referencesBarragán, J. 2019. Descripción y análisis del abastecimiento en las principales centrales de abastos del país. Revista Papa. 49: 44-48.spa
dc.relation.referencesBasu, S., Ramegowda, V., Kumar, A., Pereira, A. 2016. Plant adaptation to drought stress. [version 1; referees: 3 approved] F1000Research 2016, 5(F1000 Faculty Rev):1554. DOI: 10.12688/f1000research.7678.1spa
dc.relation.referencesBenam, K., Hassanpanah, D. 2007. Evaluation of different potato cultivars at different irrigation periods and different drought stages. Acta Horticulture. 729: 183–188. DOI: https://doi.org/10.17660/ActaHortic.2007.729.28spa
dc.relation.referencesCabello, R., De Mendiburu, F., Bonierbale, M., Monneveux, P., Roca, W., Chujoy, E. 2012. Large-Scale Evaluation of Potato Improved Varieties, Genetic Stocks and Landraces for Drought Tolerance. American Journal of Potato Research. 89(5): 400-410. DOI: https://doi.org/10.1007/s12230-012- 9260-5spa
dc.relation.referencesCámara de Comercio de Bogotá. 2015. Manual Papa. Programa de apoyo agrícola y agroindustrial. 53 pp.spa
dc.relation.referencesDeblonde, K., Ledent, F. 2001. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. European Journal of Agronomy. 14:31–41. DOI: 10.1016/S1161-0301(00)00081-2spa
dc.relation.referencesFAOSTAT. 2018. Food and Agriculture Organization of United Nations. Consultado: 16 de abril de 2020, en: http://www.fao.org/faostat/es/#data/QCspa
dc.relation.referencesHassanpanah, D. 2009. Effects of water deficit and potassium humate on tuber yield and yield component of potato cultivars in Ardabil region, Iran. Research Journal of Environmental Sciences. 3: 351−356. DOI: 10.3923/rjes.2009.351.356spa
dc.relation.referencesHeidari, M., Amirfazli, N., Ghorbani, H., Zafarian, F. 2019. Calcium chloride and drought stress changed grain yield and physiological traits in sesame (Sesamum indicum L.). Scientia Agriculturae Bohemica. 50(4): 211–218. DOI: 10.2478/sab-2019-0029spa
dc.relation.referencesHijmans, R. 2003. The effect of climate change on global potato production. American Journal of Potato Research. 80: 271–279. DOI: https://doi.org/10.1007/BF02855363spa
dc.relation.referencesHosseini, S., Réthoré, E., Pluchon, S., Ali, N., Billiot, B., Yvin, J. 2019. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. International Journal of Molecular Sciences. 20: 3777. DOI: 10.3390/ijms20153777spa
dc.relation.referencesJędrzejuk, A., Łukaszewska, A., Pacholczak, A. 2016. Effects of CaCl2 solutions to alleviate drought stress effects in potted ornamentals Salvia splendens and Ageratum houstonianum. Acta Agrobot. 69(3): 1-11. DOI: http://dx.doi.org/10.5586/ aa.1686spa
dc.relation.referencesJefferies, R. 1993. Use of a simulation model to assess possible strategies of drought tolerance in potato (Solanum tuberosum L.). Agricultural Systems. 41: 93–104. DOI: https://doi.org/10.1016/0308-521X(93)90083-Espa
dc.relation.referencesKaczmarek, M., Fedorowicz-Stronska, O., Głowacka, K., Waskiewicz, A., Sadowski, J., 2017. CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiologiae Plantarum. 39: 41. DOI: 10.1007/s11738-016-2336-yspa
dc.relation.referencesKoch, M., Naumann, M., Pawelzik, E., Gransee, A., Thiel, K. 2019. The importance of nutrient management for potato production part I: plant nutrition and yield. Potato Research. 63: 97-119. DOI: https://doi.org/10.1007/s11540-019-09431-2spa
dc.relation.referencesLahlou, O., Ouattar, S., Ledent, J.-F. 2003. The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie. 23(3): 257-268. DOI: https://doi.org/10.1051/agro:2002089spa
dc.relation.referencesLi, Z., Tan, X.F., Lu, K., Liu, Z.M., Wu, L.L., 2017. The effect of CaCl2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Photosynthetica. 55(3): 553-560. DOI: 10.1007/s11099-016-0676-xspa
dc.relation.referencesLobato, C., Olivieri, P., Altamiranda, G., Wolski, A., Daleo, R. et al. 2008. Phosphite compounds reduce disease severity in potato seed tubers and foliage. European Journal of Plant Pathology. 122: 349-358. DOI: 10.1007/s10658-008-9299-9spa
dc.relation.referencesMa, S.-Y., Wu, W.-H. 2007. AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Molecular Biology. 65(4): 511–518. DOI: 10.1007/s11103-007-9187-2spa
dc.relation.referencesMahmud, A., Hossain, M., Zakari, M., Khalaque, M., Karim, M. 2015. Effects of water stress on plant canopy, yield attributes and yield of potato. Kasetsart J. (Nat. Sci.). 49: 491-505.spa
dc.relation.referencesMonneveux, P., Ramírez, A., Pino, M. 2013. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals?. Plant Science. 205–206: 76–86. DOI: 10.1016/j.plantsci.2013.01.011spa
dc.relation.referencesMoreno, D. 2017. Respuesta fisiológica y bioquímica de cuatro variedades de papa criolla (Solanum tuberosum L. Grupo Phureja) a condiciones de sequía. Tesis de Maestría. Universidad Nacional de Colombia. Bogotá, Colombia. 73 pp.spa
dc.relation.referencesNaeem, M., Naeem, M.S., Ahmad, R., Ihsan, M. Z., Yasin, M., Hussain, Y., Fahd, S., 2018. Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity. Archives of Agronomy and Soil Science. 64(1): 116-131. DOI: 10.1080/03650340.2017.1327713spa
dc.relation.referencesNaumann, M., Koch, M., Pawelzik, E., Gransee, A., Thiel, H. 2019. The Importance of Nutrient Management for Potato Production Part II: Plant Nutrition and Tuber Quality. Potato Research. 63: 121–137. DOI: https://doi.org/10.1007/s11540-019-09431-2spa
dc.relation.referencesNayyar, H., Kaushal, S.K., 2002. Alleviation of negative effects of water stress in two contrasting wheat genotypes by calcium and abscisic acid. Biologia plantarum. 45: 65–70. DOI: https://doi.org/10.1023/A:1015132019686spa
dc.relation.referencesNayyar, H., 2003. Accumulation of osmolytes and osmotic adjustment in waterstressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environmental and Experimental Botany. 50: 253-264. DOI: 10.1016/s0098-8472(03)00038-8spa
dc.relation.referencesNgadze, E., Countibo, T., Icishahayo, D., van der Waals, J. 2014. Effect of calcium soil amendments on phenolic compounds and soft rot resistance in potato tubers. Crop Protection. 62: 40-45. DOI: http://dx.doi.org/10.1016/j.cropro.2014.04.009spa
dc.relation.referencesNgadze, E. 2018. Calcium soil amendment increases resistance of potato to blackleg and soft rot pathogens. African Journal of Food, Agriculture, Nutrition and Development. 18(1): 12976-12991. DOI: 10.18697/ajfand.81.16220spa
dc.relation.referencesObidiegwu, J., Bryan, G., Jones, H., Prashar, A. 2015. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Frontiers in plant science. 6: 1-23. DOI: https://doi.org/10.3389/fpls.2015.00542spa
dc.relation.referencesOzgen, S., Palta, J. 2004. Supplemental calcium application influences potato tuber number and size. HortScience. 40(1): 102-105. DOI: 10.21273/HORTSCI.40.1.102spa
dc.relation.referencesPorter, G., Opena, G., Bradbury, W., McBurnie, J., Sisson, J. 1999. Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agronomy Journal. 91: 416-425. DOI: 10.2134/agronj1999.00021962009 100030010xspa
dc.relation.referencesRamírez, A., Yactayo, W., Rens, R., Rolando, L., Palacios, S., Mendiburu, F. de., Mares, V., Barreda, C., Loayza, H., Monneveux, P., Zotarelli, L., Khan, A., Quiroz, R. 2016. Defining biological thresholds associated to plant water status for monitoring water restriction effects: Stomatal conductance and photosynthesis recovery as key indicators in potato. Agricultural Water Management. 177: 369-378. DOI: http://dx.doi.org/10.1016/j.agwat.2016.08.028spa
dc.relation.referencesRodríguez, L., Ñústez, E., Estrada, N. 2009. Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana. 27(3): 289-303.spa
dc.relation.referencesRodríguez-Pérez, L., Ñústez, C., Moreno, L. 2017. Drought stress affects physiological parameters but not tuber yield in three Andean potato (Solanum tuberosum L.) cultivars. Agronomía Colombiana. 35(2): 158-170. DOI: 10.15446/agron.colomb.v35n2.65901spa
dc.relation.referencesSabry, N., AbdElhady, S. 2015. Calcium and potassium fertilization may enhance potato yield and quality. sabryMiddle East Journal of Agriculture Research. 4(4): 991-998.spa
dc.relation.referencesSchapire, A., Valpuesta, V., Botella, M. 2009. Plasma membrane repair in plants. Trends Plant Sci. 14: 645–652. DOI: https://doi.org/10.1016/j.tplants.2009.09.004spa
dc.relation.referencesSeifu, Y., Deneke, S. 2017. Effect of calcium chloride and calcium nitrate on potato (Solanum tuberosum L.) growth and yield. Journal of Horticulture. DOI: 10.4172/2376-0354.1000207spa
dc.relation.referencesSharma, P., Bhushan, A., Shnaker, R., Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. DOI: http://dx.doi.org/10.1155/2012/217037spa
dc.relation.referencesSong, Y., Roe, H. 2008. The role and regulation of Trxl, a cytosolic thioredoxin in Schizosaccharomyces pombe. The Journal of Microbiology. 46: 408–414. DOI: 10.1007/s12275-008-0076-4spa
dc.relation.referencesTourneux, C., Devaux, A., Camacho, R., Mamani, P., Ledent, J.-F. 2003. Effect of water shortage on six potato genotypes in the highlands of Bolivia (II): water relations, physiological parameters. Agronomie. 23(2): 181-190. DOI: https://doi.org/10.1051/agro:2002080spa
dc.relation.referencesUpadhyaya, H., Kumar, S., Kumar, B. 2011. CaCl2 improves post-drought recovery potential in Camellia sinensis (L) O. Kuntze. Plant Cell Reports. 30: 495–503. DOI: 10.1007/s00299-010-0958-xspa
dc.relation.referencesWaddell, T., Gupta, C., Moncrief, F., Rosen, J., Steele, D. 1999. Irrigation and nitrogen management effects on potato yield, tuber quality, and nitrogen uptake. Agronomy Journal. 91: 991–997.spa
dc.relation.referencesWang, F-X., Kang, Y., Liu, S-P., Hou, X-Y. 2007. Effects of soil matric potential on potato growth under drip irrigation in the North China Plain. Agricultural water management. 88: 34-42. DOI: 10.1016/j.agwat.2006.08.006spa
dc.relation.referencesWang, X., Lv, S., Han, X., Guan, X., Shi, X., Kang, J., Zhang, L., Cao, B., Li, C., Wang, G. 2019. The calcium-dependent protein kinase CPK33 mediates strigolactone-induced stomatal closure in Arabidopsis thaliana. Frontiers in Plant Science. 10: 1630. DOI: 10.3389/fpls.2019.01630spa
dc.relation.referencesXu, C., Li, X., Zhang, L., 2013. The effect of calcium chloride on growth, photosynthesis, and antioxidant responces of Zoysia japonica under drought conditions. PLOS One. 8(7): e68214. DOI: https://doi.org/10.1371/journal.pone.0068214spa
dc.relation.referencesZingaretti, M., Inacio, C., Pereira, M., Paz, A., Franca, C. 2013. Water stress and agriculture responses of organisms to water stress (pp. 151–179). Rijeka: InTech.spa
dc.relation.referencesAbdel-Basset, R. 1998. Calcium channels and membrane disorders induced by drought stress in Vicia faba plants supplemented with calcium. Acta Physiologiae Plantarum. 20(2):149–153. DOI: http://dx.doi.org/10.1007/s11738-998-0006-4spa
dc.relation.referencesAbou El-Yazied A. 2011. Foliar application of glycine betaine and chelated calcium improves seed production and quality of common bean (Phaseolus vulgaris L.) under water stress conditions. Research Journal of Biological Sciences. 7: 357–370.spa
dc.relation.referencesAhanger, M., Morad-Talab, N., Abd-Allah, E., Ahmad, P., Hajiboland, R. 2016. Plant growth under drought stress: significance of mineral nutrients. pp: 649-688. In: Ahmad, P. 2016. Water stress and crop plants: a sustainable approach. DOI: https://doi.org/10.1002/9781119054450.ch37spa
dc.relation.referencesAllen, G., Chu, S., Schumacher, K., Shimazaki, C., Vafeados, D., Kemper, A., Hawke, S., Tallman, G., Tsien, R., Harper, J., Chory, J., Schoreder, J. 2000. Alteration of stimulus-specic guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science. 289: 2338-2342. DOI: https://doi.org/10.1126/science.289.5488.2338spa
dc.relation.referencesAllen, G., Chu, P., Harrington, C., Schumacher, K., Hoffmann, T., Tang, Y., Grill, E., Schroeder, J. 2001. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature. 411: 1053-1057. DOI: https://doi-org.ezproxy.unal.edu.co/10.1038/35082575spa
dc.relation.referencesAmede, T., Schubert, S., Stahr K. 2003. Mechanisms of drought resistance in grain legumes I: osmotic adjustment. Ethiopian Journal of Science. 26: 37–46. DOI: 10.4314/sinet.v26i1.18198spa
dc.relation.referencesAndjelkovic, V. 2018. Introductory Chapter: Climate Changes and Abiotic Stress. En: Plants, Plant, Abiotic Stress and Responses to Climate Change. IntechOpen. DOI: 10.5772/intechopen.76102. Available from: https: //www.intechopen.com/books/plant-abioticstress-and-responses-to-climate-change/introductory-chapterclimate-changes-and-abiotic-stress-in-plantsspa
dc.relation.referencesArshi, A., Abdin, Z., Iqbal, M. 2006. Effect of CaCl2 on growth performance, photosynthetic efficiency and nitrogen assimilation of Cichorium intybus L. grown under NaCl stress. Acta Physiologiae Plantarum. 28: 137-147. DOI: 10.1007/s11738-006-0040-z.spa
dc.relation.referencesBartels. D., Ramanjulu, S. 2005. Drought and salt tolerance in plants. Plant Sciences. 24: 23-58. DOI: https://doi.org/10.1080/07352680590910410spa
dc.relation.referencesBerkowitz, G., Zhang, X., Mercier, R., Leng, Q., Lawton, M., 2000. Co-expression of calcium-dependent protein kinase with the inward rectified guard cell Kchannel KAT1 alters current parameters in Xenopus laevis oocytes. Plant and Cell Physiology. 41(6): 785-790. DOI: 10.1093/pcp/41.6.785spa
dc.relation.referencesBlatt, R., Grabov, A. 1997. Signalling gates in abscisic acid-mediated control fo guard cell ion channels. Physiologia Plantarum. 100: 481–490.spa
dc.relation.referencesBosch, M., Hepler, P. 2005. Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell. 17: 3219–3226. DOI: https://doi.org/10.1105/tpc.105.037473spa
dc.relation.referencesBouché, N., Yellin, A., Snedden, W., Fromm, H. 2005. Plant specific calmodulin-binding proteins. Annual Review of Plant Biology. 56: 435–466. DOI: 10.1146/annurev.arplant.56.032604.144224spa
dc.relation.referencesBoyer, J. 2009. Cell wall biosynthesis and the molecular mechanism of plant enlargement. Functional Plant Biology. 36: 383–394. DOI: https://doi.org/10.1071/FP09048spa
dc.relation.referencesBundó, M., Coca, M. 2017. Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants. Journal of Experimental Botany. 68(11): 2963–2975. DOI: 10.1093/jxb/erx145spa
dc.relation.referencesCadet, F., Meunier, J. 1988. Spinach (Spinacia oleracea) chloroplast sedoheptulose-1,7- bisphosphatase. Activation and deactivation, and immunological relationship to fructose-1,6-bisphosphatase. Biochemical Journal. 253: 243–248. DOI: 10.1042/bj2530243spa
dc.relation.referencesCampo, S., Baldrich, P., Messenguer, J., Lalanne, E., Coca, M., Segundo, B. 2014. Overexpression of a Calcium-Dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiology. 165: 688-704. DOI: https://doi.org/10.1104/pp.113.230268spa
dc.relation.referencesChai, M., Chen, Q., An, R., Chen, Y., Chen, J., Wang, X. 2005. NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Molecular Biology. 59: 553–564. DOI: 10.1007/s11103-005-6802-yspa
dc.relation.referencesCharles, S., Halliwell, B. 1980. Action of calcium ions on spinach (Spinacia oleracea) chloroplast fructose bisphosphatase and other enzymes of the Calvin cycle. Biochemical Journal. 188: 775–779. DOI: 10.1042/bj1880775spa
dc.relation.referencesChen, J., Xue, B., Xia, X., Yin, W. 2013. A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance. Biochemical and Biophysical Research Communications. 441(3): 630–636. DOI: 10.1016/j.bbrc.2013.10.103spa
dc.relation.referencesClarkson, T. 1993. Roots and the delivery of solutes to the xylem. Philos. Trans. R. Soc. Lond. B 341, 5–7. DOI: 10.1098/rstb.1993.0086spa
dc.relation.referencesCushman, J. 2001. Osmoregulation in plants: implications for agriculture. American Zoologis. 41: 758-769.spa
dc.relation.referencesDubrovina, A., Kiselev, K., Khristenko, V., Aleynova, O. 2015. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. Journal of Plant Physiology. 185: 1–12. DOI: 10.1016/j.jplph.2015.05.020spa
dc.relation.referencesDulai, S., Molnár, I., Prónay, J., Csernák, Á., Tarnai, R., Molnár-Láng, M. 2006. Effects of drought on photosynthetic parameters and heat stability of PSII in wheat and in Aegilops species originating from dry habitats. Acta Biologica Szegediensis. 50: 11-17.spa
dc.relation.referencesEichert, T., Burkhardt, J., 2001. Quantification of stomatal uptake of ionic solutes using a new model system. Journal of Experimental Botany. 52(357): 771–781. DOI: 10.1093/jexbot/52.357.771spa
dc.relation.referencesEttinger, W., Clear, A., Fanning, K., Peck, M. 1999. Identification of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane. Plant Physiology. 119(4): 1379–1386. DOI: 10.1104/pp.119.4.1379spa
dc.relation.referencesFageria, N., Barbosa, M., Moreira, A., Guimaraes, M. 2009. Foliar fertilization of crop plants. Journal of Plant Nutrition. 32: 1044-1064. DOI: 10.1080/01904160902872826spa
dc.relation.referencesFan, D. 2019. The effect of calcium to maize seedlings under drought stress. American Journal of Plant Sciences. 10: 1391-1396. DOI: https://doi.org/10.4236/ajps.2019.108099spa
dc.relation.referencesFarquhar, G., Sharkey, D. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology. 33: 317-345.spa
dc.relation.referencesFernández, V., Sotiropoulos, T., Brown, P. 2015. Fertilización Foliar: Principios Científicos y Práctica de Campo. Primera edición. IFA, Paris, Francia. 156 pp.spa
dc.relation.referencesFernández, V., Pimentel, C., Behamonde, H. 2020. Salt hydration and drop drying of two model calcium salts: implications for foliar nutrient absorption and deposition. Journal of Plant Nutrition and Soil Science. 183: 592-601. DOI: 10.1002/jpln.202000168spa
dc.relation.referencesFlechner, A., Dressen, U., Westhoff, P., Henze, K., Schnarrenberger, C., Martin, W. 1996. Molecular characterization of transketolase (EC 2.2.1.1) active in the Calvin cycle of spinach chloroplasts. Plant Mol. Biol. 32: 475–484.spa
dc.relation.referencesGeng, S., Zhao, Y., Tang, L., Zhang, R., Sun, M., Guo, H., Kong, X., Li, A., Mao, L. 2011. Molecular evolution of two duplicated CDPK genes CPK7 and CPK12 in grass species: A case study in wheat (Triticum aestivum L.). Gene. 475(2): 94–103. DOI: 10.1016/j.gene.2010.12.015spa
dc.relation.referencesGorecka, K., Konopka-Postupolska, D., Hennig, J., Buchet, R., Pikula, S. 2005. Peroxidase activity of annexin 1 from Arabidopsis thaliana. Biochemical and Biophysical Research Communications. 336: 868–875. DOI: 10.1016/j.bbrc.2005.08.181spa
dc.relation.referencesGuimarães, F.A.V., de Lacerda, C.F., Marques, E.C., Alcantâra de Miranda, M.R., Braga de Abreu, C.E., Prisco, J.T., Gomes-Filho, E., 2011. Calcium can moderate changes on membrane structure and lipid composition in cowpea plants under salt stress. Plant Growth Regulation. 65(1): 55–63. DOI: https://doi.org/10.1007/s10725-011-9574-1spa
dc.relation.referencesHan, S., Tang, R., Anderson, L., Woerner, T., Pei, Z. 2003. A cell surface receptor mediates extracellular Ca(2+) sensing in guard cells. Nature. 425: 196–200. DOI: 10.1038/nature01932spa
dc.relation.referencesHare, P., Cress, A. 1997. Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regulation. 21: 79-102. DOI: https://doi.org/10.1023/A:1005703923347spa
dc.relation.referencesHarker, F., Ferguson, I., 1991. Effects of surfactants on calcium penetration of cuticles isolated from apple fruit. Scientia Horticulturae. 46(3-4): 225–233. DOI: https://doi.org/10.1016/0304-4238(91)90045-Zspa
dc.relation.referencesHarper, J., Breton, G., Harmon, A. 2004. Decoding Ca2+ signals through plant protein kinases. Annual Review of Plant Biology. 55: 263–288. DOI: 10.1146/annurev.arplant.55.031903.141627spa
dc.relation.referencesHarper, J., Harmon, A. 2005. Plants, symbiosis and parasites: a calcium signalling connection. Nature Reviews Molecular Cell Biology. 6: 555–566. DOI: 10.1038/nrm1679spa
dc.relation.referencesHashimoto, K., Kudla, J. 2011. Calcium decoding mechanisms in plants. Biochimie. 93(12): 2054–2059. DOI: 10.1016/j.biochi.2011.05.019spa
dc.relation.referencesHepler, K., Winship, J. 2010. Calcium at the cell wall-cytoplast interface. Journal of Integrative Plant Biology. 52(2): 147–160. DOI: 10.1111/j.1744-7909.2010.00923.xspa
dc.relation.referencesHertig, C., Wolosiuk, R. 1980. A dual effect of Ca2+ on chloroplast fructose-1,6- bisphosphatase, Biochemical and Biophysical Research Communications. 97: 325–333. DOI: https://doi.org/10.1016/S0006-291X(80)80171-9spa
dc.relation.referencesHirschi, K. 2004 The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiology. 136: 2438-2442. DOI: https://doi.org/10.1104/pp.104.046490spa
dc.relation.referencesHo, S.-L., Huang, L.-F., Lu, C.-A., He, S.-L., Wang, C.-C., Yu, S.-P., Chen, J., Yu, S.-M. 2013. Sugar starvation-and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Molecular Biology. 81(4-5): 347–361. DOI: 10.1007/s11103-012-0006-zspa
dc.relation.referencesHochmal, A., Schulze, S., Trompelt, K., Hippler, M. 2015. Calcium-dependent regulation of photosynthesis. Biochimica et Biophysica Acta. 1847: 993–1003. DOI: http://dx.doi.org/10.1016/j.bbabio.2015.02.010spa
dc.relation.referencesHong-Bo, S., Li-Ye, C., Ming-An, S. 2008. Calcium as a versatile plant signal transducer under soil water stress. Bioessays. 30: 634–641. DOI: http://dx.doi.org/10.1002/bies.20770spa
dc.relation.referencesHu, W., Tian, S., Di, Q., Duan, S., Dai, K. 2018. Effects of exogenous calcium on mesophyll cell ultrastructure, gas exchange, and photosystem II in tobacco (Nicotiana tabacum Linn.) under drought stress. Photosynthetica. 56(4): 1204-1211. DOI: 10.1007/s11099-018-0822-8spa
dc.relation.referencesHuang, J., Hirji, R., Adam, L., Rozwadowski, K., Hammerlindl, J., Keller, W., Selvaraj, G. 2000. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiology. 122: 747-756. DOI: https://doi.org/10.1104/pp.122.3.747spa
dc.relation.referencesJones, G., Lunt, R. The function of calcium in plants. 1967. The Botanical Review. 33: 407-426.spa
dc.relation.referencesKannan, S. 2010. Foliar Fertilization for Sustainable Crop Production. En: Lichtfouse E. (eds) Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming. Sustainable Agriculture Reviews, vol 4. Springer, Dordrecht.spa
dc.relation.referencesKerstiens, G. 2006. Water transport in plant cuticles: an update. Journal of Experimental Botany. 57: 2493–2499. DOI: 10.1093/jxb/erl017spa
dc.relation.referencesKnight, H., Trewavas, A., Knight, M. 1997. Calcium signaling in Arabidopsis thaliana responding to drought and salinity. The Plant Journal. 12: 911-922. DOI: 10.1046/j.1365-313x.1997.12051067.xspa
dc.relation.referencesKohorn, D., Kobayashi, M., Johansen, S., Friedman, P., Fischer, A., Byers, N. 2006. Wall-associated kinase 1 (WAK1) is crosslinked in endomembranes, and transport to the cell surface requires correct cell-wall synthesis. Journal of Cell Science. 119: 2282–2290. DOI: 10.1242/jcs.02968spa
dc.relation.referencesKolthoff, I., Sandell, E., Meehan, E., Bruckenstein, S. 1969. Quantitative Chemical Analysis, Vol. 826. London: Macmillanspa
dc.relation.referencesKonopka-Postupolska, D. 2007. Annexins: putative linkers in dynamic membrane-cytoskeleton interactions in plant cells. Protoplasma. 230: 203–215. DOI: https://doi.org/10.1007/s00709-006-0234-7spa
dc.relation.referencesKovács-Bogdán, E., Soll, J., Bölter, B. 2010. Protein import into chloroplasts: the Tic complex and its regulation. Biochimica et Biophysica Acta - Molecular Cell Research. 1803(6): 740–747. DOI: 10.1016/j.bbamcr.2010.01.015spa
dc.relation.referencesKovács-Bogdán, E. Benz, J., Soll, J., Bolter, B. 2011. Tic20 forms a channel independent of Tic110 in chloroplasts. BMC Plant Biology. 11: 133. DOI: https://doi.org/10.1186/1471-2229-11-133spa
dc.relation.referencesKraemer, T., Hunsche, M., Noga, G. 2009. Cuticular calcium penetration is directly related to the area covered by calcium within droplet spread area. Scientia Horticulturae. 120: 201-206. DOI: 10.1016/j.scienta.2008.10.015spa
dc.relation.referencesKreimer, G., Melkonian, M., Latzko, E. 1985. An electrogenic uniport mediates lightdependent Ca2+ influx into intact spinach chloroplasts. FEBS Lett. 180: 253–258. DOI: https://doi.org/10.1016/0014-5793(85)81081-4spa
dc.relation.referencesKreimer, G., Surek, B., Woodrow, I., Latzko, E. 1987. Calcium binding by spinach stromal proteins. Planta. 171: 259–265. DOI: https://doi.org/10.1007/BF00391103spa
dc.relation.referencesKukuczka, B., Magneschi, L., Petroutsos, D., Steinbeck, J., Bald, T., Powikrowska, M., Fufezan, C., Finazzi, G., Hippler, M. 2014. Proton gradient regulation5-like1-mediated cyclic electron flow is crucial for acclimation to anoxia and complementary to nonphotochemical quenching in stress adaptation. Plant Physiology. 165: 1604–1617. DOI: https://doi.org/10.1104/pp.114.240648spa
dc.relation.referencesLaohavisit, A., Mortimer, J., Demidchik, V., Coxon, M., Stancombe, A., Macpherson, N., Brownlee, C., Hofmann, A., Webb, A., Miedema, H., Battey, H., Davies, M. 2009. Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance. Plant Cell. 21: 479–493. DOI: 10.1105/tpc.108.059550spa
dc.relation.referencesLarkindale, J., Knight, M., 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology. 128(2): 682-695. DOI: 10.1104/pp.010320spa
dc.relation.referencesLeister, D., Shikanai, T. 2013. Complexities and protein complexes in the antimycin Asensitive pathway of cyclic electron flow in plants. Frontiers in Plant Science. 4: 161. DOI: https://doi.org/10.3389/fpls.2013.00161spa
dc.relation.referencesLi, Z., Tan, X., Lu, K., Liu, Z., Wu, L. 2017. The effect of CaCl2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Photosynthetica. 55(3): 553-560. DOI: 10.1007/s11099-016-0676-xspa
dc.relation.referencesLiu, G., Chen, J., Wang, X. 2006. VfCPK1, a gene encoding calcium-dependent protein kinase from Vicia faba, is induced by drought and abscisic acid. Plant, Cell and Environment. 29: 2091–2099. DOI: https://doi.org/10.1111/j.1365-3040.2006.01582.xspa
dc.relation.referencesLuan, S. 2009. The CBL-CIPK network in plant calcium signaling. Trends in Plant Science. 14: 37–42. DOI: 10.1016/j.tplants.2008.10.005.spa
dc.relation.referencesMa, R., Zhang, M., Li, B., Du, G., Wang, J., Chen, J. 2005. The effects of exogenous Ca2+ on endogenous polyamine levels and drought-resistant traits of spring wheat grown under arid conditions. Journal of Arid Environments. 63: 177-190. DOI: 10.1016/j.jaridenv.2005.01.021.spa
dc.relation.referencesMaatihus, F. 2009. Pfysiological functions of mineral macronutrients. Current Opinion in Plant Biology. 12: 250-258. DOI: 10.1016/j.pbi.2009.04.003spa
dc.relation.referencesMarschner, P., 2012. Marschner's Mineral Nutrition of Higher Plants. Third Edition. Elsevier. pp: 174-176.spa
dc.relation.referencesMcAinsh, M., Pittman, J. 2009 Shaping the calcium signature. New Phytologist. 181:275-294. DOI: 10.1111/j.1469-8137.2008.02682.x.spa
dc.relation.referencesMcCormack, E., Tsai, Y., Braam, J. 2005. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends in Plant Science. 10: 383–389. DOI: 10.1016/j.tplants.2005.07.001spa
dc.relation.referencesMiedema, H., Bothwell, F., Brownlee, C., Davies, M. 2001. Calcium uptake by plant cells—channels and pumps acting in concert. Trends in Plant Science. 6: 514–519. DOI: 10.1016/S1360-1385(01)02124-0.spa
dc.relation.referencesMohanta, T., Yadav, D., Khan, A., Hashem, A., Abd Allah, E., Al-Harrasi, A. 2019. Molecular Players of EF-hand Containing Calcium Signaling Event in Plants. International Journal of Molecular Sciences. 20(6): 1476. DOI: 10.3390/ijms20061476spa
dc.relation.referencesMori, I., Murata, Y., Yang, Y., Munemasa, S., Wang, Y., Andreoli, S., Tiriac, H., Alonso, J., Harper, J., Ecker, J., Kwak, J., Schroeder, J. 2006. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+ -permeable channels and stomatal closure. PLoS Biol. 4(19): 1749-1762. DOI: https://doi.org/10.1371/journal.pbio.0040327spa
dc.relation.referencesNaeem, M., Naeem, M., Ahmad, R., Ahmad, R. 2017. Foliar-applied calcium induces drought stress tolerance in maize by manipulating osmolyte accumulation and antioxidative responses. Pakistan Journal of Botany. 49: 427–434.spa
dc.relation.referencesNebenführ, A., Staehelin, L. 2001. Mobile factories: Golgi dynamics in plant cells. Trends in Plant Science. 6: 160–167. DOI: 10.1016/s1360-1385(01)01891-xspa
dc.relation.referencesNomura, H., Komori, T., Kobori, M., Nakahira, Y., Shiina T. 2008. Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. The Plant Journal. 53(6): 988–998. DOI: 10.1111/j.1365-313X.2007.03390.xspa
dc.relation.referencesNomura, H., Komori, T., Uemura, S., Kanda, Y., Shimotani, K., Nakai, K., Furuichi, T., Takebayashi, K., Sugimoto, T., Sano, S., Suwastika, I., Fukusaki, E., Yoshioka, H., Nakahira, Y., Shiina, T. 2012. Chloroplast-mediated activation of plant immune signaling in Arabidopsis. Nature Communications. 3: 926. DOI: 10.1038/ncomms1926spa
dc.relation.referencesPlieth, C., Vollbehr, S. 2012. Calcium promotes activity and confers heat stability on plant peroxidases. Plant Signaling & Behavior. 7: 650–660. DOI: 10.4161/psb.20065spa
dc.relation.referencesProseus, E, Boyer, S. 2007. Tension required for pectate chemistry to control growth in Chara corallina. Journal of Experimental Botany. 58: 4283–4292. DOI: 10.1093/jxb/erm318.spa
dc.relation.referencesQiang, L., Jianhua, C., Longjiang, Y., Maoteng, L., Jinjing, L., Lu, G. 2012. Effects on physiological characteristics of Honeysuckle. (Lonicera japonica Thunb) and the role of exogenous calcium under drought stress. Plant Omics: J Plant Mol Biol Omic. 5(1): 1–5.spa
dc.relation.referencesReid, J., Sayer, R., 2003. Heterogeneous atmospheric aerosol chemistry: laboratory studies of chemistry on water droplets. Chemical Society Reviews. 32(2): 70–79. DOI: 10.1039/b204463nspa
dc.relation.referencesRentel, C., Knight, M. 2004. Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiology. 135:1471–1479. DOI: https://doi.org/10.1104/pp.104.042663spa
dc.relation.referencesRiederer, M., 2006. Thermodynamics of the water permeability of plant cuticles: characterization of the polar pathway. Journal of Experimental Botany. 57(12): 2937–2942. DOI: 10.1093/jxb/erl053spa
dc.relation.referencesRocha, A., Mehlmer, N., Stael, S., Mair, A., Parvin, N., Chigri, F., Teige, M., Vothknecht, U. 2014. Phosphorylation of Arabidopsis transketolase at Ser428 provides a potential paradigm for the metabolic control of chloroplast carbon metabolism. Biochemical Journal. 458: 313–322. DOI: 10.1042/BJ20130631spa
dc.relation.referencesRoh, M., Shingles, R., Cleveland, M., McCarty, R. 1998. Direct measurement of calcium transport across chloroplast inner-envelope vesicles. Plant Physiology. 118: 1447–1454. DOI: https://doi.org/10.1104/pp.118.4.1447spa
dc.relation.referencesRomheld, V., El-Fouly, M. 1999. Foliar nutrient application. challenge and limits in crop production. In: Proc. 2nd International Workshop on "Foliar Fertilization" Bangkok, Thailand, 1-32.spa
dc.relation.referencesRuiz, J., Sánchez, E., García, P., Lopez-Lefebre, L., Rivero, R., Romero, L. 2002. Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock. Phytochemistry. 59(5): 473–478. DOI: 10.1016/s0031-9422(01)00481-2spa
dc.relation.referencesSchapire, A., Voigt, B., Jasik, J., Rosado, A., Lopez-Cobollo, R., Menzel, D., Salinas, J., Mancuso, S., Valpuesta, V., Baluska, F., Botella, M. 2008. Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell. 20: 3374– 3388. DOI: https://doi.org/10.1105/tpc.108.063859spa
dc.relation.referencesSchönherr, J. 2000. Calcium chloride penetrates plant cuticles via aqueous pores. Planta. 212: 112–118.spa
dc.relation.referencesSchönherr, J. 2001. Cuticular penetration of calcium salts: effects of humidity, anions, and adjuvants. Journal of Plant Nutrition and Soil Science. 164: 225–231.spa
dc.relation.referencesSchumaker, K., Sze, H. 1985. A Ca2+/H+ antiport system driven by the proton electrochemical gradient of a tonoplast H+-ATPase from oat roots. Plant Physiology. 79: 1111-1117. DOI: https://doi.org/10.1104/pp.79.4.1111spa
dc.relation.referencesShabbir, R., Ahsraf, M., Waraich, E., Ahmad, R. 2015. Combined effects of drought stress and NPK foliar spray on growth, physiological processes and nutrient uptake in wheat. Pakistan Journal of Botany. 47: 1207–1216.spa
dc.relation.referencesShao, B., Song, Y., Chu, Y. 2008. Advances of calcium signals involved in plant anti-drought. Comptes Rendus Biologies. 331: 587–596. DOI: 10.1016/j.crvi.2008.03.012.spa
dc.relation.referencesShi, S., Li, S., Asim, M., Mao, J., Xu, D., Ullah, Z., Liu, G., Wang, Q., Liu, H. 2018. The Arabidopsis calcium-dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. International Journal of Molecular Sciences. 19(7): 1900. DOI: 10.3390/ijms19071900spa
dc.relation.referencesSiddiqui, M.., Al-Whaibi M., Basalah, M. 2011. Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma. 248: 503-511. DOI: 10.1007/s00709-010-0197-6spa
dc.relation.referencesSingh, A., Sagar, S., Biswas, D. 2017. Calcium dependent protein kinase, a versatile player in plant stress management and development. Critical Reviews in Plant Sciences. 36(5-6): 336–352. DOI: https://doi.org/10.1080/07352689.2018.1428438spa
dc.relation.referencesStael, S., Rocha, A., Wimberger, T., Anrather, D., Vothknecht, U., Teige, M. 2012. Crosstalk between calcium signalling and protein phosphorylation at the thylakoid. Journal of Experimental Botany. 63 (4): 1725–1733. DOI: 10.1093/jxb/err403spa
dc.relation.referencesStael, S., Wurzinger, B., Mair, A., Mehlmer, N., Vothknecht, C., Teige, M. 2011. Plant organellar calcium signalling: an emerging field. Journal of Experimental Botany. 63: 1525–1542. DOI:10.1093/jxb/err394spa
dc.relation.referencesSun, C., Johnson, J., Cai, D., Sherameti, I., Oelmuller, R., Lou, B. 2010. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology. 167: 1009–1017. DOI: 10.1016/j.jplph.2010.02.013spa
dc.relation.referencesSutter, JU., Homann, U., Thiel, G. 2000. Ca2+-stimulated exocytosis in maize coleoptile cells. Plant Cell. 12: 1127–1136. DOI: https://doi.org/10.1105/tpc.12.7.1127spa
dc.relation.referencesSyam Prakash, S., Jayabaskaran, C. 2006. Heterologous expression and biochemical characterization of two calcium-dependent protein kinase isoforms CaCPK1 and CaCPK2 from chickpea. Journal of Plant Physiology. 163(11): 1083–1093. DOI: 10.1016/j.jplph.2006.04.005spa
dc.relation.referencesSzalonek, M., Sierpien, B., Rymaszewski, W., Gieczewska, K., Garstka, M., Lichocka, M., Sass, L., Paul, K., Vass, I., Vankova, R., Dobrev, P., Szczesny, P., Marczewski, W., Krusiewicz, D., Strzelczyk-Zyta, D., Hennig, J., Konopka-Postupolska, D. 2015. Potato Annexin STANN1 promotes drought tolerance and mitigates light stress in transgenic Solanum tuberosum L. plants. PLoS ONE. 10(7): e0132683. DOI: 10.1371/journal.pone.0132683spa
dc.relation.referencesSze, H., Liang, F., Hwang, I., Curran, A., Harper, J. 2000. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Physiol Plant Mol Biol. 51: 433-462. DOI: 10.1146/annurev.arplant.51.1.433spa
dc.relation.referencesTakahashi, H., Watanabe, A., Tanaka, A., Hashida, S., Kawai-Yamada, M., Sonoike, K., Uchimiya, H. 2006. Chloroplast NAD kinase is essential for energy transduction through the xanthophyll cycle in photosynthesis. Plant and Cell Physiology. 47: 1678–1682. DOI: https://doi.org/10.1093/pcp/pcl029spa
dc.relation.referencesTang, R-J., Luan, S. 2017. Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. Current Opinion in Plant Biology. 39: 97–105. DOI: http://dx.doi.org/10.1016/j.pbi.2017.06.009spa
dc.relation.referencesTerashima, M., Petroutsos, D., Hudig, M., Tolstygina, I., Trompelt, K., Gabelein, P., Fufezan, C., Kudla, J., Weinl, S., Finazzi, G., Hippler, M. 2012. Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proceedings of the National Academy of Sciences. 109(43): 17717–17722. DOI: https://doi.org/10.1073/pnas.1207118109spa
dc.relation.referencesThor, K. 2019. Calcium-Nutrient and Messenger. Frontiers in Plant Science. 10:440. DOI: 10.3389/fpls.2019.00440spa
dc.relation.referencesTredenick, E., Farrel, T., Forster, W. 2018. Mathematical modeling of diffusion of a hydrophilic ionic fertilizer in plant cuticles: surfactant and hygroscopic effects. Frontiers in Plant Science. 9: 1888. DOI: https://doi.org/10.3389/fpls.2018.01888spa
dc.relation.referencesVal, J., Fernandez, V. 2011. In-season calcium-spray formulations improve calcium balance and fruit quality traits of peach. Journal of Plant Nutrition and Soil Science. 174:465-472. DOI: 10.1002/jpln.201000181spa
dc.relation.referencesVivek, P., Tuteja, N., Soniya, E. 2013. CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum. PLoS ONE. 8(10): e76392. DOI: https://doi.org/10.1371/journal.pone.0076392spa
dc.relation.referencesWaller, J., Dhanoa, P., Schumann, U., Mullen, R., Snedden, W. 2010. Subcellular and tissue localization of NAD kinases from Arabidopsis: compartmentalization of de novo NADP biosynthesis. Planta. 231(2): 305–317. DOI: 10.1007/s00425-009-1047-7spa
dc.relation.referencesWang, W., Chen, J., Liu, T., Han, A., Simon, M., Dong, X., He, J., Zheng, H. 2014. Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis. Journal of Experimental Botany. 65(1): 223–234. DOI: 10.1093/jxb/ert362spa
dc.relation.referencesWang, Z., Li, J., Jia, C., Xu, B., Jin, Z. 2016. Molecular cloning and expression analysis of eight calcium-dependent protein kinase (CDPK) genes from banana (Musa acuminata L. AAA group, cv. Cavendish). South African Journal of Botany. 104: 134–141. DOI: https://doi.org/10.1016/j.sajb.2015.10.004spa
dc.relation.referencesWang, Y., Kang, Y., Ma, C., Miao, R., Wu, C., Long, Y., Ge, T., Wu, Z., Hou, X., Zhang, J., Qi, Z. 2017. CNGC2 is a Ca2+ influx channel that prevents accumulation of apoplastic Ca2+ in the leaf. Plant Physiology. 173: 1342–1354. DOI: 10.1104/pp.16.01222spa
dc.relation.referencesWei, S., Hu, W., Deng, X., Zhang, Y., Liu, X., Zhao, X., Luo, Q., Jin, Z., Li, Y., Zhou, S. 2014. A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol. 14: 133. DOI: 10.1186/1471-2229-14-133spa
dc.relation.referencesWeinl, S., Held, H., Schlucking, K., Steinhorst, L., Kuhlgert, S., Hippler, M., Kudla, J. 2008. A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytologist. 179(3): 675–686. DOI: 10.1111/j.1469-8137.2008.02492.xspa
dc.relation.referencesWeinl, S., Kudla, J. 2009. The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytologist. 184: 517–528. DOI: 10.1111/j.1469-8137.2009.02938.xspa
dc.relation.referencesWhite, J., Bowen, C., Demidchik, V., Nichols, C., Davies, M. 2002. Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim. Biophys. Acta Biomembr. 1564: 299–309. DOI: 10.1016/S0005-2736(02)00509-6spa
dc.relation.referencesWhite, J., Broadley, M. 2003. Calcium in plants. Annals of Botany. 92(4): 487-511. DOI: 10.1093/aob/mcg164spa
dc.relation.referencesXu, J., Tian, Y.-S., Peng, R.-H., Xiong, A.-S., Zhu, B., Jin, X.-F., Gao, F., Fu, X.-Y., Hou, X.-L., Yao, Q.-H. 2010. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta. 231(6): 1251–1260. DOI: 10.1007/s00425-010-1122-0spa
dc.relation.referencesYang, B., Liu, Z., Zhou, S., Ou, L., Dai, X., Ma, Y., Zhang, Z., Chen, W., Li, X., Liang, C., Yang, S., Zou, X. 2016. Exogenous Ca2+ alleviates waterlogging-caused damages to pepper. Photosynthetica. 54: 620-629. DOI: https://doi.org/10.1007/s11099-016-0200-3spa
dc.relation.referencesZandalinas, S., Mittler, R., Balfagón, D., Arbona, V., Gómez-Cadenas, A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum. 162(1): 2–12. DOI: 10.1111/ppl.12540spa
dc.relation.referencesZou, J. J., Wei, F. J., Wang, C., Wu, J. J., Ratnasekera, D., Liu, W. X., Wu, W. H. 2010. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiology. 154(3): 1232–1243. DOI: 10.1104/pp.110.157545spa
dc.relation.referencesZou, J.-J., Li, X.-D., Ratnasekera, D., Wang, C., Liu, W.-X., Song, L.-F., Zhang, W.-Z., Wu, W.-H. 2015. Arabidopsis Calcium-Dependent Protein Kinase8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell. 27: 1445–1460. DOI: https://doi.org/10.1105/tpc.15.00144spa
dc.relation.referencesAbdel-Rahman, M., El-Sayed, M.D., Rady, M.M., 2018. Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Scientia Horticulturae. 228: 132-144. DOI: 10.1016/j.scienta.2017.10.008spa
dc.relation.referencesAnjum, S.A., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C., Lei, W., 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research. 6(9): 2026-2032. DOI: 10.5897/AJAR10.027spa
dc.relation.referencesEvans, N., McAinsh, M., Hetherington, A., Knight, M. 2005. ROS perception in Arabidopsis thaliana: the ozone induced calcium response. The Plant Journal. 41: 615–626. DOI: https://doi.org/10.1111/j.1365-313X.2004.02325.xspa
dc.relation.referencesHarb, A., Krishnan, A., Ambavaram, M., Pereira, A. 2010. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology. 154: 1254-1271. DOI: 10.1104/pp.110.161752spa
dc.relation.referencesHojati, M., Modarres-Sanavy, S.A., Ghanati, F., Panahi, M. 2011. Hexaconazole induces antioxidant protection and apigenin-7- glucoside accumulation in Matricaria chamomilla plants subjected to drought stress. The Journal of Plant Physiology. 168: 782-791. DOI: 10.1016/j.jplph.2010.11.009.spa
dc.relation.referencesHopper, D., Ghan, R., Cramer, G. 2014. A rapid dehydration leaf assay reveals stomatal response differences in grapevine genotypes. Horiculture Research. 1(2). DOI: 10.1038/hortres.2014.2spa
dc.relation.referencesHosseini, S., Réthoré, E., Pluchon, S., Ali, N., Billiot, B., Yvin, J. 2019. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. International Journal of Molecular Sciences. 20: 3777. DOI: 10.3390/ijms20153777spa
dc.relation.referencesHsiao, T., 1973. Plant responses to water stress. Ann. Rev. Plant Physiol. 24, 519 - 570.spa
dc.relation.referencesIshibashi, Y., Yamaguchi, H., Yuasa, T., Iwaya-Inoue, M., Arima, S., Zheng, S. 2011. Hydrogen peroxide spraying alleviates drought stress in soybean plants. Journal of Plant Physiology. 168: 1562-1567. DOI: 10.1016/j.jplph.2011.02.003spa
dc.relation.referencesJäger, K., Fábián, A., Eitel, G., Szabó, G., Deák, C., Barnabás, B., Papp, I. 2014. A morpho-physiological approach differentiates bread wheat cultivars of contrasting tolerance under cyclic water stress. Journal of Plant Physiology. 171: 1256–1266. DOI: http://dx.doi.org/10.1016/j.jplph.2014.04.013spa
dc.relation.referencesJefferies, A. 1993. Use of a simulation model to assess possible strategies of drought tolerance in potato (Solanum tuberosum L.). Agricultural Systems. 41: 93–104. DOI: https://doi.org/10.1016/0308-521X(93)90083-Espa
dc.relation.referencesJefferies, R. 1995. Physiology of crop response to drought. En Modelling of Crops Under Conditions Limiting … (pp. 61-74). DOI: https://doi.org/10.1007/978-94-011-0051-9_4spa
dc.relation.referencesKalina, D., Plich, J., Strzelczyk-Żyta, D., Śliwka, J., Marczewski, W. 2016. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breeding Science. 66(2): 328-331. DOI: https://doi.org/10.1270/jsbbs.66.328spa
dc.relation.referencesKosma, D., Bourdenx, B., Bernard, A., Parsons, E., Lü, S., Joubès, J., Jenks, M. 2009 The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology. 151: 1918–29. DOI: 10.1104/pp.109.141911spa
dc.relation.referencesKuppinger, L., Auber, E., Farfan, K, Bonierbale, M., Asch, F. 2014. Effects of drought stress on crop development, growth and chlorophyll fluorescence in five potato clones. p. 54. In: Tielkes, E. (ed.). Bridging the gap between increasing knowledge and decreasing resources. Czech University of Life Sciences, Prague.spa
dc.relation.referencesLarkindale, J., Knight, M. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology. 128: 682-695. DOI: 10.1104/pp.010320spa
dc.relation.referencesLawlor, D., Cornic, G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment. 25(2): 275-294. DOI: https://doi.org/10.1046/j.0016- 8025.2001.00814.xspa
dc.relation.referencesLobato, C., Olivieri, P., Altamiranda, G., Wolski, A., Daleo, R., Caldiz, D., Andreu, A. 2008. Phosphite compounds reduce disease severity in potato seed tubers and foliage. European Journal of Plant Pathology. 122: 349-358. DOI: 10.1007/s10658-008-9299-9spa
dc.relation.referencesMao, J., Ni, T., Wang, S., Chen, F., 2008. Effects of exogenous calcium on some physiological characteristics of Jatropha curcas L. under drought stress. Journal of Sichuan University. 45(3): 669-673.spa
dc.relation.referencesMiranda-Apodaca, J., Pérez-López, U., Lacuesta, M., Mena-Peite, A., Muñoz-Rueda, A. 2018. The interaction between drought and elevated CO2 in water relations in two grassland species is species-specific. Journal of Plan Physiology. 220: 193-202. DOI: https://doi.org/10.1016/j.jplph.2017.11.006spa
dc.relation.referencesOpena, G-B., Porter, G-A., 1999. Soil management and supplemental irrigation effects on potato. II. Root growth. Agronomy Journal. 91: 426–431. DOI: http://dx.doi.org/10.2134/agronj1999.00021962009100030011xspa
dc.relation.referencesPino, T. 2016. Estrés hídrico y térmico en papas, avances y protocolos. Santiago, Chile. Instituto de Investigaciones Agropecuarias. Boletín INIA Nº 331. 148pspa
dc.relation.referencesPieczynski, M., Marczewski, W., Hennig, J., Dolata, J., Bielewicz, D., Piontek, P., Wyrzykowska, A., Krusiewicz, D., Strzelczyk-Zyta, D., Konopka-Postupolska, D. Krzeslowska, M., Jarmolowski, A., Szweykowska-Kulinska, Z. 2013. Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnology Journal. 11: 459–469. DOI: 10.1111/pbi.12032.spa
dc.relation.referencesRiederer, M., Schreiber, L. 2001. Protecting against water loss: analysis of the barrier properties of plant cuticles. Journal of Experimental Botany. 52: 2023–32. DOI: 10.1093/jexbot/52.363.2023.spa
dc.relation.referencesRistic, Z., Jenks, M. 2002. Leaf cuticle and water loss in maize lines differing in dehydration avoidance. Journal of Plant Physiology. 59:645–651. DOI: 10.1078/0176-1617-0743spa
dc.relation.referencesRuíz, J. 2010. Cambio climático en temperatura, precipitación y humedad relativa para Colombia usando modelos meteorológicos de alta resolución (Panorama 2011-2010). Nota técnica del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Bogotá, Colombia. 91 pp.spa
dc.relation.referencesSavić, J., Dragićević, I., Pantelić, D., Ojlača, J., Momcilovic, I., 2012. Expression of small heat shock proteins and heat tolerance in potato (Solanum tuberosum L.). Archives of Biological Sciences. 64(1): 135-144.spa
dc.relation.referencesSchafleitner, R., Gutierrez Rosales, R. O., Gaudin, A., Alvarado Aliaga, C. A., Martinez, G. N., Tincopa Marca, L. R., … Bonierbale, M. 2007. Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiology and Biochemistry. 45(9): 673- 690. DOI: https://doi.org/10.1016/j.plaphy.2007.06.003spa
dc.relation.referencesSchapire, A., Valpuesta, V., Botella, M. 2009. Plasma membrane repair in plants. Trends in Plant Science. 14, 645–652. DOI: https://doi.org/10.1016/j.tplants.2009.09.004spa
dc.relation.referencesScholander, P. F., Badstreet, E. D., Hemmingsen, E. A., Hammel, H. T., 1965. Sap pressure in vascular plants. Proceedings of the National Academy of Sciences. 148(3668): 339-346. DOI: 10.1126/science.148.3668.339spa
dc.relation.referencesShan, C., Liang, Z. 2010. Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Science. 178: 130-139. DOI: 10.1016/j.plantsci.2009.11.002.spa
dc.relation.referencesShi, S., Fan, M., Iwama, K., Li, F., Zhang, Z., Jia, L. 2015. Physiological basis of drought tolerance in potato grown under long-term water deficiency. International Journal of Plant Production. 9(2): 305-320. DOI: https://doi.org/10.22069/ijpp.2015.2050spa
dc.relation.referencesSingh, D., Sale, P., Pallaghy, C., Singh, V. 2000. Role of proline and leaf expansion rate in the recovery of stressed white clover leaves with increased phosphorus concentration. New Phytologist. 146(2): 261-269. DOI: https://doi.org/10.1046/j.1469-8137.2000.00643.xspa
dc.relation.referencesSzalonek, M., Sierpien, B., Rymaszewski, W., Gieczewska, K., Garstka, M., Lichocka, M., Sass, L., Paul, K., Vass, I., Vankova, E., Dobrev, P., Szczesny, P., Marckzewski,W… Konopka- Postupolska, D. 2015. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants. PLOS ONE. 10(7): 1-38. DOI: https://doi.org/10.1371/journal.pone.0132683spa
dc.relation.referencesTourneux, C., Devaux, A., Camacho, M., Mamani, P., Ledent, J. 2003. Effects of water shortage on six potato genotypes in the highlands of Bolivia (I): morphological parameters, growth and yield. Agronomie. 23:169–179. DOI: 10.1051/agro:2002079spa
dc.relation.referencesTuteja, N., Mahajan, S. 2007. Calcium Signaling Network in Plants. An Overview. Plant Signaling y Behavior. 2(2): 79-85. DOI: 10.4161/psb.2.2.4176spa
dc.relation.referencesVilla, M., Barrientos, J., 2012. Incremento de la rentabilidad económica en el cultivo de papa criolla mediante fertilización con manganeso. Revista Colombiana De Ciencias Hortícolas. 6(1): 67-75. DOI: https://doi.org/10.17584/rcch.2012v6i1.1282spa
dc.relation.referencesVos, J., Oyarzún, P. 1987. Photosynthesis and stomatal conductance of potato leaves? effects of leaf age, irradiance, and leaf water potential. Photosynthesis Research. 11(3): 253-264. DOI: https://doi.org/10.1007/BF00055065spa
dc.relation.referencesYuan, B.-Z., Nishiyama, S., Kang, Y. 2003. Effects of different irrigation regimes on the growth and yield of drip irrigated potato. Agricultural Water Management. 63(3): 153-167. DOI: https://doi.org/10.1016/S0378-3774(03)00174-4spa
dc.relation.referencesZhang, L., Mei, G., Shiqing, L., Shengxiu, L., Zongsuo, L. 2011. Modulation of plant growth, water status and antioxidantive system of two maize (Zea mays L.) cultivars induced by exogenous glycinebetaine under long term mild drought stress. Pakistan Journal of Botany. 43: 1587-1594.spa
dc.relation.referencesZhang, D., Du, Q., Zhang, Z., Jiao, X., Song, X., Li, J. 2017. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. SCieNtiFiC Reports. 7: 43461. DOI: 10.1038/srep43461spa
dc.relation.referencesAgili, S., Nyende, B., Ngamau, K., Masinde, P. 2012. Selection, yield evaluation, drought tolerance indices of orange-flesh sweet potato (Ipomoea batatas Lam) hybrid clone. Journal of Nutrition & Food Sciences. 2:3. DOI: http://dx.doi.org/10.4172/2155-9600.1000138spa
dc.relation.referencesAllen, R., Pereira, L., Raes, D., Smith, M. 1998. Crop evapotranspiration —guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Food and Agriculture Organization, Rome.spa
dc.relation.referencesAnjum, N., Sofo, A., Scopa, A., Roychoudhury, A., Gill, S., Iqbal, M., Lukatkin, A., Pereira, E., Duarte, A., Ahmad, I. 2015. Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environmental Science and Pollution Research. 22: 4099–4121. DOI: 10.1007/s11356-014-3917-1.spa
dc.relation.referencesArshi, A., Abdin, M., Iqbal, M. 2006. Effect of CaCl2 on growth performance, photosynthetic efficiency and nitrogen assimilation of Cichorium intybus L. grown under NaCl stress. Acta Physiologiae Plantarum. 28: 137-147. DOI:10.1007/ s11738-006-0040-zspa
dc.relation.referencesBanik, P., Zeng, W., Tai, H., Bizimungu, B., Tanino, K. 2016. Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes. Environmental and Experimental Botany. 126: 76- 89. DOI: https://doi.org/10.1016/j.envexpbot.2016.01.008spa
dc.relation.referencesBasu, P., Sharma, A., Sukumaran, N. 1998. Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. Photosynthetica. 35: 13-19. DOI: https://doi.org/10.1023/A:1006801311105spa
dc.relation.referencesBasu, S., RamegoDHa, V., Kumar, A., Pereira, A., 2016. Plant adaptation to drought stress. [version 1; peer review: 3 approved] F1000Research 2016, 5(F1000 Faculty Rev): 1554. DOI: 10.12688/f1000research.7678.1spa
dc.relation.referencesBlokhina, O., Virolinen, E., Fagerstedt, V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress. Annals of Botany. 91: 179-194. DOI: 10.1093/aob/mcf118.spa
dc.relation.referencesBouslama, M., Schapaugh, W. 1984. Stress tolerance in soybean. Part 1: evaluation of three screening techniques for heat and drought tolerance. Crop Science. 24: 933–937. DOI: https://doi.org/10.2135/cropsci1984.0011183X002400050026xspa
dc.relation.referencesBussis, D., Heineke, D., 1998. Acclimation of potato plants to polyethylene glycol-induced water deficit. I. Photosynthesis and metabolism. Journal of Experimental Botany. 49: 1349–1360. DOI: 10.1093/jexbot/49.325.1349spa
dc.relation.referencesButler, H., Martina, F., Roberts, M., Adamse, S., McAinsh, M. 2020. Observation of nutrient uptake at the adaxial surface of leaves of tomato (Solanum lycopersicum) using Raman spectroscopy. Analytical letters. 53(4): 536-562. DOI: https://doi.org/10.1080/00032719.2019.1658199spa
dc.relation.referencesCarson, L., Ozores-Hampton, M., Morgan, K., 2016. Correlation of petiole sap nitrate-nitrogen concentration measured by ion selective electrode, leaf tissue nitrogen concentration, and tomato yield in Florida. Journal of Plant Nutrition. 39(12): 1809-1819. DOI: 10.1080/01904167.2016.1187743spa
dc.relation.referencesChen, H., Jiang, J-G. 2010. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews. 18: 309-319. DOI: https://doi.org/10.1139/A10-014spa
dc.relation.referencesCIP. 2010. Procedimientos para pruebas de evaluación estándar de clones avanzados de papa. Centro Internacional de la Papa (CIP). Lima, Perú. 151 pp.spa
dc.relation.referencesCruz de Carvalho, M.H., 2008. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling and Behavior. 3(3): 156-165. DOI: 10.4161/psb.3.3.553spa
dc.relation.referencesDalla Costa, L., Delle Vedove, G., Gianquinto, G., Giovanardi, R., Peressotti, A. 1997. Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress. Potato Research. 40(1): 19-34. DOI: https://doi.org/10.1007/BF02407559spa
dc.relation.referencesDeblonde, K., Ledent, F. 2001. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. The European Journal of Agronomy. 14:31–41.spa
dc.relation.referencesDel Pozo, A., Ovalle, C., Espinoza, S., Barahona, V., Gerding, M., Humphries, A., 2017.Water relations and use-efficiency, plant survival and productivity of nine alfalfa (Medicago sativa L.) cultivars in dryland Mediterranean conditions. The European Journal of Agronomy. 84: 16-22. DOI: 10.1016/j.eja.2016.12.002spa
dc.relation.referencesEvers, D., Lefevre, I., Legay, S., Lamoureux, D., Hausman, J.-F., Rosales, R. O.G., Marca, L.R., Hoffmann, L., Bonierbale, M., Schafleitner, R., 2010. Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. Journal of Experimental Botany. 61: 2327–2343. DOI: 10.1093/jxb/erq060spa
dc.relation.referencesFallas, R., Bertsch, F. 2014. Análisis del estado nutrimental del cultivo de la papa en Costa Rica con base en información existente. Agronomía Costarricense. 38(1): 199-206.spa
dc.relation.referencesFarshadfar, E., Sutka, J. 2002. Screening drought tolerance criteria in maize. Acta Agronomica Hungarica. 50(4):411-416. DOI: 10.1556/AAgr.50.2002.4.3spa
dc.relation.referencesFernandez, G. 1992. Effective selection criteria for assessing plant stress tolerance. En: Kuo CG (ed) Adaptation of food crops to temperature and water stress. Asian Vegetable Research and Development Center, Shanhua, pp 257–270.spa
dc.relation.referencesFischer, R., Maurer, R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research. 29: 897–912. DOI: 10.1071/AR9780897spa
dc.relation.referencesFranco-Navarro, J., Brumos, J., Rosales, M., Cubero-Font, P., Talon, M., Colmenero-Flores, J. 2016. Chloride regulates leaf cell size and water relations in tobacco plants. Journal of Experimental Botany. 67: 873–891. DOI: 10.1093/jxb/erv502spa
dc.relation.referencesFranco-Navarro, J., Rosales, M., Álvarez, R., Cubero-Font, P., Calvo, P., Díaz-Espejo, A., Colmenero-Flores, J. 2019. Chloride as macronutrient increases water use eficiency by anatomically-driven reduced stomatal conductance and increased mesophyll difusion to CO2. The Plant Journal. 99: 815–831. DOI: https://doi.org/10.1111/tpj.14423spa
dc.relation.referencesGavuzzi, P., Rizza, F., Palumbo, M., Campaline, R., Ricciardi, G., Borghi, B. 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Plant Science. 77: 523-531.spa
dc.relation.referencesGeiger, D., Maierhofer, T., Al-Rasheid, K., Scherzer, S., Mumm, P., Liese, A., Ache, P., Welmann, C., Marten, I., Grill, E., Romeis, T., Hedrich, R. 2011. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci. Signal. 4, ra32. DOI: https://doi.org/ 10.1126/scisignal.2001346spa
dc.relation.referencesGolestani-Araghi, S., Assad, M., 1998. Evaluation of four screening techniques for drought resistance and their relationship to yield reduction ratio in wheat. Euphytica. 103: 293-299. DOI: https://doi.org/10.1023/A:1018307111569spa
dc.relation.referencesGoyer, A., 2017. Maximizing the nutritional potential of potato: the case of folato. Potato Research. 60(3-4): 319-325. DOI: https://doi.org/10.1007/s11540-018-9374-3spa
dc.relation.referencesHossain, A., Sears, A., Cox, T., Paulsen, G. 1990. Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Physiology & Metabolism. 30: 622–627. DOI: https://doi.org/10.2135/cropsci1990.0011183X003000030030xspa
dc.relation.referencesHsiao, T., 1973. Plant responses to water stress. Annual Review of Plant Physiology. 24: 519 - 570.spa
dc.relation.referencesHuang, G.T., Ma, S. L., Bai, P.L.P., Zhang, L., Ma, H., Jia, P., Liu, J., Zhong, M., Guo, Z. F., 2012., Signal traduction during cold, salt and drought stresses in plants. Molecular Biology Reports. 39: 969-987. DOI: 10.1007/s11033-011-0823-1spa
dc.relation.referencesJefferies, R.A. 1993. Use of a simulation model to assess possible strategies of drought tolerance in potato (Solanum tuberosum L.). Agricultural Systems. 41: 93–104. DOI: https://doi.org/10.1016/0308-521X(93)90083-Espa
dc.relation.referencesJefferies, R. A. 1995. Physiology of crop response to drought. En Modelling of Crops Under Conditions Limiting. pp. 61-74. DOI: https://doi.org/10.1007/978-94-011-0051-9_4spa
dc.relation.referencesKaczmarek, M., Fedorowicz-Stronska, O., Głowacka, K., Waskiewicz, A., Sadowski, J., 2017. CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiologiae Plantarum. 39:41. DOI: 10.1007/s11738-016-2336-yspa
dc.relation.referencesKapotis, G., Zervoudakis, G., Veltsistas, T., Salahas, G., 2003. Comparison of chlorophyll meter readings with leaf chlorophyll concentration in Amaranthus vlitus: correlation with physiological processes. Russian Journal of Plant Physiology. 50(3): 395-397. DOI: https://doi.org/10.1023/A:1023886623645spa
dc.relation.referencesKhammari, I., Galavi, M., Ghanbari, A., Solouki, M., Poorchaman, M. 2012. The effect of drought stress and nitrogen levels on antioxidant enzymes, proline and yield of Indian Senna (Cassia angustifolia L.). Journal of Medicinal Plants Research. 11: 2125e2130. DOI: https://doi.org/10.5897/JMPR11.1105spa
dc.relation.referencesKhushboo., Bhardwaj, K., Singh, P., Raina, M., Sharma, V., Kumar, D. 2018. Exogenous application of calcium chloride in wheat genotypes alleviates negative effect of drought stress by modulating antioxidant machinery and enhanced osmolyte accumulation. In Vitro Cellular & Developmental Biology – Plant. 54:495–507. DOI: https://doi.org/10.1007/s11627-018-9912-3spa
dc.relation.referencesLaanemets, K., Brandt, B., Li, J., Merilo, E., Wang, Y.F., Keshwani, M.M., Taylor, S.S., Kollist, H., Schroeder, J.I., 2013. Calcium-Dependent and -Independent Stomatal Signaling Network and Compensatory Feedback Control of Stomatal Opening via Ca2+ Sensitivity Priming[W]. Plant Physiology. 163: 504–513spa
dc.relation.referencesLi, J., Z. Cang., Jiao, F., Bai, X., Zhang, D., Zhai, R., 2017a. Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. Journal of the Saudi Society of Agricultural Sciences. 16: 82-88. DOI: http://dx.doi.org/10.1016/j.jssas.2015.03.001spa
dc.relation.referencesLi, Z., Tan, X.F., Lu, K., Liu, Z.M., Wu, L.L., 2017b. The effect of CaCl2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Photosynthetica. 55(3): 553-560. DOI: 10.1007/s11099-016-0676-xspa
dc.relation.referencesLiu, F., Jensen, C.R., Shahanzari, A., Andersen, M.N., Jacobsen, S.E., 2005. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Science. 168: 831–836. DOI: 10.1016/j.plantsci.2004.10.016spa
dc.relation.referencesMADR (Ministerio de Agricultura y Desarrollo Rural). 2013. A un paso de ser Ley de la República, Proyecto que crea el Fondo para el Fomento de la Papa. https://BRw.minagricultura.gov.co/noticias/Paginas/A-un-paso-de-ser-Ley-de-la-Rep%C3%BAblica,-Proyecto-que-crea-el-Fondo-para-el-Fomento-de-la-Papa.aspx (Consulta 1 Julio 2019)spa
dc.relation.referencesMartínez, C., Moreno, U. 1992. Expresiones fisiológicas de resistencia a la sequía en dos variedades de papa sometidas a estrés hídrico en condiciones de campo. Revista Brasileira de Fisiologia Vegetal. 4(1): 33-38. Recuperado a partir de http://www.cnpdia.embrapa.br/rbfv/pdfs/v4n1p33.pdfspa
dc.relation.referencesMasoumi, A., Kafi, M., Khazaei, H., Davari, K. 2010. Effect of drought stress on water status, electrolyte leakage and enzymatic antioxidants of Kochia (Kochia scoparia) under saline condition. Pakistan Journal of Botany. 42(5): 3517-3524. DOI:spa
dc.relation.referencesMeise, P., Sedding, S., Uptmoor, R., Ordon, F., Schum, A. 2018. Impact of nitrogen supply on leaf water relations and physiological traits in a set of potato (Solanum tuberosum L.) cultivars under drought stress. Journal of agronomy and crop science. 1-16. DOI: 10.1111/jac.12266spa
dc.relation.referencesMorales, A., Morales, A., Rodriguez del Sol, D. 2016. Agronomical indicators for determination of potato (Solanum tuberosum L.) tolerance to drought. Agrisot. 22(1): 1-7.spa
dc.relation.referencesMunemasa, S., Hauser, F., Park, J., Waadt, R., Brandt, B., Schroeder, J. 2015. Mechanisms of abscisic acid-mediated control of stomata! aperture. Current Opinion in Plant Biology. 28: 154–162. DOI: 10.1016/j.pbi.2015.10.010spa
dc.relation.referencesNiño, C., 2017. Revista Papa. Fedepapa. 44: 1 -47.spa
dc.relation.referencesPardo, J.M., 2010. Biotechnology of water and salinity stress tolerance. Current Opinion in Biotechnology. 21(2): 185-196. DOI: https://doi.org/10.1016/j.copbio.2010.02.005spa
dc.relation.referencesPastenes, C., Pimentel, P., Lillo, J. 2005. Leaf movements and photoinhibition in relation to water stress in field-grown beans. Journal of Experimental Botany. 56(411): 425-433. DOI: https://doi.org/10.1093/jxb/eri061spa
dc.relation.referencesPérez-Pérez, J., Robles, J., Tovar, J., Botía, P. 2009. Response to drought and salt stress of lemon ‘Fino 49’ under field conditions: water relations, osmotic adjustment and gas exchange. Scientia Horticulturae. 122: 83–90. DOI: https://doi.org/10.1016/j.scienta.2009.04.009spa
dc.relation.referencesPieczynski, M., Marczewski, W., Hennig, J., Dolata, J., Bielewicz, D., Piontek, P., Wyrzykowska, A., Krusiewicz, D., Strzelczyk-Zyta, D., Konopka-Postupolska, D. Krzeslowska, M., Jarmolowski, A., Szweykowska-Kulinska, Z.. 2013. Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnology Journal. 11: 459–469. DOI: 10.1111/pbi.12032.spa
dc.relation.referencesRamírez, D., Rolando, J., Yactayo, W., Monneveux, P., Mares, V., Quiroz, R. 2015. Improving potato drought tolerance through the induction of long-term water stress memory. Plant Science. 238: 26-32. DOI: https://doi.org/10.1016/j.plantsci.2015.05.016spa
dc.relation.referencesRamírez-Gil, J.G., Morales-Osorio, J.G., 2018. Microbial dynamics in the soil and presence of the avocado wilt complex in plots cultivated with avocado cv. Hass under ENSO phenomena (El Niño – La Niña). Scientia Horticulturae. 240: 273-280. DOI: https://doi.org/10.1016/j.scienta.2018.06.047spa
dc.relation.referencesRezayian, M., Niknam, V., Ebrahimzadeh, H. 2018. Improving tolerance against drought in canola by penconazole and calcium. Pesticide Biochemistry and Physiology. 149: 123–136. DOI: https://doi.org/10.1016/j.pestbp.2018.06.007spa
dc.relation.referencesRodríguez, L., Ñústez, E., Estrada, N., 2009. Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana. 27(3): 289-303.spa
dc.relation.referencesRosielle, A., Hamblin, J. 1981. Theoretical aspect of selection for yield in stress and non-stress environment. Crop Science. 21: 943-946. DOI: https://doi.org/10.2135/cropsci1981.0011183X002100060033xspa
dc.relation.referencesRudack, K., Seddig, S., Sprenger, H., Köhl, K., Uptmoor, R., Ordon, F., 2017. Drought stress-induced changes in starch yield and physiological traits in potato. Journal of Agronomy and Crop Science. 1-12. DOI: https://doi.org/10.1111/jac.12224spa
dc.relation.referencesRuehr, N., Grote, R., Mayr, S., Arneth, A. 2019. Beyond the extreme: recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiology. 39: 1285–1299. DOI:10.1093/treephys/tpz032spa
dc.relation.referencesSchafleitner, R., Gutierrez, R., Espino, R., Gaudin, A., Pérez, J., Martínez, M., Domínguez, A., Tincopa, L., Alvarado, C., Numberto, G., Bonierbale, M., 2007. Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis. Potato Research. 50: 71–85. DOI: https://doi.org/10.1007/s11540-007-9030-9spa
dc.relation.referencesSchapire, A.L., Valpuesta, V., Botella, M.A., 2009. Plasma membrane repair in plants. Trends in Plant Science. 14(1): 654-652. DOI: 10.1016/j.tplants.2009.09.004spa
dc.relation.referencesSharma, P., Bhushan, J.A., Shnaker, D.R., Pessarakli, M., 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. DOI: http://dx.doi.org/10.1155/2012/217037spa
dc.relation.referencesSilva, E., Ferreira-Silvaa, E., Viégas, R., Gomes, R. 2010. The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants. Environmental and Experimental Botany. 69: 279–285. DOI: 10.1016/j.envexpbot.2010.05.001spa
dc.relation.referencesSingh, R., Parihar, P.., Singh, S., Mishra, R., Singh, V., Prasada, S. 2017. Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives. Redox Biology. 11: 213-218. DOI: 10.1016/j.redox.2016.11.006spa
dc.relation.referencesTeixeira, J., Pereira, S. 2006. High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation. Journal of Experimental Botany. 60: 121-126. DOI: 10.1016/j.envexpbot.2006.09.003spa
dc.relation.referencesWang, Y., Kang, Y., Ma, C., Miao, R., Wu, C., Long, Y., Ge, T., Wu, Z., Hou, X., Zhang, J., Qi, Z. 2017. CNGC2 is a Ca2+ influx channel that prevents accumulation of apoplastic Ca2+ in the leaf. Plant Physiol. 173: 1342–1354. DOI: 10.1104/pp.16.01222spa
dc.relation.referencesWang, Q., Yang, S., Wan, S., Li, X. 2019. The significance of calcium in photosynthesis. International Journal of Molecular Scinces. 20: 1353. DOI: 10.3390/ijms20061353spa
dc.relation.referencesWege, S., Gilliham, M. Henderson, S. 2017. Chloride: not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient. Journal of Experimental Botany. 68: 3057–3069. DOI: https://doi.org/10.1093/jxb/erx050spa
dc.relation.referencesYactayo, W., Ramírez, D. A., Gutiérrez, R., Mares, V., Posadas, A., Quiroz, R. 2013. Effect of partial root- zone drying irrigation timing on potato tuber yield and water use efficiency. Agricultural Water Management. 123: 65-70. DOI: https://doi.org/10.1016/j.agwat.2013.03.009spa
dc.relation.referencesAshraf, M., Akram, N., Al-Qurainy, F., Foolad, M. 2011. Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Advances in Agronomy. 111:249–296.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocEstrés de sequiaspa
dc.subject.agrovocdrought stresseng
dc.subject.agrovocRendimiento de cultivosspa
dc.subject.agrovoccrop yieldeng
dc.subject.agrovocCalciospa
dc.subject.agrovoccalciumeng
dc.subject.agrovocPapaspa
dc.subject.agrovocpotatoeseng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.proposalInicio de tuberizaciónspa
dc.subject.proposalTuber initiationeng
dc.subject.proposalEstado hídrico foliarspa
dc.subject.proposalLeaf water statuseng
dc.subject.proposalElectrolyte leakageeng
dc.subject.proposalPérdida de electrolitosspa
dc.subject.proposalConductancia estomáticaspa
dc.subject.proposalStomatal conductanceeng
dc.subject.proposalTuber yieldeng
dc.subject.proposalRendimiento en tubérculospa
dc.subject.proposalTolerancia al estrésspa
dc.subject.proposalStress toleranceeng
dc.titleEfecto de fuentes de calcio en parámetros fisiológicos y rendimiento de papa (Solanum tuberosum L., grupo Phureja) en condiciones de déficit hídricospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024550720.2020.pdf
Tamaño:
1.65 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: