Efectos de la densidad poblacional y la precipitación de Anolis auratus (Sauria: Dactyloidae) sobre sus tasas vitales en el departamento de Córdoba-Colombia

dc.contributor.advisorOrtega León, Ángela María
dc.contributor.advisorZamora Abrego, Joan Gastón
dc.contributor.authorSantos Morales, Amilcar
dc.contributor.researchgroupEcología y Conservación de Fauna Silvestrespa
dc.date.accessioned2022-09-13T20:20:19Z
dc.date.available2022-09-13T20:20:19Z
dc.date.issued2019
dc.descriptionIlustracionesspa
dc.description.abstractEn este estudio se evaluó el efecto de factores intrínsecos (tamaño corporal y densidad poblacional) y extrínsecos (precipitación) sobre las tasas de crecimiento corporal en dos localidades de Anolis auratus en el departamento de Córdoba. Para lograr este objetivo este estudio se separó en dos capítulos, en el primer capítulo se describen y analizan las variaciones en el crecimiento corporal entre las dos localidades, con la densidad poblacional, el tamaño corporal y la precipitación como predictores, encontrando que el crecimiento corporal presenta diferencias significativas entre localidades pero no entre sexos, y que el crecimiento corporal de las dos localidades es el resultado de un efecto aditivo entre la densidad poblacional y el tamaño corporal. En el segundo capítulo se evalúa a través de un modelo de proyección integral el papel de los factores intrínsecos y extrínsecos sobre la supervivencia, el crecimiento poblacional y la fecundidad, encontrando que tanto el crecimiento como la supervivencia son el resultado de un efecto aditivo entre el tamaño corporal y la densidad poblacional, y que los individuos de tamaños grandes son los que tienen un mayor aporte a la tasa finita de crecimiento poblacional (Texto tomado de la fuente)spa
dc.description.abstractIn this study, the effect of intrinsic factors (body size and population density) and extrinsic factors (precipitation) was evaluated in two localities of Anolis auratus in the department of Córdoba. To achieve this objective, this study was separated into two chapters. In the first chapter, variations in body growth between the two locations are described and analyzed, with population density, body size and precipitation as predictors, finding that body growth it presents significant differences between localities but not between sexes, and that the corporal growth of the two localities is the result of an additive effect between population density and body size. In the second chapter, the role of intrinsic and extrinsic factors on survival, population growth and fertility is assessed through an integral projection model, finding that both growth and survival are the result of an additive effect between the body size and population density, and that individuals of large sizes are those that have a greater contribution to the finite rate of population growtheng
dc.description.curricularareaÁrea Curricular en Bosques y Conservación Ambientalspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bosques y Conservación Ambientalspa
dc.format.extentix, 68 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82287
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ciencias Forestalesspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambientalspa
dc.relation.referencesArmstrong, D. P., Davidson, R. S., Perrott, J. K., Roygard, J., & Buchanan, L. (2005). Density‐dependent population growth in a reintroduced population of North Island saddlebacks. Journal of Animal Ecology, 74(1), 160-170.spa
dc.relation.referencesBurnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological methods & research, 33(2), 261-304.spa
dc.relation.referencesAvila-Pires, T. C. (1995). Lizards of brazilian amazonia (Reptilia: Squamata). Zoologische verhandelingen, 299(1), 1-706.spa
dc.relation.referencesCappuccino, N., & Price, P. W. (Eds.). (1995). Population dynamics: new approaches and synthesis. Elsevier.spa
dc.relation.referencesCox, R. M., Stenquist, D. S., Henningsen, J. P., & Calsbeek, R. (2009). Manipulating testosterone to assess links between behavior, morphology, and performance in the brown anole Anolis sagrei. Physiological and Biochemical Zoology, 82(6), 686-698.spa
dc.relation.referencesCox, R. M., & Calsbeek, R. (2010). Severe costs of reproduction persist in Anolis lizards despite the evolution of a single‐egg clutch. Evolution, 64(5), 1321-1330spa
dc.relation.referencesDíaz, J. A., Iraeta, P., Verdú-Ricoy, J., Siliceo, I., & Salvador, A. (2012). Intraspecific variation of reproductive traits in a Mediterranean lizard: clutch, population, and lineage effects. Evolutionary Biology, 39(1), 106-115.spa
dc.relation.referencesDownes, S. J. (2002). Does responsiveness to predator scents affect lizard survivorship? Behavioral Ecology and Sociobiology, 52(1), 38-42.spa
dc.relation.referencesDu, W. G., Warner, D. A., Langkilde, T., Robbins, T. R., & Shine, R. (2012). The roles of pre-and post-hatching growth rates in generating a latitudinal cline of body size in the eastern fence lizard (Sceloporus undulatus). Biological Journal of the Linnean Society, 106(1), 202-209.spa
dc.relation.referencesEdeline, E., Haugen, T. O., Weltzien, F. A., Claessen, D., Winfield, I. J., Stenseth, N. C., & Vøllestad, L. A. (2009). Body downsizing caused by non-consumptive social stress severely depresses population growth rate. Proceedings of the Royal Society B: Biological Sciences, 277(1683), 843-851.spa
dc.relation.referencesFabens, A. J. (1965). Properties and fitting of the von Bertalanffy growth curve. Growth, 29, 265-289.spa
dc.relation.referencesKatsanevakis, S., & Maravelias, C. D. (2008). Modelling fish growth: multi‐model inference as a better alternative to a priori using von Bertalanffy equation. Fish and fisheries, 9(2), 178-187.spa
dc.relation.referencesLe Galliard, J. F., Marquis, O., & Massot, M. (2010). Cohort variation, climate effects and population dynamics in a short‐lived lizard. Journal of Animal Ecology, 79(6), 1296-1307.spa
dc.relation.referencesLewis, S. M. (1986). The role of herbivorous fishes in the organization of a Caribbean reef community. Ecological Monographs, 56(3), 183-200.spa
dc.relation.referencesLorenzen, K. (1996). The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. Journal of fish biology, 49(4), 627-642.spa
dc.relation.referencesLorenzon, P., Clobert, J., & Massot, M. (2001). The contribution of phenotypic plasticity to adaptation in Lacerta vivipara. Evolution, 55(2), 392-404.spa
dc.relation.referencesLosos, J. B. (2011). Lizards in an evolutionary tree: ecology and adaptive radiation of anoles (Vol. 10). Univ of California Press.spa
dc.relation.referencesLu, H. L., Xu, C. X., Zeng, Z. G., & Du, W. G. (2018). Environmental causes of between-population difference in growth rate of a high-altitude lizard. BMC ecology, 18(1), 37.spa
dc.relation.referencesMarquis, O., Massot, M., & Le Galliard, J. F. (2008). Intergenerational effects of climate generate cohort variation in lizard reproductive performance. Ecology, 89(9), 2575-2583.spa
dc.relation.referencesMassot, M., Clobert, J., Pilorge, T., Lecomte, J., & Barbault, R. (1992). Density dependence in the common lizard: demographic consequences of a density manipulation. Ecology, 73(5), 1742-1756.spa
dc.relation.referencesMugabo, M., Perret, S., Legendre, S., & Le Galliard, J. F. (2013). Density‐dependent life history and the dynamics of small populations. Journal of Animal Ecology, 82(6), 1227-1239.spa
dc.relation.referencesNelder, J. A., & Baker, R. J. (1972). Generalized linear models. Encyclopedia of statistical sciences.spa
dc.relation.referencesNiewiarowski, P. H. (2001). Energy budgets, growth rates, and thermal constraints: toward an integrative approach to the study of life-history variation. The American Naturalist, 157(4), 421-433.spa
dc.relation.referencesNovosolov, M., & Meiri, S. (2013). The effect of island type on lizard reproductive traits. Journal of Biogeography, 40(12), 2385-2395.spa
dc.relation.referencesOrtega, J., López, P., & Martín, J. (2015). Altitudinally divergent adult phenotypes in Iberian wall lizards are not driven by egg differences or hatchling growth rates. Oecologia, 177(2), 357-366.spa
dc.relation.referencesOrtega, J., López, P., & Martín, J. (2017). Environmental drivers of growth rates in Guadarrama wall lizards: a reciprocal transplant experiment. Biological Journal of the Linnean Society, 122(2), 340-350.spa
dc.relation.referencesPérez-Mendoza, H. A., Zúñiga-Vega, J. J., Zurita-Gutiérrez, Y. H., Fornoni, J., Solano-Zavaleta, I., Hernández-Rosas, A. L., & Molina-Moctezuma, A. (2013). Demographic importance of the life-cycle components in Sceloporus grammicus. Herpetologica, 69(4), 411-435.spa
dc.relation.referencesPincheira‐Donoso, D., & Hunt, J. (2017). Fecundity selection theory: concepts and evidence. Biological Reviews, 92(1), 341-356.spa
dc.relation.referencesPinheiro, J. C., & Bates, D. M. (2000). Linear mixed-effects models: basic concepts and examples. Mixed-effects models in S and S-Plus, 3-56.spa
dc.relation.referencesPinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & Team, R. C. (2013). nlme: Linear and nonlinear mixed effects models. R package version, 3(1), 111spa
dc.relation.referencesRenjifo, J. M., & Lundberg, M. (1999). Guía de campo anfibios y reptiles de Urrá. Editorial Colina. Medellín, Colombia.spa
dc.relation.referencesRotger, A., Igual, J. M., Smith, J. J., & Tavecchia, G. (2016). Relative role of population density and climatic factors in shaping the body growth rate of Lilford’s Wall Lizard (Podarcis lilfordi). Canadian Journal of Zoology, 94(3), 207-215.spa
dc.relation.referencesSamhouri, J. F., Levin, P. S., & Harvey, C. J. (2009). Quantitative evaluation of marine ecosystem indicator performance using food web models. Ecosystems, 12(8), 1283-1298.spa
dc.relation.referencesSánchez, H. Castaño, O. & Cárdenas, G. (1995). Diversidad de los Reptiles en Colombia. Colombia diversidad biótica I. Bogotá: Universidad Nacional de Colombia, Inderena, Fundación FES, 277-325.spa
dc.relation.referencesSchlaepfer, M. A. (2006). Growth Rates and Body Condition in Norops polylepis (Polychrotidae) Vary with Respect to Sex but not Mite Load 1. Biotropica: The Journal of Biology and Conservation, 38(3), 414-418.spa
dc.relation.referencesSchoener, T. W., & Schoener, A. (1978). Estimating and interpreting body-size growth in some Anolis lizards. Copeia, 390-405.spa
dc.relation.referencesSchnute, J. (1981). A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Sciences, 38(9), 1128-1140.spa
dc.relation.referencesShine, R., & Charnov, E. L. (1992). Patterns of survival, growth, and maturation in snakes and lizards. The American Naturalist, 139(6), 1257-1269.spa
dc.relation.referencesSiliceo-Cantero, H. H., & Garcia, A. (2014). Differences in growth rate, body condition, habitat use and food availability between island and mainland lizard populations of Anolis nebulosus in Jalisco, Mexico. Journal of Tropical Ecology, 30(5), 493-501.spa
dc.relation.referencesStamps, J., & Tanaka, S. (1981). The influence of food and water on growth rates in a tropical lizard (Anolis aeneus). Ecology, 62(1), 33-40.spa
dc.relation.referencesTinkle, D. W. (1969). The concept of reproductive effort and its relation to the evolution of life histories of lizards. The American Naturalist, 103(933), 501-516spa
dc.relation.referencesTsai, W. P., Sun, C. L., Punt, A. E., & Liu, K. M. (2014). Demographic analysis of the shortfin mako shark, Isurus oxyrinchus, in the Northwest Pacific using a two-sex stage-based matrix model. ICES Journal of Marine Science, 71(7), 1604-1618.spa
dc.relation.referencesVan Sluys, M. (1998). Growth and body condition of the saxicolous lizard Tropidurus itambere in southeastern Brazil. Journal of Herpetology, 359-365.spa
dc.relation.referencesVon Bertalanffy, L. (1951). General system theory, a new approach to unity of science. 5. Conclusion. Human biology, 23(4), 337.spa
dc.relation.referencesZúñiga-Vega, J. J., Rojas-González, R. I., Lemos-Espinal, J. A., & Pérez-Trejo, M. E. (2005). Growth ecology of the lizard Xenosaurus grandis in Veracruz, México. Journal of Herpetology, 39(3), 433-444.spa
dc.relation.referencesZúñiga‐Vega, J., N. Reznick, D., & B. Johnson, J. (2007). Habitat predicts reproductive superfetation and body shape in the livebearing fish Poeciliopsis turrubarensis. Oikos, 116(6), 995-1005.spa
dc.relation.referencesAndrews, R. M., and A. S. Rand. 1974. Reproductive effort in anoline lizards. Ecology 55:1317–1327spa
dc.relation.referencesAngilletta Jr, M. J., Oufiero, C. E., y Leaché, A. D. (2006). Direct and indirect effects of environmental temperature on the evolution of reproductive strategies: an information-theoretic approach. The American Naturalist, 168(4), E123-E135.spa
dc.relation.referencesBarbraud, C., y Weimerskirch, H. (2003). Climate and density shape population dynamics of a marine top predator. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1529), 2111-2116.spa
dc.relation.referencesBassar, R. D., Lopez-Sepulcre, A., Reznick, D. N., y Travis, J. (2012). Experimental evidence for density-dependent regulation and selection on Trinidadian guppy life histories. The American Naturalist, 181(1), 25-38.spa
dc.relation.referencesBassar, R. D., Letcher, B. H., Nislow, K. H., y Whiteley, A. R. (2016). Changes in seasonal climate outpace compensatory density‐dependence in eastern brook trout. Global Change Biology, 22(2), 577-593.spa
dc.relation.referencesBegon, M., Townsend, C. R., y Harper, J. L. (2006). Ecology: from individuals to ecosystemsspa
dc.relation.referencesBesbeas, P., Freeman, S. N., Morgan, B. J., y Catchpole, E. A. (2002). Integrating mark–recapture–recovery and census data to estimate animal abundance and demographic parameters. Biometrics, 58(3), 540-547.spa
dc.relation.referencesBlanckenhorn, W. U. (2000). The evolution of body size: what keeps organisms small?. The quarterly review of biology, 75(4), 385-407.spa
dc.relation.referencesBrandt, R., y Navas, C. A. (2011). Life-history evolution on Tropidurinae lizards: influence of lineage, body size and climate. PLoS One, 6(5), e20040.spa
dc.relation.referencesCalder, W. A. (1996). Size, function, and life history. Courier Corporation.spa
dc.relation.referencesCalderón-Espinosa, M. L., y Barragán-Contreras, L. A. (2014). Geographic body size and shape variation in a mainland Anolis (Squamata: Dactyloidae) from Northwestern South America (Colombia). Acta Biológica Colombiana, 19(2), 167-174.spa
dc.relation.referencesCaswell, H. 2001. Matrix populations models. Sinauer, Sunderland, MA.spa
dc.relation.referencesChung, Y. A., Miller, T. E., y Rudgers, J. A. (2015). Fungal symbionts maintain a rare plant population but demographic advantage drives the dominance of a common host. Journal of Ecology, 103(4), 967-977.spa
dc.relation.referencesClutton-Brock, T. H., Major, M., Albon, S. D., y Guinness, F. E. (1987). Early development and population dynamics in red deer. I. Density-dependent effects on juvenile survival. The Journal of Animal Ecology, 53-67.spa
dc.relation.referencesCoulson, T. (2012). Integral projections models, their construction and use in posing hypotheses in ecology. Oikos, 121(9), 1337-1350.spa
dc.relation.referencesCoulson, T., Catchpole, E. A., Albon, S. D., Morgan, B. J., Pemberton, J. M., Clutton-Brock, T. H., ... y Grenfell, B. T. (2001). Age, sex, density, winter weather, and population crashes in Soay sheep. Science, 292(5521), 1528-1531.spa
dc.relation.referencesCoulson, T., Tuljapurkar, S., y Childs, D. Z. (2010). Using evolutionary demography to link life history theory, quantitative genetics and population ecology. Journal of Animal Ecology, 79(6), 1226-1240.spa
dc.relation.referencesDelaney, D. M., y Warner, D. A. (2016). Age-and sex-specific variations in microhabitat and macrohabitat use in a territorial lizard. Behavioral ecology and sociobiology, 70(6), 981-991.spa
dc.relation.referencesEasterling, M. R., S. P. Ellner, and P. M. Dixon. 2000. Size-specific sensitivity: applying a new structured population model. Ecology 81:694–708.spa
dc.relation.referencesEllner, S. P., y Rees, M. (2006). Integral projection models for species with complex demography. The American Naturalist, 167(3), 410-428.spa
dc.relation.referencesFabian, D., y Flatt, T. (2012). Life history evolution. Nature Education Knowledge, 3.spa
dc.relation.referencesFowler, C. W., y Smith, T. D. (1981). Dynamics of large mammal populations (No. 599 F6).spa
dc.relation.referencesHixon, M. A., Pacala, S. W., y Sandin, S. A. (2002). Population regulation: historical context and contemporary challenges of open vs. closed systems. Ecology, 83(6), 1490-1508.spa
dc.relation.referencesJongejans E, de Vere N, de Kroon H (2008) Demographic vulnerability of the clonal and endangered meadow thistle. Plant Ecol 198(2):225–240.spa
dc.relation.referencesKohler, S. L., y Hoiland, W. K. (2001). Population regulation in an aquatic insect: the role of disease. Ecology, 82(8), 2294-2305.spa
dc.relation.referencesLagos PA, Herberstein ME. 2017. Are males more scared of predators? Differential change in metabolic rate between males and females under predation risk. Physiol Behav. 173:110–115spa
dc.relation.referencesLaurie, W. A., y Brown, D. (1990). Changes in annual survival rates and the effects of size, sex, age and fecundity in a population crash. The Journal of Animal Ecology, 529-544.spa
dc.relation.referencesLecomte, J., Clobert, J., Massot, M., y Barbault, R. (1994). Spatial and behavioural consequences of a density manipulation in the common lizard1. Ecoscience, 1(4), 300-310.spa
dc.relation.referencesLe Galliard, J. F., Ferriere, R., y Clobert, J. (2005). Juvenile growth and survival under dietary restriction: are males and females equal?. Oikos, 111(2), 368-376.spa
dc.relation.referencesLosos, J. B., T. W. Schoener, and D. A. Spiller. 2004. Predator-induced behaviour shifts and natural selection in field-experimental lizard populations. Nature 432:505–508.spa
dc.relation.referencesLosos JB, Schoener TW, Langerhans RB, Spiller DA. 2006. Rapid temporal reversal in predator-driven natural selection. Science. 314:1111.spa
dc.relation.referencesMerow, C., Dahlgren, J. P., Metcalf, C. J. E., Childs, D. Z., Evans, M. E., Jongejans, E., ... y McMahon, S. M. (2014). Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution, 5(2), 99-110.spa
dc.relation.referencesMetcalf, C. J. E., McMahon, S. M., Salguero‐Gómez, R., y Jongejans, E. (2013). IPM pack: an R package for integral projection models. Methods in Ecology and Evolution, 4(2), 195-200.spa
dc.relation.referencesMoreno‐Arias, R. A., y Urbina‐Cardona, J. N. (2013). Population Dynamics of the Andean Lizard Anolis heterodermus: Fast‐slow Demographic Strategies in Fragmented Scrubland Landscapes. Biotropica, 45(2), 253-261.spa
dc.relation.referencesMorris WF, Doak DF (2002) Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis (Sinauer Associates, Sunderland, MA)spa
dc.relation.referencesMugabo, M., Marquis, O., Perret, S., y Le Galliard, J. F. (2010). Immediate and delayed life history effects caused by food deprivation early in life in a short‐lived lizard. Journal of evolutionary biology, 23(9), 1886-1898.spa
dc.relation.referencesMugabo, M., Marquis, O., Perret, S., y Le Galliard, J. F. (2011). Direct and socially-mediated effects of food availability late in life on life-history variation in a short-lived lizard. Oecologia, 166(4), 949-960.spa
dc.relation.referencesNichols, J. D., and J. E. Hines. 2002. Approaches for the direct estimation of k, and demographic contributions to k, using capture-recapture data. Journal of Applied Statistics 29:539–568spa
dc.relation.referencesPeters, R. H., y Peters, R. H. (1986). The ecological implications of body size (Vol. 2). Cambridge University Press.spa
dc.relation.referencesPaterson, J. E., y Blouin‐Demers, G. (2018). Tree lizard (Urosaurus ornatus) growth decreases with population density, but increases with habitat quality. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 329(10), 527-535.spa
dc.relation.referencesPlard, F., Fay, R., Kéry, M., Cohas, A., y Schaub, M. (2019). Integrated population models: powerful methods to embed individual processes in population dynamics models. Ecology, e02715.spa
dc.relation.referencesRees, M., y Ellner, S. P. (2009). Integral projection models for populations in temporally varying environments. Ecological Monographs, 79(4), 575-594.spa
dc.relation.referencesRees, M., Childs, D. Z., y Ellner, S. P. (2014). Building integral projection models: a user's guide. Journal of Animal Ecology,83(3), 528-545.spa
dc.relation.referencesRose, K. E., Clutton‐Brock, T. H., y Guinness, F. E. (1998). Cohort variation in male survival and lifetime breeding success in red deer. Journal of Animal Ecology, 67(6), 979-986.spa
dc.relation.referencesSæther, B. E. (1997). Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. Trends in Ecology y Evolution, 12(4), 143-149.spa
dc.relation.referencesSchaub, M., y Abadi, F. (2011). Integrated population models: a novel analysis framework for deeper insights into population dynamics. Journal of Ornithology, 152(1), 227-237.spa
dc.relation.referencesSchoener, T. W. (2011). The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. science, 331(6016), 426-429.spa
dc.relation.referencesSibly, R. M., y Hone, J. (2002). Population growth rate and its determinants: an overview. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1425), 1153-1170.spa
dc.relation.referencesSmallegange, I. M., y Coulson, T. (2013). Towards a general, population-level understanding of eco-evolutionary change. Trends in ecology y evolution, 28(3), 143-148.spa
dc.relation.referencesSinervo, B., E. Svensson, and T. Comendant. 2000. Density cycles and an offspring quantity and quality game driven by natural selection. Nature 406:985–988.spa
dc.relation.referencesSorci, G., Clobert, J., y Belichon, S. (1996). Phenotypic plasticity of growth and survival in the common lizard Lacerta vivipara. Journal of Animal ecology, 781-790.spa
dc.relation.referencesStamps, J. A., y Buechner, M. (1985). The territorial defense hypothesis and the ecology of insular vertebrates. The Quarterly Review of Biology, 60(2), 155-181.spa
dc.relation.referencesStapley, J., Garcia, M., y Andrews, R. M. (2015). Long-term data reveal a population decline of the tropical lizard Anolis apletophallus, and a negative affect of El Niño years on population growth rate. PloS one, 10(2), e0115450spa
dc.relation.referencesStearns, S. C. 1989. Trade-offs in life-history evolution. Funct. Ecol. 3:259– 268.spa
dc.relation.referencesStearns, S. C. 1992. The evolution of life histories. Oxford Univ. Press, Oxfordspa
dc.relation.referencesSvanbäck, R., y Bolnick, D. I. (2007). Intraspecific competition drives increased resource use diversity within a natural population. Proceedings of the Royal Society B: Biological Sciences, 274, 839e844.spa
dc.relation.referencesTuljapurkar, S. (1990). Delayed reproduction and fitness in variable environments. Proceedings of the National Academy of Sciences, 87(3), 1139-1143.spa
dc.relation.referencesWang, G., Hobbs, N. T., Twombly, S., Boone, R. B., Illius, A. W., Gordon, I. J., y Gross, J. E. (2009). Density dependence in northern ungulates: interactions with predation and resources. Population Ecology, 51(1), 123-132.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc590 - Animalesspa
dc.subject.lembDimorfismo sexual en animales
dc.subject.lembReptiles - Crecimiento
dc.subject.proposalFactores intrínsecosspa
dc.subject.proposalFactores extrínsecosspa
dc.subject.proposalFecundidadspa
dc.subject.proposalCrecimiento poblacionalspa
dc.subject.proposalIntrinsic factorseng
dc.subject.proposalExtrinsic factorseng
dc.subject.proposalSurvivaleng
dc.subject.proposalFertilityeng
dc.subject.proposalPopulation growtheng
dc.subject.proposalAnolis auratusspa
dc.subject.proposalDimorfismo sexualspa
dc.subject.proposalSexual dimorphismeng
dc.titleEfectos de la densidad poblacional y la precipitación de Anolis auratus (Sauria: Dactyloidae) sobre sus tasas vitales en el departamento de Córdoba-Colombiaspa
dc.title.translatedEffects of population density and rainfall of Anolis auratus (Sauria: Dactyloidae) on their vital rates in the department of Córdoba-Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1068661586.2019.pdf
Tamaño:
703.32 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Bosques y Conservación Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: