Filogeografía comparada y taxonomía integrativa de seis especies de ranas arborícolas (Hylidae) ampliamente distribuidas en tierras bajas del norte de Sudamérica: en busca de nuevos enfoques que soporten decisiones de conservación

dc.contributor.advisorVargas Ramírez, Mario Alfonso
dc.contributor.authorSuárez Mayorga, Ángela Marcela
dc.contributor.contentproviderGantiva, Carlos
dc.contributor.datacollectorErnst, Raffael
dc.contributor.financerFundación Colombo Alemana de Ciencia y Tecnología
dc.contributor.financerMinCiencias - Colfuturo convocatoria doctorados 727
dc.contributor.financerUniversidad Nacional de Colombia
dc.contributor.researcherCastillo Rodríguez, Nicolás
dc.contributor.researchgroupBiodiversidad y Conservación Genéticaspa
dc.contributor.subjectmatterexpertFritz, Uwe
dc.date.accessioned2022-09-12T15:07:34Z
dc.date.available2022-09-12T15:07:34Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, graficas, mapasspa
dc.description.abstractEn este trabajo se evaluaron los linajes evolutivos, las distribuciones actuales y potenciales y la evolución de seis especies nominales de hílidos neotropicales de tierras bajas pertenecientes a los géneros Scarthyla, Scinax y Sphaenorhynchus, así como su potencial uso como indicadores para la toma de decisiones relacionadas con la conservación de sus hábitats. Para ello se propusieron hipótesis filogenéticas bajo inferencia bayesiana y de máxima verosimilitud utilizando cinco marcadores genéticos (tres mitocondriales y dos nucleares) y se plantearon hipótesis datadas por coalescencia que fueron comparadas con la información geológica y geográfica disponible sobre sus áreas de distribución. Para evaluar la diversidad real y la distribución de los linajes incluidos en tales especies nominales se calcularon redes de haplotipos, se hicieron descripciones morfológicas y morfométricas detalladas de los especímenes disponibles en colecciones biológicas y se construyeron modelos de distribución de especies, que además permitieron estimar las consecuencias de cambios ambientales sobre los linajes identificados. Como resultado principal se evidenció una asociación íntima entre la morfología, la biología de las especies y su preferencia por hábitats abiertos o arbolados en las localidades que ocupan que puede informar decisiones de conservación; se establecieron las relaciones filogenéticas dentro y entre los grupos de estudio y se ordenó la taxonomía de un grupo de ranas extenso y problemático por más de 30 años en el país; se identificaron 24 especies candidatas confirmadas incluidas en los seis nombres inicialmente considerados y con ello se detallaron e incrementaron las increíbles cifras de la biodiversidad conocida para el país. (Texto tomado de la fuente)spa
dc.description.abstractWe evaluated the evolutionary lineages, current and potential distributions and the evolution of six nominal species of lowland Neotropical hylids belonging to the genera Scarthyla, Scinax and Sphaenorhynchus, as well as their potential use as indicators for decision-making related to the conservation of their habitats. For this purpose, phylogenetic hypotheses were proposed under Bayesian and Maximum Likelihood (ML) inference using five genetic markers (three mitochondrial and two nuclear) and hypotheses dated by coalescence were proposed and compared with the available geological and geographical information on their distribution areas. To evaluate the real diversity and distribution of the lineages included in such nominal species, haplotype networks were calculated, detailed morphological and morphometric descriptions were made of the specimens available in biological collections and species distribution models were constructed, which also allowed estimating the consequences of environmental changes on the identified lineages. As a main result, an intimate association between morphology, species biology and their preference for open or forested habitats in the localities they occupy was evidenced, which can inform conservation decisions. Phylogenetic relationships within and among the study groups were established and the taxonomy of an extensive and problematic --for more than 30 years-- group of frogs in the country was sorted out, yielding 24 confirmed candidate species that were included in the six names initially considered, thus detailing and increasing the incredible known biodiversity of this corner of South Americaeng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Biologíaspa
dc.description.methodsSe utilizaron métodos estándar para el desarrollo de inferencias filogeográficas y evolutivas, incluyendo la construcción de hipótesis de parentesco con base en cinco fragmentos de genes (tres mitocondriales, 16S, 12S y COI, y dos nucleares, Rho y Tyr) utilizando inferencias bayesianas y de máxima verosimilitud (RaxML, MrBayes, Beast). Además se utilizaron algoritmos de discriminación de especies basados en las distancias genéticas y en la topología (mPTP y ABGD) y se construyeron redes de haplotipos nucleares para los diferentes grupos de especies morfológicamente similares utilizando parsimonia. Las inferencias moleculares fueron revisadas y precisadas con información morfológica, morfométrica y de hábitat gracias a la revisión de colecciones biológicas y se construyeron modelos de distribución de especies a partir de los registros genéticamente confirmados y los registros de presencia disponibles a través del Global Biodiversity Information Facility - GBIF.spa
dc.description.researchareaFilogeografía comparadaspa
dc.description.sponsorshipColciencias (hoy Ministerio de Ciencia, Tecnología e Innovación de Colombia) me otorgó una beca de formación doctoral a cinco años, en la convocatoria 727 de 2015. La Universidad Nacional de Colombia, a través de la Dirección Nacional de Investigaciones y de la Vicerrectoría de Investigaciones contribuyó con fondos para el desarrollo de la primera fase del proyecto doctoral (salidas de campo) y para la cofinanciación de la pasantía de investigación doctoral en Alemania, en conjunto con la Fundación Colombo-Alemana de Ciencia y Tecnología - Funcytca. El Instituto Senckenberg - Colecciones Zoológicas de Dresden proporcionó financiación, orientación, capacitación y acompañamiento técnico a través de su laboratorio de Filogeografía. Varias colecciones zoológicas y sus curadores o responsables en Europa y Colombia contribuyeron con el desarrollo del trabajo facilitando la revisión de material preservado y tejidos para los análisis, entre ellas Zoologische Staatssammlungen München, Naturkundemuseum Stuttgart y el Museo de Zoología de Dresden (MTD) en Alemiana, el Museo Nacional de Ciencias Naturales de Madrid (España), el Museo Andes, las Colecciones Zoológicas de Docencia de la Universidad del Valle, la Colección herpetológica del Instituto Alexander von Humboldt, y la Colección de Anfibios del Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, así como el Banco de Tejidos de la Biodiversidad del Instituto de Genética. Adicionalmente, el Instituto Sinchi proporcionó financiación y acompañamiento técnico en Guaviare para una salida de campo a su reserva biológica El Trueno.spa
dc.description.technicalinfoLa consulta de este documento debe realizarse siguiendo estrictamente la licencia. Los datos son de uso exclusivo de los autores de cada uno de los artículos hasta tanto no se encuentren oficialmente publicados.spa
dc.format.extentxxv, 224 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82277
dc.language.isospaspa
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Biologíaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Biologíaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAcosta-Galvis, A. R. (2018). Una nueva rana de huesos verdes del género Scinax (Anura: Hylidae) asociada a los bosques subandinos de la cuenca del río Magdalena, Colombia. Biota Colombiana, 19(s1), 129–157. https://doi.org/10.21068/c2018.v19s1a11spa
dc.relation.referencesAcosta-Galvis, A. R. (2021). Lista de los Anfibios de Colombia: Referencia en linea V.11.2021.spa
dc.relation.referencesAguiar, O., Bacci, M., Lima, A. P., Rossa-Feres, D. C., Haddad, C. F. B., & Recco-Pimentel, S. M. (2007). Phylogenetic relationships of Pseudis and Lysapsus (Anura, Hylidae, Hylinae) inferred from mitochondrial and nuclear gene sequences. Cladistics, 23(5), 455–463. https://doi.org/10.1111/j.1096-0031.2007.00154.xspa
dc.relation.referencesAndean decision 391 - Régimen común sobre acceso a recursos genéticos. , (1996). Comisión del Acuerdo de Cartagena y Comunidad Andina de Naciones - CAN.spa
dc.relation.referencesAngulo, A., & Icochea, J. (2010). Cryptic species complexes, widespread species and conservation: lessons from Amazonian frogs of the Leptodactylus marmoratus group (Anura: Leptodactylidae). Systematics and Biodiversity, 8(3), 357–370. https://doi.org/10.1080/14772000.2010.507264spa
dc.relation.referencesANLA. (2016). Reporte de alertas de la Zona Centro de la Cuenca Valle Medio Magdalena – ZCVMM. Bogotá, Colombia. Retrieved from http://www.anla.gov.co/documentos/biblioteca/reportezcvmm4-2.pdfspa
dc.relation.referencesAraujo-Vieira, K., Pombal Jr, J. P., Caramaschi, U., Novaes-e-Fagundes, G., Orrico, V. G. D., & Faivovich, J. (2020). A neotype for Hyla x ‑ signata Spix , 1824. Papéis Avulsos de Zoologia (São Paulo), 60(e20206056), 1–30. https://doi.org/http://doi.org/10.11606/1807-0205/2020.60.56spa
dc.relation.referencesAraujo‐Vieira, K., Blotto, B. L., Caramaschi, U., Haddad, C. F. B., Faivovich, J., & Grant, T. (2019). A total evidence analysis of the phylogeny of hatchet‐faced treefrogs (Anura: Hylidae: Sphaenorhynchus ). Cladistics, 35(5), 469–486. https://doi.org/10.1111/cla.12367spa
dc.relation.referencesArbeláez-Cortés, E. (2013). Knowledge of Colombian biodiversity: published and indexed. Biodiversity and Conservation. https://doi.org/10.1007/s10531-013-0560-yspa
dc.relation.referencesArtimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., … Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40(W1), W597–W603.spa
dc.relation.referencesAstwood-Romero, J. A., Álvarez-Perdomo, N., Parra-Torres, M. F., Rojas-Peña, J. I., Nieto-Vera, M. T., & Ardila-Robayo, M. C. (2016). Stomach contents in anurans species from Natural Reserves in the Villavicencio municipality, Meta, Colombia. Caldasia, 38(1), 165–181. https://doi.org/10.15446/caldasia.v38n1.57836spa
dc.relation.referencesAvise, J. C. (2000). Phylogeography: The history and formation of species. Cambridge, MA.: Harvard University Press.spa
dc.relation.referencesBarido-Sottani, J., Bošková, V., du Plessis, L., Kühnert, D., Magnus, C., Mitov, V., … Stadler, T. (2018). Taming the BEAST – A community teaching material resource for BEAST 2. Systematic Biology, 67(1), 170–174. https://doi.org/doi: 10.1093/sysbio/syx060spa
dc.relation.referencesBarrio-Amorós, C. L., Orellana, A., & Chacón-Ortiz, A. (2004). A new species of Scinax (Anura: Hylidae) from the Andes of Venezuela. Journal of Herpetology, 38(1), 105–112.spa
dc.relation.referencesBehrensmeyer, A. K., & Turner, A. (2013). Taxonomic occurrences of Dryophytes versicolor, Litoria and Pseudacris recorded in the Paleobiology Database.spa
dc.relation.referencesBensch, S., Stjernman, M., Hasselquist, D., Örjan, Ö., Hannson, B., Westerdahl, H., & Pinheiro, R. T. (2000). Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1452), 1583–1589. https://doi.org/10.1098/rspb.2000.1181spa
dc.relation.referencesBickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., … Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution, 22(3), 148–155. https://doi.org/10.1016/j.tree.2006.11.004spa
dc.relation.referencesBielby, J., Cooper, N., Cunningham, A. A., Garner, T. W. J., & Purvis, A. (2008). Predicting susceptibility to future declines in the world’s frogs. Conservation Letters, 1(2), 82–90. https://doi.org/10.1111/j.1755-263X.2008.00015.xspa
dc.relation.referencesBonilla González, J. C. (2015). Uso de ranas arborícolas (Osteocephalus spp.) como presa de cacería en dos comunidades indígenas del río Tiquié (Vaupés, Colombia). Universidad Nacional de Colombia.spa
dc.relation.referencesBoonstra, M., Ramos, M. I. F., Lammertsma, E. I., Antoine, P.-O., & Hoorn, C. (2015). Marine connections of Amazonia: Evidence from foraminifera and dinoflagellate cysts (early to middle Miocene, Colombia/Peru). Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 176–194. https://doi.org/10.1016/j.palaeo.2014.10.032spa
dc.relation.referencesBossuyt, F., & Milinkovitch, M. C. (2000). Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proceedings of the National Academy of Sciences, 97(12), 6585–6590. https://doi.org/doi: 10.1073/pnas.97.12.6585spa
dc.relation.referencesBouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., & Gavryushkina, A. et al. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS computational biology, 15(4), e1006650. PLoS Computational Biology, 15(4), e1006650.spa
dc.relation.referencesBrandley, M. C., Guiher, T. J., Pyron, R. A., Winne, C. T., & Burbrink, F. T. (2010). Does dispersal across an aquatic geographic barrier obscure phylogeographic structure in the diamond-backed watersnake (Nerodia rhombifer)? Molecular Phylogenetics and Evolution, 57(2), 552–560. https://doi.org/10.1016/j.ympev.2010.07.015spa
dc.relation.referencesBreuil, M., & Ibéné, B. (2008). Les Hylidés envahissants dans les Antilles françaises et le peuplement batrachologique naturel. Bulletin de La Société Herpétologique de France, 125, 41–67.spa
dc.relation.referencesCaminer, M., & Ron, S. (2014). Systematics of treefrogs of the Hypsiboas calcaratus and Hypsiboas fasciatus species complex (Anura, Hylidae) with the description of four new species. ZooKeys, 370, 1–68. https://doi.org/10.3897/zookeys.370.6291spa
dc.relation.referencesCastillo-Rodríguez, N., Suárez-Mayorga, Á. M., Gantiva, C., Fritz, U., & Vargas-Ramírez, M. (2020). The evolutionary lineages of “Scinax ruber” in the Magdalena Valley of Colombia: A step forward towards the understanding and implications of cryptic species complexes in the northern South America. Universidad Nacional de Colombia.spa
dc.relation.referencesChan, K. O., Hutter, C. R., Wood, P. L., Grismer, L. L., Das, I., & Brown, R. M. (2020). Gene flow creates a mirage of cryptic species in a Southeast Asian spotted stream frog complex. Molecular Ecology, 29(20), 3970–3987. https://doi.org/10.1111/mec.15603spa
dc.relation.referencesClement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657-1660.spa
dc.relation.referencesCollins, J. P., & Storfer, A. (2003). Global amphibian declines: sorting the hypotheses. Diversity and Distributions, 9, 89–98. Retrieved from http://files/162/Collins_Global_amphibian.pdfspa
dc.relation.referencesConte, C. E., Araujo-Vieira, K., Crivellari, L. B., & Berneck, B. V. M. (2016). A new species of Scinax Wagler (Anura: Hylidae) from Paraná, Southern Brazil. Zootaxa, 4193(2), 245–265. https://doi.org/10.11646/zootaxa.4193.2.3spa
dc.relation.referencesCope, E. D. (1874). On some Batrachia and Nematognathi brought from the upper Amazon by Prof. Orton. Proceedings of the Academy of Natural Sciences of Philadelphia, 26, 120–137.spa
dc.relation.referencesCope, E. D. (1975). On the batrachia and reptilia of Costa Rica : With notes on the herpetology and ichthyology of Nicaragua and Peru. Philadelphia: Journal of the Academy of Natural Sciences.spa
dc.relation.referencesCormagdalena. (2007). Atlas Cuenca del Río Grande de la Magdalena. Barrancabermeja: Corporación Autónoma Regional del Río Grande de la Magdalena.spa
dc.relation.referencesCorzo, G., Ramírez, W., Salamanca, B., Londoño, M. C., Fonseca, C., Castellanos, C., … García, H. (2010). Planeación ambiental para la conservación de la biodiversidad en las áreas operativas de Ecopetrol localizadas en el Magdalena Medio y los Llanos Orientales. Bogotá, Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt y Ecopetrol S.A. Retrieved from http://files/238/226_Planeacion ambiental_Ecopetrol_2010_cartilla.pdspa
dc.relation.referencesCrawford, A. J., Lips, K. R., & Bermingham, E. (2010). Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proceedings of the National Academy of Sciences, 107(31), 13777–13782. https://doi.org/10.1073/pnas.0914115107spa
dc.relation.referencesCruz-Piedrahita, C., Navas, C. A., & Crawford, A. J. (2018). Life on the Edge: A Comparative Study of Ecophysiological Adaptations of Frogs to Tropical Semiarid Environments. Physiological and Biochemical Zoology, 91(1), 740–756. https://doi.org/10.1086/695705spa
dc.relation.referencesDarriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772–772. https://doi.org/10.1038/nmeth.2109spa
dc.relation.referencesDarst, C. R., & Cannatella, D. C. (2004). Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 31(2), 462–475. https://doi.org/10.1016/j.ympev.2003.09.00spa
dc.relation.referencesDaudin, F. M. (1802). Histoire naturelle des rainettes, des grenouilles et des crapauds. Paris: Chez Levrault, Libraire, Quais Malaquaisspa
dc.relation.referencesDe la Parra, F., Pinzón, D., Rodríguez, G., Bedoya, O., & Benson, R. (2019). Lacustrine systems in the early Miocene of Northern South America —Evidence from the Upper Magdalena Valley, Colombia. PALAIOS, 34(10), 490–505. https://doi.org/10.2110/palo.2019.025spa
dc.relation.referencesDíaz, L. M., & Fong, A. (2001). A new mottled frog of the genus Eleutherodactylus (Anura: Leptodactylidae) from Eastern Cuba. Solenodon, 1(76–84).spa
dc.relation.referencesDuellman, W. E., Marion, A. B., & Hedges, S. B. (2016). Phylogenetics, classification, and biogeography of the treefrogs (Amphibia: Anura: Arboranae). In Zootaxa (Vol. 4104). https://doi.org/10.11646/zootaxa.4104.1.1spa
dc.relation.referencesDuellman, W. E., & Wiens, J. J. (1993). Hylid frogs of the genus Scinax Wagler, 1830, in Amazonian Ecuador and Peru. Occassional Papers of the Museum of Natural History, The University of Kansas, (153), 1–57.spa
dc.relation.referencesDuellman, William E. (1977). Liste der rezenten Amphibien und Reptilien. Hylidae, Centrolenidae, Pseudidae. In Das Tierreich: eine Zusammenstellung und Kennzeichnung der rezenten Tierformen : Liste der rezenten Amphibien und Reptilien : Testudines Crocodylia, Rhynchacephalia. Lief. 100 (Vol. 95). Berlin, Germany.spa
dc.relation.referencesDuellman, William Edward (Ed.). (1979). The South American Herpetofauna: Its Origin, Evolution, and Dispersal. Lawrence, Kansas: University of Kansas.spa
dc.relation.referencesDuméril, A. M. C., & Bibron, G. (1841). Erpétologie Genérale ou Histoire Naturelle Complète des Reptiles. Paris, France: Librarie Enclyclopedique de Roret.spa
dc.relation.referencesEdler, D., Klein, J., Antonelli, A., & Silvestro, D. (2021). raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution, 12(2), 373–377. https://doi.org/10.1111/2041-210X.13512spa
dc.relation.referencesEhlers, T. A., & Poulsen, C. J. (2009). Influence of Andean uplift on climate and paleoaltimetry estimates. Earth and Planetary Science Letters, 281(3–4), 238–248. https://doi.org/10.1016/j.epsl.2009.02.026spa
dc.relation.referencesEscalona, M., Prieto-Torres, D., & Rojas-Runjaic, F. J. M. (2017). Unveiling the geographic distribution of Boana pugnax (Schmidt, 1857) (Anura, Hylidae) in Venezuela: new state records, range extension, and potential distribution. Check List, 13(5), 671–681. https://doi.org/10.15560/13.5.671spa
dc.relation.referencesESRI. (2012). ArcGIS Desktop 10.1. Redlands CAspa
dc.relation.referencesFaivovich, J. (2002). A cladistic analysis of Scinax (Anura: Hylidae). Cladistics, 18(4), 367–393. https://doi.org/10.1111/j.1096-0031.2002.tb00157.xspa
dc.relation.referencesFaivovich, J., Haddad, C. F. B., García, P. C. A., Frost, D. R., & Wheeler, W. C. (2005). Systematic review of the frog family Hylidae, with special reference to Hylinae: Phylogenetic analysis and taxonomic revision. Bulletin of the American Museum of Natural History, (294), 240. Retrieved from http://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fresearch.amnh.org%2Fscicomp%2Fpdfs%2Fwheeler%2FFaivovich_etal2005.pdf&ei=bbwSUbipM5Di8gTx44HQAg&usg=AFQjCNFMMTuXopTJrdLqjMVHKjG0aV1lBw&bvm=bv.42080656,d.eWU&cspa
dc.relation.referencesFaivovich, J., Pereyra, M. O., Luna, M. C., Hertz, A., Blotto, B. L., Vásquez-Almazán, C. R., … Haddad, C. F. B. (2018). On the Monophyly and Relationships of Several Genera of Hylini (Anura: Hylidae: Hylinae), with Comments on Recent Taxonomic Changes in Hylids. South American Journal of Herpetology, 13(1), 1–32. https://doi.org/10.2994/SAJH-D-17-00115.1spa
dc.relation.referencesFeng, Y.-J., Blackburn, D. C., Liang, D., Hillis, D. M., Wake, D. B., Cannatella, D. C., & Zhang, P. (2017). Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary. Proceedings of the National Academy of Sciences, 114(29). https://doi.org/10.1073/pnas.1704632114spa
dc.relation.referencesFerrão, M., Colatreli, O., De Fraga, R., Kaefer, I. L., Moravec, J., & Lima, A. P. (2016). High species richness of scinax treefrogs (hylidae) in a threatened amazonian landscape revealed by an integrative approach. PLoS ONE, 11(11). https://doi.org/10.1371/journal.pone.0165679spa
dc.relation.referencesFerrão, M., de Fraga, R., Moravec, J., Kaefer, I. L., & Lima, A. P. (2018). A new species of Amazonian snouted treefrog (Hylidae: Scinax) with description of a novel species-habitat association for an aquatic breeding frog. PeerJ, 2018(2), 1–34. https://doi.org/10.7717/peerj.4321spa
dc.relation.referencesFick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086spa
dc.relation.referencesFigueredo Cardona, L. M., & Acosta Cantillo, F. (2008). Objetos de conservación de la flora y la vegetación de los cerros calizos costeros de la Reserva de la Biósfera Baconao, Santiago de Cuba. Foresta Veracruzana, 10(2), 9–16. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14057247spa
dc.relation.referencesFouquet, A., Gilles, A., Vences, M., Marty, C., Blanc, M., & Gemmell, N. J. (2007). Underestimation of Species Richness in Neotropical Frogs Revealed by mtDNA Analyses. PLoS ONE, 2(10), e1109. https://doi.org/10.1371/journal.pone.0001109spa
dc.relation.referencesFouquet, A., Leblanc, K., Framit, M., Réjaud, A., Rodrigues, M. T., Castroviejo-fisher, S., … Mueses-cisneros, J. J. (2021). Species diversity and biogeography of an ancient frog clade from the Guiana Shield (Anura: Microhylidae: Adelastes, Otophryne, Synapturanus) exhibiting spectacular phenotypic diversification. Biological Journal of the Linnean Society, XX, 1–24.spa
dc.relation.referencesFouquet, A., Recoder, R., Teixeira, M., Cassimiro, J., Amaro, R. C., Camacho, A., … Rodrigues, M. T. (2012). Molecular phylogeny and morphometric analyses reveal deep divergence between Amazonia and Atlantic Forest species of Dendrophryniscus. Molecular Phylogenetics and Evolution, 62(3), 826–838. https://doi.org/10.1016/j.ympev.2011.11.023spa
dc.relation.referencesFouquet, A., Santana Cassini, C., Fernando Baptista Haddad, C., Pech, N., & Trefaut Rodrigues, M. (2014). Species delimitation, patterns of diversification and historical biogeography of the Neotropical frog genus Adenomera (Anura, Leptodactylidae). Journal of Biogeography, 41(5), 855–870. https://doi.org/10.1111/jbi.12250spa
dc.relation.referencesFouquet, A., Vences, M., Salducci, M.-D., Meyer, A., Marty, C., Blanc, M., & Gilles, A. (2007). Revealing cryptic diversity using molecular phylogenetics and phylogeography in frogs of the Scinax ruber and Rhinella margaritifera species groups. Molecular Phylogenetics and Evolution, 43(2), 567–582. https://doi.org/10.1016/j.ympev.2006.12.006spa
dc.relation.referencesFouquette, M. J. J., & Pyburn, W. F. (1972). A new Colombian treefrog of the Hyla rubra complex. Herpetologica, 28(2), 176–181.spa
dc.relation.referencesFrost, D. R. (2021). Amphibian species of the World: an online reference. Retrieved April 14, 2021, from Version 6.1 website: https://amphibiansoftheworld.amnh.org/index.phpspa
dc.relation.referencesFunk, W. C., Caminer, M., & Ron, S. R. (2011). High levels of cryptic species diversity uncovered in Amazonian frogs. Proceedings of the Royal Society B: Biological Sciences, 279(1734), 1806–1814. https://doi.org/10.1098/rspb.2011.1653spa
dc.relation.referencesGarzón, N. V., & Gutiérrez, J. C. (2013). Deterioro de humedales en el Magdalena medio: un llamado para su conservación. Bogotá, Colombia: Fundación Alma – Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Retrieved from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj0vJumtd7wAhWgGVkFHQu2B6AQFjABegQIAhAD&url=http%3A%2F%2Frepository.humboldt.org.co%2Fbitstream%2F20.500.11761%2F31386%2F1%2F236.pdf&usg=AOvVaw1qdJcVRTGl56Hh_rLUIltQspa
dc.relation.referencesGehara, M., Crawford, A. J., Orrico, V. G. D., Rodríguez, A., Lötters, S., Fouquet, A., … Köhler, J. (2014). High Levels of Diversity Uncovered in a Widespread Nominal Taxon: Continental Phylogeography of the Neotropical Tree Frog Dendropsophus minutus. PLoS ONE, 9(9), e103958. https://doi.org/10.1371/journal.pone.0103958spa
dc.relation.referencesGiovanelli, J. G. R., de Siqueira, M. F., Haddad, C. F. B., & Alexandrino, J. (2010). Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods. Ecological Modelling, 221(2), 215–224. https://doi.org/10.1016/j.ecolmodel.2009.10.009spa
dc.relation.referencesGiraldo-Cañas, D. (2014). Riqueza y distribución altitudinal de gramíneas C3 y C4 en la Guayana venezolana. Revista Ciencia En Desarrollo, 5(1), 77–84spa
dc.relation.referencesGrant, T. (2019). Outgroup sampling in phylogenetics: Severity of test and successive outgroup expansion. Journal of Zoological Systematics and Evolutionary Research, 57(4), 748–763spa
dc.relation.referencesGregory-Wodziki, K. M. (2000). Uplift history of the Central and Northern Andes: A review. GSA Bulletin, 112(7), 1091–1105. Retrieved from http://files/1197/Wodziky 2000.pdfspa
dc.relation.referencesGroot, H., Muñoz-Camargo, C., Moscoso, J., Riveros, G., Salazar, V., Kaston Florez, F., & Mitrani, E. (2012). Skin micro-organs from several frog species secrete a repertoire of powerful antimicrobials in culture. Journal of Antibiotics, 65(9), 461–467. https://doi.org/10.1038/ja.2012.50spa
dc.relation.referencesGuarnizo, C. E., Paz, A., Muñoz, A., Flechas, S. V, & Crawford, A. J. (2015). DNA Barcoding Survey of Anurans across the Eastern Cordillera of Colombia and the Impact of the Andes on Cryptic Diversity. 1–20. https://doi.org/10.5061/dryad.k4q1qspa
dc.relation.referencesGüiza Suárez, L., & Aristizabal, J. D. (2013). Mercury and gold mining in Colombia: a failed state. Universitas Scientiarum, 18(1). https://doi.org/10.11144/Javeriana.SC18-1.mgmspa
dc.relation.referencesHaddad, C. F. B., & Prado, C. P. A. (2005). Reproductive Modes in Frogs and Their Unexpected Diversity in the Atlantic Forest of Brazil. BioScience, 55(3), 207–217. Retrieved from http://files/160/Haddad y Prado Reprod Modes 2005.pdfspa
dc.relation.referencesHall, T. (2005). BioEdit: Biological sequence alignmet editor for Win95/98/NT/2K/XP. Carlsbad, CA, USA: Ibis Therapeuticsspa
dc.relation.referencesHammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 1–9spa
dc.relation.referencesHarold, A. S., & Mooi, R. D. (1994). Areas of Endemism: Definition and Recognition Criteria. Systematic Biology, 43(2), 261. https://doi.org/10.2307/2413466spa
dc.relation.referencesHernández-Camacho, J., Hurtado G., A., Ortiz Quijano, R., & Walschburger, T. (1992). Unidades biogeográficas de Colombia. In G. Halffter (Ed.), La diversidad biológica de Iberoamérica (pp. 105–152). Retrieved from http://files/1613/DiversidadBiologicaIberoamerica1992.pdfspa
dc.relation.referencesHickerson, M. J., Carstens, B. C., Cavender-Bares, J., Crandall, K. A., Graham, C. H., Johnson, J. B., … Yoder, A. D. (2010). Phylogeography’s past, present, and future: 10 years after Avise, 2000. Molecular Phylogenetics and Evolution, 54(1), 291–301. https://doi.org/10.1016/j.ympev.2009.09.016spa
dc.relation.referencesHof, C., Araújo, M. B., Jetz, W., & Rahbek, C. (2011). Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 1–6. https://doi.org/10.1038/nature10650spa
dc.relation.referencesHoogmoed, M. S. (2018). On the identity of Hyla zernyi Ahl 1933 (Anura: Hylidae) from Taperinha, Pará, Brazil. Zoologischer Anzeiger, 278, 80–83.spa
dc.relation.referencesHoogmoed, M. S., & Grüber, U. (1983). Spix and Wagler type specimens of reptiles and amphibians in the Natural History Musea in Munich (Germany) and Leiden (the Netherlands). Spixiana, 9(Suplement 9), 319–415.spa
dc.relation.referencesHoorn, C, Wesselingh, F. P., Steege, H. ter, Bermudez, M. A., Mora, A., Sevink, J., … Antonelli, A. (2010). Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science, 330(6006), 927–931. https://doi.org/10.1126/science.1194585spa
dc.relation.referencesHoorn, Carina, Bogotá-A, G. R., Romero-Baez, M., Lammertsma, E. I., Flantua, S. G. A., Dantas, E. L., … Chemale, F. (2017). The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global and Planetary Change, 153, 51–65. https://doi.org/10.1016/j.gloplacha.2017.02.005spa
dc.relation.referencesHutter, C. R., Guayasamin, J. M., & Wiens, J. J. (2013). Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. Ecology Letters, 16(9), 1135–1144. https://doi.org/10.1111/ele.12148spa
dc.relation.referencesInsel, N., Poulsen, C. J., & Ehlers, T. A. (2010). Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Climate Dynamics, 35(7–8), 1477–1492. https://doi.org/10.1007/s00382-009-0637-1spa
dc.relation.referencesIsaac, N. J. B., Redding, D. W., Meredith, H. M., & Safi, K. (2012). Phylogenetically-Informed Priorities for Amphibian Conservation. PLoS ONE, 7(8), 1–8. https://doi.org/10.1371/journal.pone.0043912spa
dc.relation.referencesIUCN SSC Amphibian Specialist Group. (2020). Scinax elaeochroa. In The IUCN Red List of Threatened Species 2020. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2020-1.RLTS.T55952A54348386.enspa
dc.relation.referencesJansen, M., Bloch, R., Schulze, A., & Pfenninger, M. (2011). Integrative inventory of Bolivia’s lowland anurans reveals hidden diversity. Zoologica Scripta, 40(6), 567–583. https://doi.org/10.1111/j.1463-6409.2011.00498.xspa
dc.relation.referencesJaramillo-Justinico, A., & Rangel-Ch, J. O. (2014). Las unidades del paisaje y los bloques del territorio de la Orinoquía. In J. O. Rangel-Ch (Ed.), Colombia Diversidad Biótica XIV. La Región de la Orinoquía de Colombia. (1st ed., pp. 71–152). Bogotá, Colombia: Universidad Nacional de Colombia - Instituto de Ciencias Naturales.spa
dc.relation.referencesJaramillo, C. (2019). 140 Million Years of Tropical Biome Evolution. In J. Gómez & E. O. Pinilla-Pachón (Eds.), The geology of Colombia: Vol. 2 Mesozoic (Electronic, pp. 209–236). Servicio Geológico Colombiano. https://doi.org/https://doi.org/10.32685/publ.esp362019.06spa
dc.relation.referencesJaramillo, C., Romero, I., D’Apolito, C., Bayona, G., Duarte, E., Louwye, S., … Wesselingh, F. P. (2017). Miocene flooding events of western Amazonia. Science Advances, 3(5), 1–12. https://doi.org/10.1126/sciadv.1601693spa
dc.relation.referencesJenkins, C. N., Pimm, S. L., & Joppa, L. N. (2013). Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences, 110(28), E2602–E2610. https://doi.org/10.1073/pnas.1302251110spa
dc.relation.referencesJoglar, R. L. (1998). Los Coquiés de Puerto Rico. Su Historia Natural y Conservación. San Juan: Editorial de la Universidad de Puerto Ricospa
dc.relation.referencesKapli, T. ., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., & Flouri, T. (2016). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33(11), 1630–1638. https://doi.org/10.1093/bioinformatics/btx025spa
dc.relation.referencesKay, R. F. (2013). Biogeography in deep time – What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution? Molecular Phylogenetics and Evolution. https://doi.org/10.1016/j.ympev.2013.12.002spa
dc.relation.referencesKim, K. C., & Byrne, L. B. (2006). Biodiversity loss and the taxonomic bottleneck: Emerging biodiversity science. Ecological Research, 21(6), 794–810. https://doi.org/10.1007/s11284-006-0035-7spa
dc.relation.referencesKöhler, G. (2011). Amphibians of Central America. Herpeton Verlag Elke Kohler.spa
dc.relation.referencesKöhler, J., Glaw, F., Pabijan, M., & Vences, M. (2015). Integrative taxonomic revision of mantellid frogs of the genus Aglyptodactylus (Anura: Mantellidae). Zootaxa, 4006(3), 401–438. https://doi.org/10.11646/zootaxa.4006.3.1spa
dc.relation.referencesBell, R. C., Brasileiro, C. A., Haddad, C. F. B., & Zamudio, K. R. (2012). Evolutionary history of Scinax treefrogs on land-bridge islands in south-eastern Brazil. Journal of Biogeography, 39(9), 1733–1742. https://doi.org/10.1111/j.1365-2699.2012.02708.xspa
dc.relation.referencesCaminer, M., Milá, B., Jansen, M., Fouquet, A., Venegas, P. J., Chávez, G., … Ron, S. R. (2017). Systematics of the Dendropsophus leucophyllatus species complex (Anura: Hylidae): Cryptic diversity and the description of two new species. PLoS ONE, 12(3). https://doi.org/10.1371/journal.pone.0171785spa
dc.relation.referencesGlaw, F., & Franzen, M. (2006). Type catalogue of amphibians in the Zoologische Staatssammlung München. Spixiana, 29(2), 153–192.spa
dc.relation.referencesKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X : Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096spa
dc.relation.referencesLanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772–773.spa
dc.relation.referencesLarmuseau, M. H. D., Huyse, T., Vancampenhout, K., Van Houdt, J. K. J., & Volckaert, F. A. M. (2010). High molecular diversity in the rhodopsin gene in closely related goby fishes: A role for visual pigments in adaptive speciation? Molecular Phylogenetics and Evolution, 55(2), 689–698. https://doi.org/10.1016/j.ympev.2009.10.007spa
dc.relation.referencesLaurenti, J. N. (1768). Specimen medicum, exhibens synopsin reptilium emendatam cum experimentis circa venena et antidota reptilium austriacorum. Viena: Joan. Thom de Trattnern.spa
dc.relation.referencesLeigh, J. W., & Briant, D. (2015). PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116.spa
dc.relation.referencesLeón, J. R. (1975). Desarrollo temprano y notas sobre la historia natural de la larva de Hyla x-signata (Amphibia: Hylidae). Caribbean Journal of Science, 15(1–2), 57–65.spa
dc.relation.referencesLötters, S., La Marca, E., & Vences, M. (2004). Redescriptions of two toad species of the genus Atelopus from coastal Venezuela. Copeia, 2004(2), 222–234.spa
dc.relation.referencesLourenço, A. C. C., Zina, J., Catroli, G. F., Kasahara, S., Faivovich, J., & Haddad, C. F. . (2016). A new species of the Scinax catharinae group (Anura: Hylidae) from southeastern Brazil. Zootaxa, (4154), 415–435.spa
dc.relation.referencesLourenço, L. B., Targueta, C. P., Baldo, D., Nascimento, J., Garcia, P. C. A., Andrade, G. V., … Recco-Pimentel, S. M. (2015). Phylogeny of frogs from the genus Physalaemus (Anura, Leptodactylidae) inferred from mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution, 92, 204–216. https://doi.org/10.1016/j.ympev.2015.06.011spa
dc.relation.referencesLynch, J. D. (2006). The tadpoles of frogs and toads found in the lowlands of Northern Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 30(116), 443–457. Retrieved from http://files/146/Tadpoles northern Colombia Lynch 2006.pdfspa
dc.relation.referencesLynch, J. D., & Suárez-Mayorga, Á. M. (2004). Anfibios en el Chocó biogeográfico. Colombia Diversidad Biótica, IV, 633–667. Retrieved from http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=BAC.xis&method=post&formato=2&cantidad=1&expresion=mfn=044568spa
dc.relation.referencesLynch, J. D., & Suárez Mayorga, A. M. (2011). Clave ilustrada de los renacuajos en las tierras bajas al oriente de los Andes, con énfasis en Hylidae. Caldasia, 33(1), 235–270.spa
dc.relation.referencesLyra, M. L., Haddad, C. F. B., & de Azeredo-Espin, A. M. L. (2017). Meeting the challenge of DNA barcoding Neotropical amphibians: polymerase chain reaction optimization and new COI primers. Molecular Ecology Resources, 17(5). https://doi.org/10.1111/1755-0998.12648spa
dc.relation.referencesMaciel, N. M., Collevatti, R. G., Colli, G. R., & Schwartz, E. F. (2010). Late Miocene diversification and phylogenetic relationships of the huge toads in the Rhinella marina (Linnaeus, 1758) species group (Anura: Bufonidae). Molecular Phylogenetics and Evolution, 57(2), 787–797. https://doi.org/10.1016/j.ympev.2010.08.025spa
dc.relation.referencesMargules, C. R., Pressey, R. L., & Williams, P. H. (2002). Representing biodiversity: data and procedures for identifiying priority areas for conservation. Journal of Biosciences, 27(Suppl. 2), 309–326. Retrieved from http://files/114/MargulesIdentifyinhPriorityAreas.pdfspa
dc.relation.referencesMatos-Maraví, P. F., Peña, C., Willmott, K. R., Freitas, A. V. L., & Wahlberg, N. (2013). Systematics and evolutionary history of butterflies in the “Taygetis clade” (Nymphalidae: Satyrinae: Euptychiina): towards a better understanding of Neotropical biogeography. Molecular Phylogenetics and Evolution, 66(1), 54–68. https://doi.org/10.1016/j.ympev.2012.09.005spa
dc.relation.referencesMayr, E. (1982). The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Cambridge, MA and London.: Belknap Press of Harvard University Press.spa
dc.relation.referencesMedina-Rangel, G. F., Méndez-Galeano, M. A., & Calderón Espinosa, M. L. (2019). Herpetofauna of San José del Guaviare, Guaviare, Colombia. Biota Colombiana, 20(1), 75–90. https://doi.org/10.21068/c2019.v20n01a05spa
dc.relation.referencesMendez-Narvaez, J., Ortiz-Navia, J. O., & Bolívar-G., W. (2014). Hypsiboas pugnax Schmidt, 1857 and Scinax ruber Laurenti, 1768 (Amphibia: Anura): Distribution extension in the Río Cauca Valley, Colombia. Check List, 10(2), 409. https://doi.org/10.15560/10.2.409spa
dc.relation.referencesMenezes, L., Canedo, C., Batalha-Filho, H., Garda, A. A., Gehara, M., & Napoli, M. F. (2016). Multilocus phylogeography of the treefrog Scinax eurydice (Anura, Hylidae) reveals a plio-pleistocene diversification in the Atlantic forest. PLoS ONE, 11(6), 1–20. https://doi.org/10.1371/journal.pone.0154626spa
dc.relation.referencesMora, J. A., Oncken, O., Le Breton, E., Mora, A., Veloza, G., Vélez, V., & de Freitas, M. (2018). Controls on forearc basin formation and evolution: Insights from Oligocene to Recent tectono-stratigraphy of the Lower Magdalena Valley basin of northwest Colombia. Marine and Petroleum Geology, 97, 288–310. https://doi.org/10.1016/j.marpetgeo.2018.06.032spa
dc.relation.referencesMoravec, J., Arista Tuanama, I., Pérez, P. E., & Lehr, E. (2009). A New Species of Scinax (Anura: Hylidae) from the Area of Iquitos, Amazonian Peru . South American Journal of Herpetology, 4(1), 9–16. https://doi.org/10.2994/057.004.0102spa
dc.relation.referencesMori, S. (2013). Flora Brasiliensis: How a 19th-Century Flora Continues to Inspire. Science (New York, N.Y.): Plant talk inside the New York Botanical Garden.spa
dc.relation.referencesMorrone, J. J. (2014). Biogeographical regionalisation of the neotropical region. Zootaxa. https://doi.org/10.11646/zootaxa.3782.1.1spa
dc.relation.referencesMotta, J., Menin, M., Almeida, A. P., Hrbek, T., & Pires Farias, I. (2018). When the unknown lives next door: A study of central Amazonian anurofauna. Zootaxa, 4438(1), 79–104. https://doi.org/10.11646/zootaxa.4438.1.3spa
dc.relation.referencesMüller, L. (1927). Amphibien und Reptilien der Ausbeute Prof. Bresslau’s in Brasilien 1913-1914. Abhandlungen Der Senckenbergischen Naturforschenden Gesellschaft, 40(3), 259–282.spa
dc.relation.referencesMüller, P. (1973). The dispersal centres of terrestrial vertebrates in the Neotropical realm: A study in the evolution of the Neotropical biota and its native landscapes. Junk, The Hague.spa
dc.relation.referencesMuñoz-Guerrero, J., Serrano, V. H., & Ramírez-Pinilla, M. P. (2007). Uso de microhábitat, dieta y tiempo de actividad en cuatro especies simpátricas de ranas hílidas neotropicales (Anura:Hylidae). Caldasia, 29(2), 413–425. Retrieved from http://files/1306/DietayMicrohabitatHylidaeCO.pdfspa
dc.relation.referencesNieto-Castro, M. J. (1996). Estudio anatómico y taxonómico del género Scinax (Amphibia: Anura) en Colombia. Universidad Nacional de Colombia.spa
dc.relation.referencesNieto-Castro, M. J. (1999). Estudio preliminar de las especies del género Scinax (Amphibia: Anura: Hylidae) en Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23(Supl. Especial.), 339–346.spa
dc.relation.referencesNogueira, L., Solé, M., Siqueira, S., Affonso, P. R. A. de M., Strüssmann, C., & Sampaio, I. (2016). Genetic analysis reveals candidate species in the Scinax catharinae clade (Amphibia: Anura) from Central Brazil. Genetics and Molecular Biology, 39(1), 49–53. https://doi.org/10.1590/1678-4685-GMB-2015-0037spa
dc.relation.referencesNori, J., Lemes, P., Urbina-Cardona, N., Baldo, D., Lescano, J., & Loyola, R. (2015). Amphibian conservation, land-use changes and protected areas: A global overview. Biological Conservation, 191(367–374).spa
dc.relation.referencesNowakowski, A. J., Watling, J. I., Thompson, M. E., Brusch, G. A., Catenazzi, A., Whitfield, S. M., … Todd, B. D. (2018). Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecology Letters, 21(3), 345–355. https://doi.org/10.1111/ele.12901spa
dc.relation.referencesOchoa, D., Hoorn, C., Jaramillo, C., Bayona, G., Parra, M., & De la Parra, F. (2012). The final phase of tropical lowland conditions in the axial zone of the Eastern Cordillera of Colombia: Evidence from three palynological records. Journal of South American Earth Sciences, 39, 157–169. https://doi.org/10.1016/j.jsames.2012.04.010spa
dc.relation.referencesOksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … Wagner, H. (2019). vegan: Community Ecology Package. Retrieved from https://cran.r-project.org/package=veganspa
dc.relation.referencesPalumbi, S. R., Martin, A., Romano, S., McMillan, W. O., Stice, L., & Grabowski, G. (1991). The Simple Fool’s Guide to PCR. Honolulu: Department of Zoology, University of Hawaii.spa
dc.relation.referencesPeters, W. (1873). Uber die von Spix in Brasilien gesammelten Batrachier des Königlichen Naturalienkabinetts zu München. In Sitzung der physikalisch-mathematischen Klasse (pp. 196–227). Berlin, Germany: Königliche Akademie der Wissenschaften.spa
dc.relation.referencesPhillips, S. J., Dudík, M., & Schapire, R. E. (2020). Maxent software for modeling species niches and distributions (Version 3.4.1). American Museum of Natural History. Retrieved from https://biodiversityinformatics.amnh.org/open_source/maxent/spa
dc.relation.referencesPimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., … Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science (New York, N.Y.), 344(6187), 1246752. https://doi.org/10.1126/science.1246752spa
dc.relation.referencesPizano, C., González-M., R., López, R., Jurado, R. D., Cuadros, H., Castaño-Naranjo, A., … García, H. (2016). El bosque seco tropical en Colombia. In Biodiversidad 2015. Estado y tendencias de la biodiversidad continental de Colombia (pp. 21–22). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. https://doi.org/10.21068/B001.2015.202spa
dc.relation.referencesPuillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21(8), 1864–1877. https://doi.org/DOI: 10.1111/j.1365-294X.2011.05239.xspa
dc.relation.referencesPyron, R A, & Wiens, J. J. (2013). Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proceedings of the Royal Society B: Biological Sciences, 280(1770), 20131622. https://doi.org/10.1098/rspb.2013.1622spa
dc.relation.referencesPyron, Robert Alexander, & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61(2), 543–583. https://doi.org/10.1016/j.ympev.2011.06.012spa
dc.relation.referencesRakotoarison, A., Scherz, M. D., Glaw, F., Köhler, J., Andreone, F., Franzen, M., … Vences, M. (2017). Describing the smaller majority: Integrative taxonomy reveals twenty-six new species of tiny microhylid frogs (genus Stumpffia) from Madagascar. Vertebrate Zoology, 67(3), 271–398. https://doi.org/10.5281/zenodo.3338100spa
dc.relation.referencesRambaut, A. (2018). FigTree: Tree figure drawing tool. Institute of Evolutionary Biology, University of Edimburg. Retrieved from http://tree.bio.ed.ac.uk/spa
dc.relation.referencesRambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032spa
dc.relation.referencesRapport, D. (1998). Assessing ecosystem health. Trends in Ecology & Evolution, 13(10), 397–402. https://doi.org/10.1016/S0169-5347(98)01449-9spa
dc.relation.referencesRapport, D. J. (1992). Evaluating ecosystem health. Journal of Aquatic Ecosystem Health, 1, 15–24.spa
dc.relation.referencesRasanen, M. E., Linna, A. M., Santos, J. C. R., & Negri, F. R. (1995). Late Miocene Tidal Deposits in the Amazonian Foreland Basin. Science, 269(5222), 386–390. https://doi.org/10.1126/science.269.5222.386spa
dc.relation.referencesReyes Gutiérrez, M. A. (2006). Propuesta para una metodología para la determinación de objetivos de conservacion en áreas a proteger: el caso de la laguna de Sonso, Colombia (Universidad Internacional de Andalucía). Universidad Internacional de Andalucía, Santiago de Cali, Colombia. Retrieved from http://dspace.unia.es/bitstream/10334/221/1/0076_Reyes.pdfspa
dc.relation.referencesRibas, C. C., Gaban-Lima, R., Miyaki, C. Y., & Cracraft, J. (2005). Historical biogeography and diversification within the Neotropical parrot genus Pionopsitta (Aves: Psittacidae). Journal of Biogeography, 32(8), 1409–1427. https://doi.org/10.1111/j.1365-2699.2005.01289.xspa
dc.relation.referencesRivadeneira, C. D., Venegas, P. J., & Ron, S. R. (2018). Species limits within the widespread amazonian treefrog Dendropsophus parviceps with descriptions of two new species (Anura, Hylidae). ZooKeys, 2018(726), 25–77. https://doi.org/10.3897/zookeys.726.13864spa
dc.relation.referencesRivera-Correa, M., & Faivovich, J. (2013). A New Species of Hyloscirtus (Anura: Hylidae) from Colombia, with a Rediagnosis of Hyloscirtus larinopygion (Duellman, 1973). Herpetologica, 69(3). https://doi.org/10.1655/HERPETOLOGICA-D-12-00059spa
dc.relation.referencesRivera-Correa, M., & Orrico, V. G. D. (2013). Description and phylogenetic relationships of a new species of treefrog of the Dendropsophus leucophyllatus group (Anura: Hylidae) from the Amazon basin of Colombia and with an exceptional color pattern. Zootaxa, 3686(4), 447. https://doi.org/10.11646/zootaxa.3686.4.3spa
dc.relation.referencesRodríguez-Cabrera, T. M., García-Padrón, L. Y., Acosta Galvis, A. R., de Sá, R. O., & Alonso Bosch, R. (2018). First record of the genus Leptodactylus (Anura: Leptodactylidae) in Cuba: Leptodactylus fragilis, a biological invasion? Journal of Natural History, 52(29–30), 1883–1892. https://doi.org/10.1080/00222933.2018.1498549spa
dc.relation.referencesRodríguez-Muñoz, E., Montes, C., & Crawford, A. J. (2020). Synthesis of geological and comparative phylogeographic data point to climate, not mountain uplift, as driver of divergence across the Eastern Andean Cordillera. https://doi.org/doi: https://doi.org/10.1101/2020.01.14.906982spa
dc.relation.referencesRojas, R. R., Fouquet, A., De Carvalho, V. T., Ron, S., Chaparro, J. C., Vogt, R. C., … Hrbek, T. (2018). Redescription of the Amazonian tiny tree toad Amazophrynella minuta (Melin, 1941) (Anura: Bufonidae) from its type locality. Zootaxa, 4482(3). https://doi.org/10.11646/zootaxa.4482.3.4spa
dc.relation.referencesRojas, R. R., Fouquet, A., Ron, S. R., Hernández-Ruz, E. J., Melo-Sampaio, P. R., Chaparro, J. C., … Hrbek, T. (2018). A Pan-Amazonian species delimitation: high species diversity within the genus Amazophrynella (Anura: Bufonidae). PeerJ, 6, e4941. https://doi.org/10.7717/peerj.4941spa
dc.relation.referencesRomán-Palacios, C., Fernández-Garzón, S., Hernández, M., Ishida-Castañeda, J., Gallo-Franco, J. J., Bolívar-García, W., & Giraldo, A. (2016). Use of microhábitat by anurans in an intervened dry forest fragment of the Magdalena Medio area in Guarinocito, Caldas. Boletin Cientifico Del Centro de Museos, 20(2), 181–196. https://doi.org/10.17151/bccm.2016.20.2.14spa
dc.relation.referencesRon, S. R., Duellman, W. E., Caminer, M., & Pazmiño, D. (2018). Advertisement calls and DNA sequences reveal a new species of Scinax (Anura: Hylidae) on the Pacific lowlands of Ecuador. PLoS ONE, 13(9), 1–26. https://doi.org/10.1371/journal.pone.0203169spa
dc.relation.referencesRon, S., Venegas, P. J., Toral, E., Read, V. M., Ortiz, D., & Manzano, A. (2012). Systematics of the Osteocephalus buckleyi species complex (Anura, Hylidae) from Ecuador and Peru. ZooKeys, 229(0), 1–52. https://doi.org/10.3897/zookeys.229.3580spa
dc.relation.referencesRonquist, F. R., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., … Huelsenbeck, J. P. (2012). MrBayes 3 . 2 : Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029spa
dc.relation.referencesRozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-García, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Molecular Biology and Evolution, 34, 3299–3302.spa
dc.relation.referencesRStudio Team. (2019). RStudio: Integrated Development for R. Boston, MA. Retrieved from http://www.rstudio.com/spa
dc.relation.referencesRuiz-Carranza, P. M., Ardila-Robayo, M. C., & Lynch, J. D. (1996). Lista actualizada de la fauna de amphibia de Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 20(77), 365–415.spa
dc.relation.referencesRull, V. (2011). Neotropical biodiversity: timing and potential drivers. Trends in Ecology & Evolution, 26(10), 508–513. https://doi.org/10.1016/j.tree.2011.05.011spa
dc.relation.referencesSalducci, M.-D., Marty, C., Fouquet, A., & Gilles, A. (2005). Phylogenetic relationships and biodiversity in Hylids (Anura: Hylidae) from French Guiana. Comptes Rendus Biologies, 328(10–11), 1009–1024. https://doi.org/10.1016/j.crvi.2005.07.005spa
dc.relation.referencesSánchez Núñez, E. (2006). Conocimiento tradicional mazahua de la herpetofauna: un estudio etno-zoológico en la Reserva de la Biósfera Mariposa Monarca, México. Estudios Sociales, 15(28), 44–66. Retrieved from http://files/228/AnfibiosComunidadesTradMexico.pdfspa
dc.relation.referencesSantorelli, S., Magnusson, W. E., & Deus, C. P. (2018). Most species are not limited by an Amazonian river postulated to be a border between endemism areas. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-20596-7spa
dc.relation.referencesSarkar, D. (2008). Lattice: Multivariate Data Visualization with R. New York: Springer.spa
dc.relation.referencesSarmiento, G., Puentes, J., & Sierra, C. E. (2015). Evolución Geológica y Estratigrafía del Sector Norte del Valle Medio del Magdalena. Geología Norandina, (12), 51–82.spa
dc.relation.referencesSayre, R., Karagulle, D., Frye, C., Boucher, T., Wolff, N. H., Breyer, S., … Possingham, H. (2020). An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems. Global Ecology and Conservation, 21, 1–21. https://doi.org/10.1016/j.gecco.2019.e00860spa
dc.relation.referencesSchlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H. (2010). Integrative Taxonomy: A Multisource Approach to Exploring Biodiversity. Annual Review of Entomology, 55(1), 421–438. https://doi.org/10.1146/annurev-ento-112408-085432spa
dc.relation.referencesSeba, A. (1735). Tabula sexagesima et octava. V.2 No. 5. In Locupletissimi rerum naturalium thesauri accurata descriptio, et iconibus artificiosissimis expressio, per universam physices historiam : opus, cui, in hoc rerum genere, nullum par exstitit. (p. v.2, 69-70). Amsterdam: J. Wetstenium, & Gul. Smith & Janssonio-Waesbergios.spa
dc.relation.referencesSegalla, M. V., Caramaschi, U., Gonçalves Cruz, C. A., Grant, T., Haddad, C. F. B., de Anchietta Garcia, P. C., … Langone, J. A. (2016). Herpetologia Brasileira. Revista Herpetologia Brasleira, 5(2), 34–46.spa
dc.relation.referencesSmith, S. A., Brown, J. W., & Walker, J. F. (2017). So many genes, so little time: A practical approach to divergence-time estimation in the genomic era. BioRxiv. https://doi.org/10.1101/114975spa
dc.relation.referencesSolís, F., Ibáñez, R., Jaramillo, C., Fuenmayor, Q., Azevedo-Ramos, C., La Marca, E., … Powell, R. (2010). Scinax ruber. In The IUCN Red List of Threatened Species. IUCN, International Union for Conservation of Nature - International, Conservation NatureServe. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2010-2.RLTS.T55994A11395509.en.spa
dc.relation.referencesSomma, L. A. (2019). Scinax ruber (Laurenti, 1768). Retrieved December 21, 2019, from U.S. Geological Survey, Nonindigenous Aquatic Species Database website: https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=978spa
dc.relation.referencesSpix, J. B. von. (1824). Animalia nova sive Species novae Testudinum et Ranarum quas in itinere per Brasiliam annis MDCCCXVII–MDCCCXX jussu et auspiciis Maximiliani Josephi I. Bavariae Regis. München: F. S. Hübschmann.spa
dc.relation.referencesStamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9). https://doi.org/10.1093/bioinformatics/btu033spa
dc.relation.referencesStuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S., & Fischman, D. L. (2004). Status and trends of amphibian declines and extinctions worldwide. Science, 306(5702), 1783–1786.spa
dc.relation.referencesSturaro, M. J., & Peloso, P. L. V. (2014). A new species of Scinax Wagler, 1830 (Anura: Hylidae) from the middle Amazon river basin, Brazil. Papéis Avulsos de Zoologia (São Paulo), 54(2), 9–23. https://doi.org/10.1590/0031-1049.2014.54.02spa
dc.relation.referencesSturaro, M. J., Sarmento, J. F. de M., Lima, A. A., Chalkidis, H. de M., & Rocha, R. A. T. (2010). New records and distribution of the treefrog Scinax rostratus (Peters, 1863) (Amphibia: Anura: Hylidae). Herpetology Notes, 3(1), 161–166.spa
dc.relation.referencesSuárez-Mayorga, Á. M. (2021). Filogeografía comparada y taxonomía integrativa de seis especies de ranas arborícolas (Hylidae) distribuidas en las tierras bajas del norte de Sudamérica: en busca de nuevos enfoques que soporten decisiones de conservación. Universidad Nacional de Colombia.spa
dc.relation.referencesSuárez-Mayorga, A. M., Castillo-Rodríguez, N., Ernst, R., Fritz, U., & Vargas-Ramírez, M. (2021). Cryptic diversity of “Scinax ruber” (Anura: Hylidae) in Andean South America: using integrative taxonomy to frog-leap out of a deep information hole to evidence-based taxonomy and conservation.spa
dc.relation.referencesSuárez-Mayorga, Á. M., & Lynch, J. D. (2017). Myth and truth on the herpetofauna of Chiribiquete: From the lost world to the last world. Colombia Amazónica, (10), 177–190.spa
dc.relation.referencesSuárez-Mayorga, Angela M., & Lynch, J. D. (2001a). Los renacuajos colombianos de Sphaenorhynchus (Hylidae) : Descripciones, anotaciones sistemáticas y ecológicas. Rev. Acad. Colomb. Cienc., Vol. 25, pp. 411–419.spa
dc.relation.referencesSuárez-Mayorga, Angela M., & Lynch, J. D. (2001b). Redescription of the tadpole of Hyla vigilans (Anura: Hylidae) and notes about possible taxonomic relationships. Caribbean Journal of Science, 37(1–2).spa
dc.relation.referencesSwenson, J. J., Young, B. E., Beck, S., Comer, P., Córdova, J. H., Dyson, J., … Zambrana-Torrelio, C. M. (2012). Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecology, 12, 1. https://doi.org/10.1186/1472-6785-12-1spa
dc.relation.referencesTaboada, C., Brunetti, A. E., Alexandre, C., Lagorio, M. G., & Faivovich, J. (2017). Fluorescent Frogs: A Herpetological Perspective. South American Journal of Herpetology, 12(1), 1–13. https://doi.org/10.2994/sajh-d-17-00029.1spa
dc.relation.referencesTaboada, C., Brunetti, A. E., Lyra, M. L., Fitak, R. R., Faigón Soverna, A., Ron, S. R., … Bari, S. E. (2020). Multiple origins of green coloration in frogs mediated by a novel biliverdin-binding serpin. Proceedings of the National Academy of Sciences, 117(31), 18574–18581. https://doi.org/10.1073/pnas.2006771117spa
dc.relation.referencesTNC, T. N. C.-. (2003). The Five-S Framework for Site Conservation. A Practitioner’s Handbook for Site Conservation Planning and Measuring Conservation Success. Retrieved from http://www.ecology.ethz.ch/education/Conservation_stuff/TNC_2003_5s_framework.pdfspa
dc.relation.referencesTorrado, L., Carvajal-Arenas, L. C., Mann, P., & Bhattacharya, J. (2020). Integrated seismic and well-log analysis for the exploration of stratigraphic traps in the Carbonera Formation, Llanos foreland basin of Colombia. Journal of South American Earth Sciences, 104(March), 102607. https://doi.org/10.1016/j.jsames.2020.102607spa
dc.relation.referencesTundisi, J. G., & Matsumura-Tundisi, T. (2008). Biodiversity in the Neotropics: Ecological, economic and social values. Brazilian Journal of Biology, 68(4 SUPPL.), 913–915. https://doi.org/10.1590/S1519-69842008000500002spa
dc.relation.referencesUpham, N. S., Ojala-Barbour, R., Brito M, J., Velazco, P. M., & Patterson, B. D. (2013). Transitions between Andean and Amazonian centers of endemism in the radiation of some arboreal rodents. BMC Evolutionary Biology, 13(1), 191. https://doi.org/10.1186/1471-2148-13-191spa
dc.relation.referencesVacher, J. P., Chave, J., Ficetola, F. G., Sommeria-klein, G., Tao, S., Thébaud, C., … Fouquet, A. (2020). Large-scale DNA-based survey of frogs in Amazonia suggests a vast underestimation of species richness and endemism. Journal of Biogeography, 47(8), 1781–1791. https://doi.org/10.1111/jbi.13847spa
dc.relation.referencesVacher, J. P., Kok, P. J. R., Rodrigues, M. T., Lima, J. D., Lorenzini, A., Martinez, Q., … Fouquet, A. (2017). Cryptic diversity in Amazonian frogs: Integrative taxonomy of the genus Anomaloglossus (Amphibia: Anura: Aromobatidae) reveals a unique case of diversification within the Guiana Shield. Molecular Phylogenetics and Evolution, 112. https://doi.org/10.1016/j.ympev.2017.04.017spa
dc.relation.referencesVanzolini, P. E. (1981). The scientific and political contexts of the Bavarian Expedition to Brazil. In Spix, J. B., v. & J. G. Wagler: Herpetology of Brazil. SSAR Facsimile Reprints in Herpetology.spa
dc.relation.referencesVargas-Ramírez, M., Caballero, S., Morales-Betancourt, M. A., Lasso, C. A., Amaya, L., Martínez, J. G., … Fritz, U. (2020). Genomic analyses reveal two species of the matamata (Testudines: Chelidae: Chelus spp.) and clarify their phylogeography. Molecular Phylogenetics and Evolution, 148, 106823. https://doi.org/10.1016/j.ympev.2020.106823spa
dc.relation.referencesVargas-Ramírez, M., Petzold, A., & Fritz, U. (2016). Distribution modelling and conservation assessment for helmeted terrapins (Pelomedusa spp.). Salamandra, 52(4), 306–316.spa
dc.relation.referencesVargas-Salinas, F., Angarita-Sierra, T., Ospina-L., A. M., Rocha-Úsuga, A. A., & Rueda-Solano, L. A. (2019). Comunicación y ecología reproductiva. In F. Vargas-Salinas, J. A. Muñoz-Ávila, & M. E. Morales-Puentes (Eds.), Biología de los anfibios y reptiles en el bosque seco tropical del norte de Colombia (Editorial, pp. 249–295). Tunja.spa
dc.relation.referencesVeiga, M. M., & Marshall, B. G. (2019). The Colombian artisanal mining sector: Formalization is a heavy burden. The Extractive Industries and Society, 6(1), 223–228. https://doi.org/10.1016/j.exis.2018.11.001spa
dc.relation.referencesVences, M., Kosuch, J., Lötters, S., Widmer, A., Jungfer, K. H., Köhler, J., & Veith, M. (2000). Phylogeny and classification of poison frogs (Amphibia: Dendrobatidae), based on mitochondrial 16S and 12S ribosomal RNA gene sequences. Molecular Phylogenetics and Evolution, 15(1), 34–40. https://doi.org/10.1006/mpev.1999.0738spa
dc.relation.referencesVences, M., Thomas, M., van der Meijden, A., Chiari, Y., & Vieites, D. R. (2005). Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers in Zoology, 2, 5. https://doi.org/10.1186/1742-9994-2-5spa
dc.relation.referencesVieites, D. R., Wollenberg, K. C., Andreone, F., Köhler, J., Glaw, F., & Vences, M. (2009). Vast underestimation of Madagascar ’ s biodiversity evidenced by an integrative amphibian inventory. 106(20), 8267–8272.spa
dc.relation.referencesVinarski, M. V. (2020). Roots of the taxonomic impediment: Is the “integrativeness” a remedy? Integrative Zoology, 15(1), 2–15. https://doi.org/10.1111/1749-4877.12393spa
dc.relation.referencesvon May, R., Catenazzi, A., Santa-Cruz, R., Gutierrez, A. S., Moritz, C., & Rabosky, D. L. (2019). Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling. PLOS ONE, 14(8), e0219759. https://doi.org/10.1371/journal.pone.0219759spa
dc.relation.referencesVu, V. Q. (2011). ggbiplot: A ggplot2 based biplot.spa
dc.relation.referencesWatters, J. L., Cummings, S. T., Flanagan, R. L., & Siler, C. D. (2016). Review of morphometric measurements used in anuran species descriptions and recommendations for a standardized approach. Zootaxa, 4072(4), 477–495.spa
dc.relation.referencesWiens, J. J., Kuczynski, C. A., Hua, X., & Moen, D. S. (2010). An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data. Molecular Phylogenetics and Evolution, 55(3), 871–882. https://doi.org/10.1016/j.ympev.2010.03.013spa
dc.relation.referencesXiao, Y., Liu, C., & Lai, R. (2011). Antimicrobial peptides from amphibians. BioMolecular Concepts, 2(1–2). https://doi.org/10.1515/bmc.2011.006spa
dc.relation.referencesYokoyama, S. (2000). Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments. Journal of Heredity, 91(3), 215–220. https://doi.org/10.1093/jhered/91.3.215spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocRana
dc.subject.agrovocDinámica de poblaciones
dc.subject.agrovocpopulation dynamics
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc590 - Animales::597 - Vertebrados de sangre fríaspa
dc.subject.proposalBiodiversidadspa
dc.subject.proposalBiogeografíaspa
dc.subject.proposalAnfibiosspa
dc.subject.proposalNomenclatura taxonómicaspa
dc.subject.proposalScinaxother
dc.subject.proposalScarthylaother
dc.subject.proposalSphaenorhynchusother
dc.subject.proposalOrinoquiaspa
dc.subject.proposalValle del Magdalenaspa
dc.subject.proposalTaxonomía integrativaesp
dc.subject.proposalConservaciónspa
dc.subject.proposalDiversidad crípticaspa
dc.subject.proposalNeotrópicospa
dc.subject.proposalRanas arborícolasspa
dc.subject.proposalBiogeografía históricaspa
dc.subject.proposalAmazoniaspa
dc.subject.proposalColombiaspa
dc.subject.proposalConservationeng
dc.subject.proposalCryptic diversityeng
dc.subject.proposalNeotropical Regioneng
dc.subject.proposalTree-frogseng
dc.subject.proposalHistorical biogeographyeng
dc.titleFilogeografía comparada y taxonomía integrativa de seis especies de ranas arborícolas (Hylidae) ampliamente distribuidas en tierras bajas del norte de Sudamérica: en busca de nuevos enfoques que soporten decisiones de conservación
dc.title.translatedComparative phylogeography and integrative taxonomy of six tree-frog species (Hylidae) widely distributed in the lowland areas of the northern South America: in search of new approaches for supporting conservation decisionseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDoctorados Nacionales Colciencias, convocatoria 727/2015spa
oaire.awardtitleFilogeografía comparada y taxonomí integrativa de seis especies de ranas arborícolas (Hylidae) ampliamente distribuidas en tierras bajas del norte de Sudamérica. Fase I: Scinax ruber.spa
oaire.fundernameMincienciasspa
oaire.fundernameFuncytcaspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52415581-2021.pdf
Tamaño:
4.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de doctorado en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: