Producción por manufactura aditiva de andamios con propiedades antimicrobianas a partir de Propóleos de Tame (Arauca) para regeneración ósea

dc.contributor.advisorGarcía, Claudia Patricia
dc.contributor.advisorPelaez Vargas, Alejandro
dc.contributor.authorMoreno Florez, Ana Isabel
dc.contributor.cvlacMORENO FLOREZ, ANA ISABEL https://scienti.minciencias.gov.co/cvlac/jsp/report-index.jspspa
dc.contributor.financerMinciencias Plan Bienal de Convocatorias 2019
dc.contributor.financerMinciencias Convocatoria de proyectos que conectan el conocimiento - Proyecto 2019 852-2019. Número de contrato 80740-476-2020.
dc.contributor.orcidMoreno Florez, Ana Isabel [0000-0003-2823-8822]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Isabel-Moreno-4spa
dc.contributor.researchgroupMateriales Cerámicos y Vítreosspa
dc.date.accessioned2024-05-08T18:45:43Z
dc.date.available2024-05-08T18:45:43Z
dc.date.issued2023
dc.descriptionilustraciones, gráficosspa
dc.description.abstractUna alternativa para solucionar la problemática de los defectos es la manufactura aditiva, específicamente en el diseño y fabricación de dispositivos de reemplazamiento óseo. Sin embrago, la posibilidad de fallo debido a infecciones requiere mejoras en el potencial antimicrobiano de estos dispositivos. En esta tesis se propuso desarrollar por manufactura aditiva andamios antimicrobianos potencializados con extractos de propóleos para regeneración ósea. Se utilizó un diseño de experimentos factorial fraccional en la formulación de una pasta cerámica empleada como tinta de impresión 3D para fabricar andamios con geometría TPMS Gyroid, los cuales se impregnaron con extractos etanólicos de propóleos (EEP). Se evaluó la actividad antimicrobiana de los EEP y de los andamios impregnados con EEP (AI) frente a Staphylococcus aureus, Staphylococcus epidermidis y su co-cultivo midiendo zonas de inhibición y la viabilidad de biopelículas. En pruebas in vitro se evaluó la interacción de los andamios con cultivos celulares de osteosarcoma humano (SaOS) y células madre mesenquimales humanas (bmMSC) en términos de proliferación celular (Ensayo alamar blue) y actividad metabólica (Tinciones de Alizarin red, Von kossa y Actividad de la ALP). Los resultados mostraron que la manufactura aditiva posibilitó la fabricación de andamios cerámicos con geometrías complejas que se impregnaron exitosamente con extractos de propóleos provenientes de la Orinoquía Colombiana, los cuales mostraron inhibición considerable de las cepas estudiadas y reducción significativa en la viabilidad del co-cultivo por parte de los AI. La evaluación in vitro mostró una proliferación en los andamios superior al 90 % de las SaOS y cercano al 50 % de las bmMSC, además se encontraron zonas con señales de mineralización. En conclusión, los andamios fabricados son aptos para la reparación y regeneración ósea y presentan un potencial antibacteriano contra cepas relacionadas con el desarrollo de osteomielitis. (Tomado de la fuente)spa
dc.description.abstractThe problem of bone defects has been addressed through additive manufacturing, specifically with bone replacement devices. However, the potential for failure due to infection makes it necessary to improve the antimicrobial potential of these devices. The aim of this thesis is to develop antimicrobial scaffolds by additive manufacturing, enhanced with propolis extract for bone regeneration. A fractional factorial design of experiments was used to formulate a ceramic paste used as a 3D printing ink to fabricate scaffolds with TPMS gyroid geometry. These were impregnated with ethanolic extracts of propolis (EEP). The antimicrobial activity of EEP and EEP-impregnated scaffolds (AI) was evaluated against Staphylococcus aureus, Staphylococcus epidermidis and their co-cultures by measuring inhibition zones and biofilm viability. In vitro assays evaluated the interaction of the scaffolds with cultures of human osteosarcoma cells (SaOS) and human mesenchymal stem cells (bmMSC) in terms of cell proliferation (Alamar blue assay) and metabolic activity (Alizarin red, Von Kossa staining and ALP activity). The results showed that additive manufacturing made possible the fabrication of ceramic scaffolds with complex geometries that were successfully impregnated with propolis extracts from the Colombian Orinoco region, which showed considerable inhibition of the studied strains and significant reduction in the viability of the co-culture by the IAs. The in vitro evaluation showed a proliferation in the scaffolds higher than 90 % of the SaOS and close to 50 % of the bmMSC, in addition, areas with signs of mineralization were found. In conclusion, the fabricated scaffolds are suitable for bone repair and regeneration and present antibacterial potential against strains related to the development of osteomyelitis.eng
dc.description.curricularareaBiotecnología.Sede Medellínspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.sponsorshipMinciencias Colombiaspa
dc.description.sponsorshipUniversidad Nacional de Colombiaspa
dc.description.sponsorshipUniversidad Cooperativa de Colombiaspa
dc.description.sponsorshipUniversidad Eafitspa
dc.description.sponsorshipLeibniz University Hannoverspa
dc.format.extent174 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86049
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia - Sede Medellinspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesNickolas TL, Leonard MB, Shane E. Chronic kidney disease and bone fracture: a growing concern. Kidney Int. 2008;74(6):721-31spa
dc.relation.referencesIqbal MM. Osteoporosis: Epidemiology, Diagnosis, and Treatment: South Med J. 2000;93(1):2-19spa
dc.relation.referencesCompston J. HIV infection and bone disease. J Intern Med. 2016;280(4):350-8spa
dc.relation.referencesKanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAXTM and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385-97spa
dc.relation.referencesTu KN, Lie JD, Wan CKV, Cameron M, Austel AG, Nguyen JK, et al. Osteoporosis: A Review of Treatment Options. P T Peer-Rev J Formul Manag. 2018;43(2):92-104spa
dc.relation.referencesLevy S, Feduska JM, Sawant A, Gilbert SR, Hensel JA, Ponnazhagan S. Immature myeloid cells are critical for enhancing bone fracture healing through angiogenic cascade. Bone. 2016;93:113-24spa
dc.relation.referencesMiranda LL, Guimarães-Lopes VDP, Altoé LS, Sarandy MM, Melo FCSA, Novaes RD, et al. Plant Extracts in the Bone Repair Process: A Systematic Review. Mediators Inflamm. 2019;2019:1-22spa
dc.relation.referencesHoexter DL. Bone Regeneration Graft Materials. J Oral Implantol. 2002;28(6):290-4spa
dc.relation.referencesLimmahakhun S, Oloyede A, Sitthiseripratip K, Xiao Y, Yan C. 3D-printed cellular structures for bone biomimetic implants. Addit Manuf. 2017;15:93-101spa
dc.relation.referencesKashirina A, Yao Y, Liu Y, Leng J. Biopolymers as bone substitutes: a review. Biomater Sci. 2019;7(10):3961-83spa
dc.relation.referencesQu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9(45):26252-62spa
dc.relation.referencesVenkatraman SK, Swamiappan S. Review on calcium‐ and magnesium‐based silicates for bone tissue engineering applications. J Biomed Mater Res A. 2020;108(7):1546-62spa
dc.relation.referencesLiu A, Sun M, Shao H, Yang X, Ma C, He D, et al. The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects. J Mater Chem B. 2016;4(22):3945-58spa
dc.relation.referencesShao H, Liu A, Ke X, Sun M, He Y, Yang X, et al. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. J Mater Chem B. 2017;5(16):2941-51spa
dc.relation.referencesSaleh Alghamdi S, John S, Roy Choudhury N, Dutta NK. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers. 2021;13(5):753spa
dc.relation.referencesJorge LS, Chueire AG, Rossit ARB. Osteomyelitis: a current challenge. Braz J Infect Dis Off Publ Braz Soc Infect Dis. 2010;14(3):310-5spa
dc.relation.referencesCarek P, Dickerson L, Sack J. Diagnosis and Management of Osteomyelitis. Am Fam Physician. 2001; 63(12):2413-20spa
dc.relation.referencesHealy B, Freedman A. Infections. BMJ. 2006;332(7545):838-41.spa
dc.relation.referencesCiampolini J. Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J. 2000;76(898):479-83spa
dc.relation.referencesHesham M, Elshishtawy H, El Kady S, Wahied D. Antibacterial Effect of Pre-constructed 3D Bone Scaffolds before and after Modification with Propolis. Open Access Maced J Med Sci. 2022;10(A):295-300spa
dc.relation.referencesMarcucci MC. Propolis: chemical composition, biological properties and therapeutic activity. Apidologie. 1995;26(2):83-99spa
dc.relation.referencesEl Menyiy N, Bakour M, El Ghouizi A, El Guendouz S, Lyoussi B. Influence of Geographic Origin and Plant Source on Physicochemical Properties, Mineral Content, and Antioxidant and Antibacterial Activities of Moroccan Propolis. Alencar SMD, editor. Int J Food Sci. 2021;2021:1-12spa
dc.relation.referencesHegazi AG, El Hady FKA. Egyptian Propolis: 3. Antioxidant, Antimicrobial Activities and Chemical Composition Of Propolis From Reclaimed Lands. Z Für Naturforschung C. 2002;57(3-4):395-402.spa
dc.relation.referencesSabir A, Sumidarti A. Interleukin-6 expression on inflamed rat dental pulp tissue after capped with Trigona sp. propolis from south Sulawesi, Indonesia. Saudi J Biol Sci. 2017;24(5):1034-7spa
dc.relation.referencesForma E, Bryś M. Anticancer Activity of Propolis and Its Compounds. Nutrients. 2021;13(8):2594spa
dc.relation.referencesMachado CS, Mokochinski JB, Lira TOD, De Oliveira FDCE, Cardoso MV, Ferreira RG, et al. Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis. Evid Based Complement Alternat Med. 2016;2016:1-11spa
dc.relation.referencesFallahiarezoudar E, Ahmadipourroudposht M, Idris A, Mohd Yusof N. A review of: Application of synthetic scaffold in tissue engineering heart valves. Mater Sci Eng C. 2015;48:556-65.spa
dc.relation.referencesZhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater.2019;84:16-33.spa
dc.relation.referencesFarré-Guasch E, Wolff J, Helder MN, Schulten EAJM, Forouzanfar T, Klein-Nulend J. Application of Additive Manufacturing in Oral and Maxillofacial Surgery. J Oral Maxillofac Surg. 2015;73(12):2408-18.spa
dc.relation.referencesBhumiratana S, Vunjak-Novakovic G. Concise Review: Personalized Human Bone Grafts for Reconstructing Head and Face. Stem Cells Transl Med. 2012;1(1):64-9.spa
dc.relation.referencesJazayeri HE, Tahriri M, Razavi M, Khoshroo K, Fahimipour F, Dashtimoghadam E, et al. A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Mater Sci Eng C. 2017;70:913-29.spa
dc.relation.referencesMallick M Are RP, Babu AR. An overview of collagen/bioceramic and synthetic collagen for bone tissue engineering. Materialia. 2022;22:101391.spa
dc.relation.referencesMelek LN. Tissue engineering in oral and maxillofacial reconstruction. Tanta Dent J. 2015;12(3):211-23.spa
dc.relation.referencesHenkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, et al. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective. Bone Res. 2013;1(3):216-48.spa
dc.relation.referencesPeacock ZS. Controversies in Oral and Maxillofacial Pathology. Oral Maxillofac Surg Clin N Am. 2017;29(4):475-86.spa
dc.relation.referencesRao N, Ziran BH, Lipsky BA. Treating Osteomyelitis: Antibiotics and Surgery: Plast Reconstr Surg. 2011;127:177S-187S.spa
dc.relation.referencesFischbach MA, Walsh CT. Antibiotics for Emerging Pathogens. Science. 2009;325(5944):1089-93.spa
dc.relation.referencesHarvey A. Natural products in drug discovery. Drug Discov Today. 2008;13(19-20):894-901.spa
dc.relation.referencesButler MS, Buss AD. Natural products — The future scaffolds for novel antibiotics? Biochem Pharmacol. 2006;71(7):919-29.spa
dc.relation.referencesLee SH, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev. 2007;59(4-5):339-59.spa
dc.relation.referencesO’Brien CM, Holmes B, Faucett S, Zhang LG. Three-Dimensional Printing of Nanomaterial Scaffolds for Complex Tissue Regeneration. Tissue Eng Part B Rev. 2015;21(1):103-14.spa
dc.relation.referencesD. S, C. R. Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J. 2001;10(0):S86-95.spa
dc.relation.referencesGong H, Zhu D, Gao J, Lv L, Zhang X. An adaptation model for trabecular bone at different mechanical levels. Biomed Eng OnLine. 2010;9(1):32.spa
dc.relation.referencesGreene DA, Naughton GA, Bradshaw E, Moresi M, Ducher G. Mechanical loading with or without weight-bearing activity: influence on bone strength index in elite female adolescent athletes engaged in water polo, gymnastics, and track-and-field. J Bone Miner Metab. 2012;30(5):580-7.spa
dc.relation.referencesHart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact. 2017;17(3):114-39.spa
dc.relation.referencesBelavý DL, Beller G, Armbrecht G, Perschel FH, Fitzner R, Bock O, et al. Evidence for an additional effect of whole-body vibration above resistive exercise alone in preventing bone loss during prolonged bed rest. Osteoporos Int. 2011;22(5):1581-91.spa
dc.relation.referencesLanyon LE. Bone: The Architecture of Bone and How it is Influenced by External Loading. En: Older J, editor. Implant Bone Interface [Internet]. London: Springer London; 1990 [citado 6 de noviembre de 2023]. p. 101-13. Disponible en: http://link.springer.com/10.1007/978-1-4471-1811-4_15spa
dc.relation.referencesSikavitsas VI, Temenoff JS, Mikos AG. Biomaterials and bone mechanotransduction. Biomaterials. 2001;22(19):2581-93.spa
dc.relation.referencesBilezikian JP, Bouillon R, Clemens T, Compston J, Bauer DC, Ebeling PR, et al., editores. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism [Internet]. 1.a ed. Wiley; 2018 [citado 12 de octubre de 2023]. Disponible en: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119266594spa
dc.relation.referencesDavies, J.E. Bone Engineering. First Edition. Toronto: EM Squared Inc.; 2000. 454 p. (1; vol. 1).spa
dc.relation.referencesBilezikian JP, Martin TJ, Clemens TL, Rosen CJ, editores. Principles of bone biology. Fourth edition. London: Academic Press, an imprint of Elsevier; 2020. p. 51spa
dc.relation.referencesDucy P, Schinke T, Karsenty G. The Osteoblast: A Sophisticated Fibroblast under Central Surveillance. Science. 2000;289(5484):1501-4.spa
dc.relation.referencesCowan JA, Dimick JB, Wainess R, Upchurch GR, Chandler WF, La Marca F. Changes in Utilization of Spinal Fusionin the United States. Neurosurgery. 2006;59(1):15-20.spa
dc.relation.referencesStevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11(5):18-25.spa
dc.relation.referencesSoucacos PN, Johnson EO. Current concepts and applications in the musculoskeletal and peripheral nervous systems. Curr Orthop. 2005;19(6):453-60.spa
dc.relation.referencesFrohlich M, Grayson W, Wan L, Marolt D, Drobnic M, Vunjak- Novakovic G. Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical Relevance. Curr Stem Cell Res Ther. 2008;3(4):254-64.spa
dc.relation.referencesStevens MM, Marini RP, Schaefer D, Aronson J, Langer R, Shastri VP. In vivo engineering of organs: The bone bioreactor. Proc Natl Acad Sci. 2005;102(32):11450-5.spa
dc.relation.referencesCalvo R, Figueroa D, Díaz-Ledezma C, Vaisman A, Figueroa F. Aloinjertos óseos y la función del banco de huesos. Rev Médica Chile. 2011;139(5):660-6.spa
dc.relation.referencesPetite H, Viateau V, Bensaïd W, Meunier A, De Pollak C, Bourguignon M, et al. Tissue-engineered bone regeneration. Nat Biotechnol. 2000;18(9):959-63.spa
dc.relation.referencesBorandeh S, van Bochove B, Teotia A, Seppälä J. Polymeric drug delivery systems by additive manufacturing. Adv Drug Deliv Rev. 2021;173:349-73.spa
dc.relation.referencesAshley S. Rapid prototyping Systems. Mech Eng. 1991;113(4):34.spa
dc.relation.referencesGuo Y, Patanwala HS, Bognet B, Ma AWK. Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance. Rapid Prototyp J.2017;23(3):562-76.spa
dc.relation.referencesCooper K. Rapid Prototyping Technology: selection and application. CRC press.; 2001.spa
dc.relation.referencesHorvath D, Noorani R, Mendelson M. Improvement of Surface Roughness on ABS 400 Polymer Using Design of Experiments (DOE). Mater Sci Forum. 2007;561-565:2389-92.spa
dc.relation.referencesKruth JP. Material Incress Manufacturing by Rapid Prototyping Techniques. CIRP Ann. 1991;40(2):603-14.spa
dc.relation.referencesKim H, Choi J, Wicker R. Scheduling and process planning for multiple material stereolithography. Rapid Prototyp J. 2010;16(4):232-40.spa
dc.relation.referencesHalloran JW, Tomeckova V, Gentry S, Das S, Cilino P, Yuan D, et al. Photopolymerization of powder suspensions for shaping ceramics. J Eur Ceram Soc. 2011;31(14):2613-9.spa
dc.relation.referencesBandyopadhyay A, Mitra I, Bose S. 3D Printing for Bone Regeneration. Curr Osteoporos Rep. 2020;18(5):505-14.spa
dc.relation.referencesDoberenz F, Zeng K, Willems C, Zhang K, Groth T. Thermoresponsive polymers and their biomedical application in tissue engineering – a review. J Mater Chem B. 2020;8(4):607-28.spa
dc.relation.referencesWong KV, Hernandez A. A Review of Additive Manufacturing. ISRN Mech Eng. 2012;2012:1-10.spa
dc.relation.referencesTang HH, Chiu ML, Yen HC. Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. J Eur Ceram Soc. 2011;31(8):1383-8.spa
dc.relation.referencesSalmoria GV, Paggi RA, Lago A, Beal VE. Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Polym Test. 2011;30(6):611-5.spa
dc.relation.referencesKrznar M, Dolinsek S. Selective laser sintering of composite materials technologies. 2010; 1527-1529 p.spa
dc.relation.referencesSong SJ, Choi J, Park YD, Hong S, Lee JJ, Ahn CB, et al. Sodium Alginate Hydrogel-Based Bioprinting Using a Novel Multinozzle Bioprinting System: THOUGHTS AND PROGRESS. Artif Organs. 2011;35(11):1132-6.spa
dc.relation.referencesChu T, Park S, Fu K (Kelvin). 3D printing‐enabled advanced electrode architecture design. Carbon Energy. 2021;3(3):424-39.spa
dc.relation.referencesKarkun MS, Dharmalinga S. 3D Printing Technology in Aerospace Industry – A Review. Int J Aviat Aeronaut Aerosp [Internet]. 2022 [citado 12 de octubre de 2023]; Disponible en: https://commons.erau.edu/ijaaa/vol9/iss2/4/spa
dc.relation.referencesJames WJ, Slabbekoorn MA, Edgin WA, Hardin CK. Correction of congenital malar hypoplasia using stereolithography for presurgical planning. J Oral Maxillofac Surg. 1998;56(4):512-7.spa
dc.relation.referencesTian Y, Chen C, Xu X, Wang J, Hou X, Li K, et al. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Relucenti M, editor. Scanning. 2021;2021:1-19spa
dc.relation.referencesHrusak D, Bolek M, Bolek L. On site 3D printing in oral and maxilofacial surgery for trauma and oncological bone reconstruction. Int J Oral Maxillofac Surg. 2015;44:e225-6.spa
dc.relation.referencesFielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater. 2012;28(2):113-22spa
dc.relation.referencesSuwanprateeb J, Sanngam R, Suvannapruk W, Panyathanmaporn T. Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. J Mater Sci Mater Med. 2009;20(6):1281-9.spa
dc.relation.referencesKatalinic B, Danube Adria Association for Automation & Manufacturing, editores. Annals of DAAAM for 2010 & proceedings of the 21st International DAAAM Symposium «Intelligent Manufacturing & Automation», 20 - 23rd October 2010, Zadar, Croatia: & 4th European DAAAM International Young Researchers’ and Scientists Conference] ; [the 21st DAAAM world symposium. 2010. 1618 p.spa
dc.relation.referencesHollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518-24.spa
dc.relation.referencesWang J, Dai X, Peng Y, Liu M, Lu F, Yang X, et al. Digital light processing strength-strong ultra-thin bioceramic scaffolds for challengeable orbital bone regeneration and repair in Situ. Appl Mater Today. 2021;22:100889.spa
dc.relation.referencesHua J, Ng PF, Fei B. High‐strength hydrogels: Microstructure design, characterization and applications. J Polym Sci Part B Polym Phys. 2018;56(19):1325-35.spa
dc.relation.referencesManavitehrani I, Le TYL, Daly S, Wang Y, Maitz PK, Schindeler A, et al. Formation of porous biodegradable scaffolds based on poly(propylene carbonate) using gas foaming technology. Mater Sci Eng C. 2019;96:824-30.spa
dc.relation.referencesKazimierczak P, Benko A, Palka K, Canal C, Kolodynska D, Przekora A. Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds. J Mater Sci Technol. 2020;43:52-63.spa
dc.relation.referencesYao H, Kang J, Li W, Liu J, Xie R, Wang Y, et al. Novel β -TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair. Biomed Mater. 2017;13(1):015012.spa
dc.relation.referencesNahanmoghadam A, Asemani M, Goodarzi V, Ebrahimi‐Barough S. Design and fabrication of bone tissue scaffolds based on PCL / PHBV CONTAINING hydroxyapatite nanoparticles: DUAL‐LEACHING technique. J Biomed Mater Res A. 2021;109(6):981-93.spa
dc.relation.referencesBendtsen ST, Quinnell SP, Wei M. Development of a novel alginate‐polyvinyl alcohol‐hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res A. 2017;105(5):1457-68.spa
dc.relation.referencesWang Y, Huang X, Zhang X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat Commun. 2021;12(1):1291.spa
dc.relation.referencesHua M, Wu S, Ma Y, Zhao Y, Chen Z, Frenkel I, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature. 2021;590(7847):594-9.spa
dc.relation.referencesWang C, Huang W, Zhou Y, He L, He Z, Chen Z, et al. 3D printing of bone tissue engineering scaffolds. Bioact Mater 2020;5(1):82-91.spa
dc.relation.referencesAldana AA, Valente F, Dilley R, Doyle B. Development of 3D bioprinted GelMA-alginate hydrogels with tunable mechanical properties. Bioprinting. 2021;21:e00105.spa
dc.relation.referencesRajzer I, Rom M, Menaszek E, Pasierb P. Conductive PANI patterns on electrospun PCL/gelatin scaffolds modified with bioactive particles for bone tissue engineering. Mater Lett. 2015;138:60-3.spa
dc.relation.referencesChimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advanced Bioinks for 3D Printing: A Materials Science Perspective. Ann Biomed Eng. 2016;44(6):2090-102.spa
dc.relation.referencesYang Y, Song X, Li X, Chen Z, Zhou C, Zhou Q, et al. Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures. Adv Mater. 2018;30(36):1706539.spa
dc.relation.referencesOuyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020.spa
dc.relation.referencesWei Y, Zhao D, Cao Q, Wang J, Wu Y, Yuan B, et al. Stereolithography-Based Additive Manufacturing of High-Performance Osteoinductive Calcium Phosphate Ceramics by a Digital Light-Processing System. ACS Biomater Sci Eng. 2020;6(3):1787-97.spa
dc.relation.referencesAbudhahir M, Saleem A, Paramita P, Kumar SD, Tze‐Wen C, Selvamurugan N, et al. Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications. J Biomed Mater Res B Appl Biomater. 2021;109(5):654-64.spa
dc.relation.referencesCurti F, Stancu IC, Voicu G, Iovu H, Dobrita CI, Ciocan LT, et al. Development of 3D Bioactive Scaffolds through 3D Printing Using Wollastonite–Gelatin Inks. Polymers. 2020;12(10):2420.spa
dc.relation.referencesKamboj N, Kazantseva J, Rahmani R, Rodríguez MA, Hussainova I. Selective laser sintered bio-inspired silicon-wollastonite scaffolds for bone tissue engineering. Mater Sci Eng C. 2020;116:111223.spa
dc.relation.referencesPalakurthy S, K. VGR, Samudrala RK, P. AA. In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Mater Sci Eng C. 2019;98:109-17.spa
dc.relation.referencesGe R, Xun C, Yang J, Jia W, Li Y. In vivo therapeutic effect of wollastonite and hydroxyapatite on bone defect. Biomed Mater. 2019;14(6):065013.spa
dc.relation.referencesWei J, Chen F, Shin JW, Hong H, Dai C, Su J, et al. Preparation and characterization of bioactive mesoporous wollastonite – Polycaprolactone composite scaffold. Biomaterials. 2009;30(6):1080-8.spa
dc.relation.referencesEmadi R, Roohani Esfahani SI, Tavangarian F. A novel, low temperature method for the preparation of ß-TCP/HAP biphasic nanostructured ceramic scaffold from natural cancellous bone. Mater Lett. 2010;64(8):993-6.spa
dc.relation.referencesLew DP, Waldvogel FA. Osteomyelitis. The Lancet. 2004;364(9431):369-79.spa
dc.relation.referencesBrady RA, Leid JG, Calhoun JH, Costerton JW, Shirtliff ME. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol. 2008;52(1):13-22.spa
dc.relation.referencesGarcia Del Pozo E, Collazos J, Carton JA, Camporro D, Asensi V. Factors predictive of relapse in adult bacterial osteomyelitis of long bones. BMC Infect Dis. 2018;18(1):635.spa
dc.relation.referencesDonlan RM, Costerton JW. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin Microbiol Rev. 2002;15(2):167-93.spa
dc.relation.referencesKristian SA, Golda T, Ferracin F, Cramton SE, Neumeister B, Peschel A, et al. The ability of biofilm formation does not influence virulence of Staphylococcus aureus and host response in a mouse tissue cage infection model. Microb Pathog. 2004;36(5):237-45.spa
dc.relation.referencesChan C, Burrows LL, Deber CM. Helix Induction in Antimicrobial Peptides by Alginate in Biofilms. J Biol Chem. 2004;279(37):38749-54.spa
dc.relation.referencesDental implants and osteomyelitis in a patient with osteopetrosis. Quintessence Int. 2014;45(9):765-8.spa
dc.relation.referencesSemel G, Wolff A, Shilo D, Akrish S, Emodi O, Rachmiel A. Mandibular osteomyelitis associated with dental implants. A case series. Eur J Oral Implantol. 2016;9(4):435-42.spa
dc.relation.referencesShnaiderman-Shapiro A, Dayan D, Buchner A, Schwartz I, Yahalom R, Vered M. Histopathological Spectrum of Bone Lesions Associated with Dental Implant Failure: Osteomyelitis and Beyond. Head Neck Pathol. 2015;9(1):140-6.spa
dc.relation.referencesDrayton M, Kizhakkedathu JN, Straus SK. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules. 2020;25(13):3048.spa
dc.relation.referencesFair RJ, Tor Y. Antibiotics and Bacterial Resistance in the 21st Century. Perspect Med Chem. 2014;6:PMC.S14459.spa
dc.relation.referencesLu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018;11(10):4985-98.spa
dc.relation.referencesMakowski M, Silva ÍC, Pais Do Amaral C, Gonçalves S, Santos NC. Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery. Pharmaceutics. 8 de 2019;11(11):588.spa
dc.relation.referencesZurawski DV, McLendon MK. Monoclonal Antibodies as an Antibacterial Approach Against Bacterial Pathogens. Antibiotics. 2020;9(4):155.spa
dc.relation.referencesCaplin JD, García AJ. Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomater. 2019;93:2-11.spa
dc.relation.referencesPatrascu JM, Nedelcu IA, Sonmez M, Ficai D, Ficai A, Vasile BS, et al. Composite Scaffolds Based on Silver Nanoparticles for Biomedical Applications. J Nanomater. 2015;2015:1-8.spa
dc.relation.referencesGyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control. 2014;46:412-29.spa
dc.relation.referencesLópez-Alarcón C, Denicola A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal Chim Acta. febrero de 2013;763:1-10.spa
dc.relation.referencesCowan MM. Plant Products as Antimicrobial Agents. Clin Microbiol Rev. octubre de 1999;12(4):564-82.spa
dc.relation.referencesClark AM. Natural products as a resource for new drugs. Pharm Res. 1996;13(8):1133-41.spa
dc.relation.referencesUgur A, Barlas M, Ceyhan N, Turkmen V. Antimicrobial Effects of Propolis Extracts on Escherichia coli and Staphylococcus aureus Strains Resistant to Various Antibiotics and Some Microorganisms. J Med Food. 2000;3(4):173-80.spa
dc.relation.referencesMattigatti S, Jain D, Ratnakar P, Moturi S, Varma S, Rairam S. Antimicrobial Effect of Conventional Root Canal Medicaments vs Propolis against Enterococcus faecalis, Staphylococcus aureus and Candida albicans. J Contemp Dent Pract. 2012;13(3):305-9.spa
dc.relation.referencesOda H, Nakagawa T, Maruyama K, Dono Y, Katsuragi H, Sato S. Effect of Brazilian green propolis on oral pathogens and human periodontal fibroblasts. J Oral Biosci. 2016;58(2):50-4.spa
dc.relation.referencesMeimandi-Parizi A, Oryan A, Sayahi E, Bigham-Sadegh A. Propolis extract a new reinforcement material in improving bone healing: An in vivo study. Int J Surg. 2018;56:94-101.spa
dc.relation.referencesElkhenany H, El-Badri N, Dhar M. Green propolis extract promotes in vitro proliferation, differentiation, and migration of bone marrow stromal cells. Biomed Pharmacother. 2019;115:108861.spa
dc.relation.referencesAfrouzan H, Tahghighi A, Zakeri S, Es-haghi A. Chemical Composition and Antimicrobial Activities of Iranian Propolis. Iran Biomed J [Internet]. enero de 2018 [citado 13 de octubre de 2023];22(1). Disponible en: https://doi.org/10.22034/ibj.22.1.50spa
dc.relation.referencesOryan A, Alemzadeh E, Moshiri A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed Pharmacother. 2018;98:469-83.spa
dc.relation.referencesPasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxid Med Cell Longev. 2017;2017:1-21.spa
dc.relation.referencesPopova M, Giannopoulou E, Skalicka-Woźniak K, Graikou K, Widelski J, Bankova V, et al. Characterization and Biological Evaluation of Propolis from Poland. Molecules. 2017;22(7):1159.spa
dc.relation.referencesVeiga RS, De Mendonça S, Mendes PB, Paulino N, Mimica MJ, Lagareiro Netto AA, et al. Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC. J Appl Microbiol. 2017;122(4):911-20.spa
dc.relation.referencesPazin WM, Mônaco LDM, Egea Soares AE, Miguel FG, Berretta AA, Ito AS. Antioxidant activities of three stingless bee propolis and green propolis types. J Apic Res. 2017;56(1):40-9.spa
dc.relation.referencesCuesta-Rubio O, Piccinelli AL, Campo Fernandez M, Márquez Hernández I, Rosado A, Rastrelli L. Chemical Characterization of Cuban Propolis by HPLC−PDA, HPLC−MS, and NMR: the Brown , Red , and Yellow Cuban Varieties of Propolis. J Agric Food Chem. 2007;55(18):7502-9.spa
dc.relation.referencesRibeiro VP, Arruda C, Aldana‐Mejia JA, Bastos JK, Tripathi SK, Khan SI, et al. Phytochemical, Antiplasmodial, Cytotoxic and Antimicrobial Evaluation of a Southeast Brazilian Brown Propolis Produced by Apis mellifera Bees. Chem Biodivers. 2021;18(9):e2100288.spa
dc.relation.referencesRibeiro VP, Arruda C, Mejía JAA, Candido ACBB, Dos Santos RA, Magalhães LG, et al. Brazilian southeast brown propolis: gas chromatography method development for its volatile oil analysis, its antimicrobial and leishmanicidal activities evaluation. Phytochem Anal. 2021;32(3):404-11.spa
dc.relation.referencesAOAC. Official methods of analysis of the AOAC. 15th ed. Vol. 1. Arlington, VA: The Association; 1990.spa
dc.relation.referencesMartinez J, Garcia C, Durango D, Gil J. Caracterización de propóleos provenientes del municipio de Caldas obtenido por dos métodos de recolección. Rev MVZ Cordoba [Internet]. 17(1). Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-02682012000100008spa
dc.relation.referencesKumazawa S, Hamasaka T, Nakayama T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004;84(3):329-39.spa
dc.relation.referencesSingleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am J Enol Vitic. 1965;16(3):144-58.spa
dc.relation.referencesAndonian MR, Barrett AS, Vinogradov SN. Physical properties and subunits of Haemopis grandis erythrocruorin. Biochim Biophys Acta. 1975;412(2):202-13.spa
dc.relation.referencesRe R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231-7.spa
dc.relation.referencesPhiri N, Mainda G, Mukuma M, Sinyangwe NN, Banda LJ, Kwenda G, et al. Antibiotic-resistant Salmonella species and Escherichia coli in broiler chickens from farms, abattoirs and open markets in selected districts of Zambia [Internet]. Scientific Communication and Education; 2020 [citado 20 de noviembre de 2023]. Disponible en: http://biorxiv.org/lookup/doi/10.1101/2020.04.20.050914spa
dc.relation.referencesKowalska-Krochmal B, Dudek-Wicher R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens. 2021;10(2):165.spa
dc.relation.referencesSeidel V, Peyfoon E, Watson DG, Fearnley J. Comparative study of the antibacterial activity of propolis from different geographical and climatic zones: ANTIBACTERIAL ACTIVITY OF PROPOLIS FROM DIFFERENT ZONES. Phytother Res. 2008;22(9):1256-63.spa
dc.relation.referencesLozina L analía, Peichoto ME, Acosta O, Granero G. Estandarización y caracterización organoléptica y fisicoquímica de 15 propóleos argentinos. Acta Farm Bonaer. 2010;29(1):102-10.spa
dc.relation.referencesMarly SS, Maria LMFE, Carlos ALDC, Karina TMG, Rosane FS, Rogeria CDCA. Propolis as natural additive: A systematic review. Afr J Biotechnol. 2018;17(41):1282-91.spa
dc.relation.referencesIrigoiti Y, Navarro A, Yamul D, Libonatti C, Tabera A, Basualdo M. The use of propolis as a functional food ingredient: A review. Trends Food Sci Technol. 2021;115:297-306.spa
dc.relation.referencesViloria J, Gil J, Durango D, Garcia C. Physicochemical characterization and antimicrobial activity of propolis from municipality of la union (antioquia, colombia). Rev Biotecnol En El Sect Agropecu Agroindustrial. 2010;63(1):5373-83.spa
dc.relation.referencesBarrientos‐Lezcano JC, Gallo‐Machado J, Marin‐Palacio LD, Builes S. Extraction kinetics and physicochemical characteristics of Colombian propolis. J Food Process Eng. 2023;46(11):e14272.spa
dc.relation.referencesDaza-Leon C, Gomez AP, Álvarez-Mira D, Carvajal-Diaz L, Ramirez-Nieto G, Sanchez A, et al. Characterization and evaluation of Colombian propolis on the intestinal integrity of broilers. Poult Sci. 2022;101(12):102159.spa
dc.relation.referencesDaza-Leon C, Gomez AP, Álvarez-Mira D, Carvajal-Diaz L, Ramirez-Nieto G, Sanchez A, et al. Characterization and evaluation of Colombian propolis on the intestinal integrity of broilers. Poult Sci. 2022;101(12):102159spa
dc.relation.referencesDevequi-Nunes D, Machado BAS, Barreto GDA, Rebouças Silva J, Da Silva DF, Da Rocha JLC, et al. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. Lightfoot DA, editor. PLOS ONE. 2018;13(12):e0207676.spa
dc.relation.referencesPark YK, Alencar SM, Aguiar CL. Botanical Origin and Chemical Composition of Brazilian Propolis. J Agric Food Chem. 2002;50(9):2502-6.spa
dc.relation.referencesWagh VD. Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Adv Pharmacol Sci. 2013;2013:1-11.spa
dc.relation.referencesSilva-Carvalho R, Baltazar F, Almeida-Aguiar C. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evid Based Complement Alternat Med. 2015;2015:1-29.spa
dc.relation.referencesVera N, Solorzano E, Ordoñez R, Maldonado L, Bedascarrasbure E, Isla MI. Chemical composition of Argentinean propolis collected in extreme regions and its relation with antimicrobial and antioxidant activities. Nat Prod Commun. 2011;6(6):1934578X1100600618.spa
dc.relation.referencesAndrade JKS, Denadai M, De Oliveira CS, Nunes ML, Narain N. Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Res Int. 2017;101:129-38spa
dc.relation.referencesKudo D, Inden M, Sekine S ichiro, Tamaoki N, Iida K, Naito E, et al. Conditioned medium of dental pulp cells stimulated by Chinese propolis show neuroprotection and neurite extension in vitro. Neurosci Lett. 2015;589:92-7.spa
dc.relation.referencesAlshaher A, Wallace J, Agarwal S, Bretz W, Baugh D. Effect of Propolis on Human Fibroblasts from the Pulp and Periodontal Ligament. J Endod. 2004;30(5):359-61spa
dc.relation.referencesBurdock GA. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol. 1998;36(4):347-63.spa
dc.relation.referencesCottica SM, Sawaya ACHF, Eberlin MN, Franco SL, Zeoula LM, Visentainer JV. Antioxidant activity and composition of propolis obtained by different methods of extraction. J Braz Chem Soc. 2011;22(5):929-35.spa
dc.relation.referencesPobiega K, Kraśniewska K, Derewiaka D, Gniewosz M. Comparison of the antimicrobial activity of propolis extracts obtained by means of various extraction methods. J Food Sci Technol. 2019;56(12):5386-95.spa
dc.relation.referencesTrusheva B, Trunkova D, Bankova V. Different extraction methods of biologically active components from propolis: a preliminary study. Chem Cent J. 2007;1(1):13.spa
dc.relation.referencesHeinrich M, Modarai M, Kortenkamp A. Herbal Extracts used for Upper Respiratory Tract Infections: Are there Clinically Relevant Interactions with the Cytochrome P450 Enzyme System? Planta Med. 2008;74(6):657-60.spa
dc.relation.referencesAhn MR, Kumazawa S, Hamasaka T, Bang KS, Nakayama T. Antioxidant Activity and Constituents of Propolis Collected in Various Areas of Korea. J Agric Food Chem. 2004;52(24):7286-92.spa
dc.relation.referencesAkhir RAM, Bakar MFA, Sanusi SB. Antioxidant and antimicrobial activity of stingless bee bread and propolis extracts. En Kedah, Malaysia; 2017 [citado 13 de octubre de 2023]. p. 0200901-7. Disponible en: https://pubs.aip.org/aip/acp/article/886523spa
dc.relation.referencesMoreno AI, Orozco Y, Ocampo S, Malagón S, Ossa A, Peláez-Vargas A, et al. Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded with Wollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices. Polymers. 2023;15(12):2629.spa
dc.relation.referencesGonsales GZ, Orsi RO, Fernandes Júnior A, Rodrigues P, Funari SRC. Antibacterial activity of propolis collected in different regions of Brazil. J Venom Anim Toxins Trop Dis [Internet]. 2006 [citado 13 de octubre de 2023];12(2). Disponible en: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992006000200009&lng=en&nrm=iso&tlng=enspa
dc.relation.referencesLu LC, Chen YW, Chou CC. Antibacterial activity of propolis against Staphylococcus aureus. Int J Food Microbiol. 2005;102(2):213-20.spa
dc.relation.referencesAbd Rashid N, Mohammed SNF, Syed Abd Halim SA, Ghafar NA, Abdul Jalil NA. Therapeutic Potential of Honey and Propolis on Ocular Disease. Pharmaceuticals. 2022;15(11):1419.spa
dc.relation.referencesGórniak I, Bartoszewski R, Króliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev. 2019;18(1):241-72.spa
dc.relation.referencesHorna Quintana G, Silva Diaz M, Vicente Taboada W, Tamariz Ortiz J. Concentración mínima inhibitoria y concentración mínima bactericida de ciprofloxacina en bacterias uropatógenas aisladas en el Instituto Nacional de Enfermedades Neoplásicas. Rev Medica Hered. 2012;16(1):39.spa
dc.relation.referencesMoussaoui S, Lahouel M. Propolis Extract: A Potent Bacteria Efflux Pump Inhibitor. J Biol Act Prod Nat. 2014;4(3):216-23spa
dc.relation.referencesDa Cruz Almeida ET, Da Silva MCD, Oliveira JMDS, Kamiya RU, Arruda RE dos S, Vieira DA, et al. Chemical and microbiological characterization of tinctures and microcapsules loaded with Brazilian red propolis extract. J Pharm Anal. 2017;7(5):280-7.spa
dc.relation.referencesVan Der Heide D, Cidonio G, Stoddart MJ, D’Este M. 3D printing of inorganic-biopolymer composites for bone regeneration. Biofabrication. 2022;14(4):042003.spa
dc.relation.referencesBakhsheshi-Rad HR, Hamzah E, Daroonparvar M, Ebrahimi-Kahrizsangi R, Medraj M. In-vitro corrosion inhibition mechanism of fluorine-doped hydroxyapatite and brushite coated Mg–Ca alloys for biomedical applications. Ceram Int. 2014;40(6):7971-82.spa
dc.relation.referencesRatner BD, editor. Biomaterials science: an introduction to materials in medicine. 2nd ed. Amsterdam ; Boston: Elsevier Academic Press; 2004. 851 p.spa
dc.relation.referencesHench LL. Bioceramics. J Am Ceram Soc. 2005;81(7):1705-28.spa
dc.relation.referencesRatner BD, editor. Biomaterials science: an introduction to materials in medicine. 2nd ed. Amsterdam ; Boston: Elsevier Academic Press; 2004. 851 p.spa
dc.relation.referencesBrunello G, Sivolella S, Meneghello R, Ferroni L, Gardin C, Piattelli A, et al. Powder-based 3D printing for bone tissue engineering. Biotechnol Adv. 2016;34(5):740-53.spa
dc.relation.referencesWu C, Chang J. A review of bioactive silicate ceramics. Biomed Mater. de 2013;8(3):032001.spa
dc.relation.referencesXu S, Lin K, Wang Z, Chang J, Wang L, Lu J, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials. 2008;29(17):2588-96.spa
dc.relation.referencesMa H, Feng C, Chang J, Wu C. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater. 2018;79:37-59.spa
dc.relation.referencesYang C, Wang X, Ma B, Zhu H, Huan Z, Ma N, et al. 3D-Printed Bioactive Ca 3 SiO 5 Bone Cement Scaffolds with Nano Surface Structure for Bone Regeneration. ACS Appl Mater Interfaces. 2017;9(7):5757-67.spa
dc.relation.referencesMarsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551-5.spa
dc.relation.referencesYang Y, Xu T, Zhang Q, Piao Y, Bei HP, Zhao X. Biomimetic, Stiff, and Adhesive Periosteum with Osteogenic–Angiogenic Coupling Effect for Bone Regeneration. Small. 2021;17(14):2006598.spa
dc.relation.referencesMorgan EF, De Giacomo A, Gerstenfeld LC. Overview of Skeletal Repair (Fracture Healing and Its Assessment). En: Hilton MJ, editor. Skeletal Development and Repair [Internet]. Totowa, NJ: Humana Press; 2014 [citado 1 de noviembre de 2023]. p. 13-31. (Methods in Molecular Biology; vol. 1130). Disponible en: https://link.springer.com/10.1007/978-1-62703-989-5_2spa
dc.relation.referencesRestrepo S, Ocampo S, Ramírez JA, Paucar C, García C. Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing. J Phys Conf Ser. 2017;935:012036.spa
dc.relation.referencesDong Z, Zhao X. Application of TPMS structure in bone regeneration. Eng Regen. 2021;2:154-62.spa
dc.relation.referencesFantini M, Curto M, De Crescenzio F. TPMS for interactive modelling of trabecular scaffolds for Bone Tissue Engineering. En: Eynard B, Nigrelli V, Oliveri SM, Peris-Fajarnes G, Rizzuti S, editores. Advances on Mechanics, Design Engineering and Manufacturing [Internet]. Cham: Springer International Publishing; 2017 [citado 1 de noviembre de 2023]. p. 425-35. (Lecture Notes in Mechanical Engineering). Disponible en: http://link.springer.com/10.1007/978-3-319-45781-9_43spa
dc.relation.referencesVijayavenkataraman S, Zhang L, Zhang S, Hsi Fuh JY, Lu WF. Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach toward Biomimetic Scaffold Design. ACS Appl Bio Mater. 2018;1(2):259-69.spa
dc.relation.referencesFogden A, Haeberlein M, Lidin S. Generalizations of the gyroid surface. J Phys I. 1993;3(12):2371-85.spa
dc.relation.referencesShao H, He Y, Fu J, He D, Yang X, Xie J, et al. 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation. J Eur Ceram Soc. 2016;36(6):1495-503.spa
dc.relation.referencesPita Migueléz I. Diseño, sinterización y caracterización de estructuras 3D con porosidad gradual de Wollastonite y Fosfato tricálcico para regeneración ósea [Internet]. [Madrid]: Politécnica de Madrid; 2019. Disponible en: https://oa.upm.es/72060/3/TFG_Ines_Pita_Miguelez.pdfspa
dc.relation.referencesC21 Committee. Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, Ceramic Tiles, and Glass Tiles [Internet]. ASTM International; [citado 1 de noviembre de 2023]. Disponible en: http://www.astm.org/cgi-bin/resolver.cgi?C373-88R06spa
dc.relation.referencesLiu J, Miao X. Porous alumina ceramics prepared by slurry infiltration of expanded polystyrene beads. J Mater Sci. 2005;40(23):6145-50.spa
dc.relation.referencesD04 Committee. Test Method for Density of Semi-Solid Asphalt Binder (Pycnometer Method) [Internet]. ASTM International; [citado 1 de noviembre de 2023]. Disponible en: http://www.astm.org/cgi-bin/resolver.cgi?D70D70M-21spa
dc.relation.referencesYang T, Van Olmen R. Robust design for a multilayer ceramic capacitor screen-printing process case study. J Eng Des. 2004;15(5):447-57.spa
dc.relation.referencesYoon DH, Lee BI. Processing of barium titanate tapes with different binders for MLCC applications—Part I: Optimization using design of experiments. J Eur Ceram Soc. 2004;24(5):739-52.spa
dc.relation.referencesRenteria A, Fontes H, Diaz JA, Regis JE, Chavez LA, Tseng TL (Bill), et al. Optimization of 3D printing parameters for BaTiO 3 piezoelectric ceramics through design of experiments. Mater Res Express. 2019;6(8):085706.spa
dc.relation.referencesPrasad PSRK, Reddy AV, Rajesh PK, Ponnambalam P, Prakasan K. Studies on rheology of ceramic inks and spread of ink droplets for direct ceramic ink jet printing. J Mater Process Technol. 2006;176(1-3):222-9.spa
dc.relation.referencesJayathilakage R, Rajeev P, Sanjayan J. Rheometry for Concrete 3D Printing: A Review and an Experimental Comparison. Buildings. 2022;12(8):1190.spa
dc.relation.referencesMott RL, Untener JA. Applied fluid mechanics. Seventh edition. Boston: Pearson; 2015. 531 p.spa
dc.relation.referencesLilliman M. Control of mortar rheology for 3D concrete printing. [Internet]. Loughborough; 2017. Disponible en: https://hdl.handle.net/2134/25216spa
dc.relation.referencesChan SSL, Pennings RM, Edwards L, Franks GV. 3D printing of clay for decorative architectural applications: Effect of solids volume fraction on rheology and printability. Addit Manuf. 2020;35:101335.spa
dc.relation.referencesSainz MA, Pena P, Serena S, Caballero A. Influence of design on bioactivity of novel CaSiO3–CaMg(SiO3)2 bioceramics: In vitro simulated body fluid test and thermodynamic simulation. Acta Biomater. 2010;6(7):2797-807.spa
dc.relation.referencesTeixeira S, Rodriguez MA, Pena P, De Aza AH, De Aza S, Ferraz MP, et al. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Mater Sci Eng C. 2009;29(5):1510-4.spa
dc.relation.referencesCunningham E, Dunne N, Walker G, Maggs C, Wilcox R, Buchanan F. Hydroxyapatite bone substitutes developed via replication of natural marine sponges. J Mater Sci Mater Med. 2010;21(8):2255-61.spa
dc.relation.referencesCunningham E, Dunne N, Walker G, Maggs C, Wilcox R, Buchanan F. Hydroxyapatite bone substitutes developed via replication of natural marine sponges. J Mater Sci Mater Med. 2010;21(8):2255-61.spa
dc.relation.referencesZeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG. Effect of Pore Size and Void Fraction on Cellular Adhesion, Proliferation, and Matrix Deposition. Tissue Eng. 2001;7(5):557-72.spa
dc.relation.referencesKramschuster A, Turng LS. Fabrication of Tissue Engineering Scaffolds. 17.a ed. Boston: William Andrew Publishing; 2013. 427-446 p.spa
dc.relation.referencesDel Carpio-Perochena A, Kishen A, Felitti R, Bhagirath AY, Medapati MR, Lai C, et al. Antibacterial Properties of Chitosan Nanoparticles and Propolis Associated with Calcium Hydroxide against Single- and Multispecies Biofilms: An In Vitro and In Situ Study. J Endod. 2017;43(8):1332-6.spa
dc.relation.referencesDelgado Aceves MDL, Andrade Ortega JÁ, Ramírez Barragán CA. Caracterización fisicoquímica de propóleos colectados en el Bosque La Primavera Zapopan, Jalisco. Rev Mex Cienc For. 2018;6(28):74-87.spa
dc.relation.referencesSedelnikova MB, Ugodchikova AV, Tolkacheva TV, Chebodaeva VV, Cluklhov IA, Khimich MA, et al. Surface Modification of Mg0.8Ca Alloy via Wollastonite Micro-Arc Coatings: Significant Improvement in Corrosion Resistance. Metals. 2021;11(5):754.spa
dc.relation.referencesChen W, Liang Y, Hou X, Zhang J, Ding H, Sun S, et al. Mechanical Grinding Preparation and Characterization of TiO2-Coated Wollastonite Composite Pigments. Materials. 2018;11(4):593.spa
dc.relation.referencesDabiri G, Tumbarello DA, Turner CE, Van De Water L. Hic-5 Promotes the Hypertrophic Scar Myofibroblast Phenotype by Regulating the TGF-β1 Autocrine Loop. J Invest Dermatol. 2008;128(10):2518-25.spa
dc.relation.referencesHu J, Qu J, Xu D, Zhou J, Lu H. Allograft versus autograft for anterior cruciate ligament reconstruction: an up-to-date meta-analysis of prospective studies. Int Orthop. 2013;37(2):311-20.spa
dc.relation.referencesSamorezov JE, Alsberg E. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Deliv Rev. 2015;84:45-67.spa
dc.relation.referencesRambhia KJ, Ma PX. Controlled drug release for tissue engineering. J Controlled Release. 2015;219:119-28.spa
dc.relation.referencesKalinka J, Hachmeister M, Geraci J, Sordelli D, Hansen U, Niemann S, et al. Staphylococcus aureus isolates from chronic osteomyelitis are characterized by high host cell invasion and intracellular adaptation, but still induce inflammation. Int J Med Microbiol. 2014;304(8):1038-49.spa
dc.relation.referencesWang X, Sparkman J, Gou J. Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling. Compos Commun. 2017;3:1-6.spa
dc.relation.referencesLima ALL, Oliveira PR, Carvalho VC, Cimerman S, Savio E. Recommendations for the treatment of osteomyelitis. Braz J Infect Dis. 2014;18(5):526-34.spa
dc.relation.referencesGama E Silva GL, Sato De Souza Bustamante Monteiro M, Dos Santos Matos AP, Santos-Oliveira R, Kenechukwu FC, Ricci-Júnior E. Nanofibers in the treatment of osteomyelitis and bone regeneration. J Drug Deliv Sci Technol. 2022;67:102999.spa
dc.relation.referencesPatti JM, Bremell T, Krajewska-Pietrasik D, Abdelnour A, Tarkowski A, Rydén C, et al. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect Immun. 1994;62(1):152-61.spa
dc.relation.referencesGordon RJ, Lowy FD. Pathogenesis of Methicillin‐Resistant Staphylococcus aureus Infection. Clin Infect Dis. 2008;46(S5):S350-9.spa
dc.relation.referencesZhou M, Luo H, Li Z, Wu F, Huang C, Ding Z, et al. Recent Advances in Screening of Natural Products for Antimicrobial Agents. Comb Chem High Throughput Screen. 2012;15(4):306-15.spa
dc.relation.referencesAlmuhayawi MS. Propolis as a novel antibacterial agent. Saudi J Biol Sci. 2020;27(11):3079-86.spa
dc.relation.referencesYildirim Z, Hacievliyagil S, Kutlu NO, Aydin NE, Kurkcuoglu M, Iraz M, et al. Effect of water extract of Turkish propolis on tuberculosis infection in guinea-pigs. Pharmacol Res. 2004;49(3):287-92.spa
dc.relation.referencesUzel A, Sorkun K, Önçağ Ö, Çoğulu D, Gençay Ö, Sali˙h B. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol Res. 2005;160(2):189-95.spa
dc.relation.referencesQureshi UA, Khatri Z, Ahmed F, Khatri M, Kim IS. Electrospun Zein Nanofiber as a Green and Recyclable Adsorbent for the Removal of Reactive Black 5 from the Aqueous Phase. ACS Sustain Chem Eng. 2017;5(5):4340-51.spa
dc.relation.referencesIto J, Chang FR, Wang HK, Park YK, Ikegaki M, Kilgore N, et al. Anti-AIDS Agents. Anti-HIV Activity of Moronic Acid Derivatives and the New Melliferone-Related Triterpenoid Isolated from Brazilian Propolis. J Nat Prod. 2001;64(10):1278-81.spa
dc.relation.referencesDuke CC, Tran VH, Duke RK, Abu-Mellal A, Plunkett GT, King DI, et al. A sedge plant as the source of Kangaroo Island propolis rich in prenylated p-coumarate ester and stilbenes. Phytochemistry. 2017;134:87-97.spa
dc.relation.referencesMirzoeva OK, Grishanin RN, Calder PC. Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria. Microbiol Res. 1997;152(3):239-46.spa
dc.relation.referencesZhang W, Margarita GE, Wu D, Yuan W, Yan S, Qi S, et al. Antibacterial Activity of Chinese Red Propolis against Staphylococcus aureus and MRSA. Molecules. 2022;27(5):1693.spa
dc.relation.referencesSaeed F, Ahmad RS, Arshad MU, Niaz B, Batool R, Naz R, et al. Propolis to Curb Lifestyle Related Disorders: An Overview. Int J Food Prop. 2016;19(2):420-37.spa
dc.relation.referencesDemir S, Aliyazicioglu Y, Turan I, Misir S, Mentese A, Yaman SO, et al. Antiproliferative and proapoptotic activity of Turkish propolis on human lung cancer cell line. Nutr Cancer. 2016;68(1):165-72.spa
dc.relation.referencesPantosti A, Sanchini A, Monaco M. Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol. 2007;2(3):323-34.spa
dc.relation.referencesPeriasamy S, Chatterjee SS, Cheung GYC, Otto M. Phenol-soluble modulins in staphylococci: What are they originally for? Commun Integr Biol. 2012;5(3):275-7.spa
dc.relation.referencesEladli MG, Alharbi NS, Khaled JM, Kadaikunnan S, Alobaidi AS, Alyahya SA. Antibiotic-resistant Staphylococcus epidermidis isolated from patients and healthy students comparing with antibiotic-resistant bacteria isolated from pasteurized milk. Saudi J Biol Sci. 2019;26(6):1285-90.spa
dc.relation.referencesIyer V, Raut J, Dasgupta A. Impact of pH on growth of Staphylococcus epidermidis and Staphylococcus aureus in vitro. J Med Microbiol [Internet]. 2021 [citado 1 de noviembre de 2023];70(9). Disponible en: https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.001421spa
dc.relation.referencesAbbasi N, Hamlet S, Love RM, Nguyen NT. Porous scaffolds for bone regeneration. J Sci Adv Mater Devices. 2020;5(1):1-9.spa
dc.relation.referencesClarke B. Normal Bone Anatomy and Physiology. Clin J Am Soc Nephrol. 2008;3(Supplement_3):S131-9.spa
dc.relation.referencesWang S, Wang X, Draenert FG, Albert O, Schröder HC, Mailänder V, et al. Bioactive and biodegradable silica biomaterial for bone regeneration. Bone. 2014;67:292-304.spa
dc.relation.referencesStrober W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol [Internet]. marzo de 1997 [citado 17 de noviembre de 2023];21(1). Disponible en: https://currentprotocols.onlinelibrary.wiley.com/doi/10.1002/0471142735.ima03bs21spa
dc.relation.referencesMéry B, Guy JB, Vallard A, Espenel S, Ardail D, Rodriguez-Lafrasse C, et al. In Vitro Cell Death Determination for Drug Discovery: A Landscape Review of Real Issues. J Cell Death. 2017;10:117967071769125.spa
dc.relation.referencesLiu Y, Li X, Bao S, Lu Z, Li Q, Li CM. Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity. Nanotechnology. 2013;24(17):175501.spa
dc.relation.referencesNakatsu MN, Gonzalez S, Mei H, Deng SX. Human Limbal Mesenchymal Cells Support the Growth of Human Corneal Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci. 2014;55(10):6953-9.spa
dc.relation.referencesRaorane ML, Manz C, Hildebrandt S, Mielke M, Thieme M, Keller J, et al. Cell type matters: competence for alkaloid metabolism differs in two seed-derived cell strains of Catharanthus roseus. Protoplasma. 2023;260(2):349-69.spa
dc.relation.referencesLonghin EM, El Yamani N, Rundén-Pran E, Dusinska M. The alamar blue assay in the context of safety testing of nanomaterials. Front Toxicol. 2022;4:981701.spa
dc.relation.referencesO’Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267(17):5421-6.spa
dc.relation.referencesArora S, Cooper PR, Ratnayake JT, Friedlander LT, Rizwan SB, Seo B, et al. A critical review of in vitro research methodologies used to study mineralization in human dental pulp cell cultures. Int Endod J. 2022;55(S1):3-13.spa
dc.relation.referencesSchneider MR. Von Kossa and his staining technique. Histochem Cell Biol [Internet]. 20 de noviembre de 2021 [citado 17 de noviembre de 2023]; Disponible en: https://link.springer.com/10.1007/s00418-021-02051-3spa
dc.relation.referencesWang YH, Liu Y, Maye P, Rowe DW. Examination of Mineralized Nodule Formation in Living Osteoblastic Cultures Using Fluorescent Dyes. Biotechnol Prog. 2006;22(6):1697-701.spa
dc.relation.referencesStucki U, Schmid J, Hämmerle CF, Lang NP. Temporal and local appearance of alkaline phosphatase activity in early stages of guided bone regeneration: A descriptive histochemical study in humans. Clin Oral Implants Res. 2001;12(2):121-7.spa
dc.relation.referencesPelaez-Vargas A, Gallego-Perez D, Higuita-Castro N, Carvalho A, Grenho L, Arismendi JA, et al. Micropatterned Coatings for Guided Tissue Regeneration in Dental Implantology. En: Gowder S, editor. Cell Interaction [Internet]. InTech; 2012 [citado 17 de noviembre de 2023]. Disponible en: http://www.intechopen.com/books/cell-interaction/micropatterned-coatings-for-guided-tissue-regeneration-in-dental-implantologyspa
dc.relation.referencesLeal-Marin S, Gallaway G, Höltje K, Lopera-Sepulveda A, Glasmacher B, Gryshkov O. Scaffolds with Magnetic Nanoparticles for Tissue Stimulation. Curr Dir Biomed Eng. 2021;7(2):460-3.spa
dc.relation.referencesAbbasi N, Ivanovski S, Gulati K, Love RM, Hamlet S. Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater Res. 2020;24(1):2.spa
dc.relation.referencesSundaram B, C. John Milton M. Porous Polycaprolactone Scaffold Engineered with Naringin Loaded Bovine Serum Albumin Nanoparticles for Bone Tissue Engineering. Biosci Biotechnol Res Asia. 2017;14(4):1355-62.spa
dc.relation.referencesGutiérrez-Prieto SJ, Perdomo-Lara SJ, Diaz-Peraza JM, Sequeda-Castañeda LG. Analysis of In Vitro Osteoblast Culture on Scaffolds for Future Bone Regeneration Purposes in Dentistry. Adv Pharmacol Sci. 2019;2019:1-9.spa
dc.relation.referencesQiu Y, Chen X, Hou Y, Hou Y, Tian S, Chen Y, et al. Characterization of different biodegradable scaffolds in tissue engineering. Mol Med Rep [Internet]. 2019 [citado 17 de noviembre de 2023]; Disponible en: http://www.spandidos-publications.com/10.3892/mmr.2019.10066spa
dc.relation.referencesBahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, et al. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng. 2021;7(12):5397-431.spa
dc.relation.referencesHuang S, Zhang CP, Wang K, Li G, Hu FL. Recent Advances in the Chemical Composition of Propolis. Molecules. 2014;19(12):19610-32.spa
dc.relation.referencesBúfalo MC, Candeias JMG, Sforcin JM. In Vitro Cytotoxic Effect of Brazilian Green Propolis on Human Laryngeal Epidermoid Carcinoma (HEp-2) Cells. Evid Based Complement Alternat Med. 2009;6(4):483-7.spa
dc.relation.referencesAhn MR, Kumazawa S, Usui Y, Nakamura J, Matsuka M, Zhu F, et al. Antioxidant activity and constituents of propolis collected in various areas of China. Food Chem. 2007;101(4):1383-92.spa
dc.relation.referencesFung C, Mohamad H, Hashim S, Htun A, Ahmad A. Proliferative Effect of Malaysian Propolis on Stem Cells from Human Exfoliated Deciduous Teeth: An In vitro Study. Br J Pharm Res. 2015;8(1):1-8.spa
dc.relation.referencesGandolfi MG, Perut F, Ciapetti G, Mongiorgi R, Prati C. New Portland Cement–based Materials for Endodontics Mixed with Articaine Solution: A Study of Cellular Response. J Endod. 2008;34(1):39-44.spa
dc.relation.referencesHiguita‐Castro N, Gallego‐Perez D, Pelaez‐Vargas A, García Quiroz F, Posada OM, López LE, et al. Reinforced Portland cement porous scaffolds for load‐bearing bone tissue engineering applications. J Biomed Mater Res B Appl Biomater. 2012;100B(2):501-7.spa
dc.relation.referencesVenkatraman SK, Choudhary R, Genasan K, Murali MR, Raghavendran HRB, Kamarul T, et al. Antibacterial wollastonite supported excellent proliferation and osteogenic differentiation of human bone marrow derived mesenchymal stromal cells. J Sol-Gel Sci Technol. 2021;100(3):506-16.spa
dc.relation.referencesMatsuoka H, Akiyama H, Okada Y, Ito H, Shigeno C, Konishi J, et al. In vitro analysis of the stimulation of bone formation by highly bioactive apatite- and wollastonite-containing glass-ceramic: Released calcium ions promote osteogenic differentiation in osteoblastic ROS17/2.8 cells. J Biomed Mater Res. 1999;47(2):176-88.spa
dc.relation.referencesBanskota AH, Tezuka Y, Kadota S. Recent progress in pharmacological research of propolis. Phytother Res. 2001;15(7):561-71.spa
dc.relation.referencesTyszka-Czochara M, Paśko P, Reczyński W, Szlósarczyk M, Bystrowska B, Opoka W. Zinc and Propolis Reduces Cytotoxicity and Proliferation in Skin Fibroblast Cell Culture: Total Polyphenol Content and Antioxidant Capacity of Propolis. Biol Trace Elem Res. 2014;160(1):123-31.spa
dc.relation.referencesBanskota AH, Tezuka Y, Prasain JK, Matsushige K, Saiki I, Kadota S. Chemical Constituents of Brazilian Propolis and Their Cytotoxic Activities. J Nat Prod. 1998;61(7):896-900.spa
dc.relation.referencesSu J, Hua S, Chen A, Chen P, Yang L, Yuan X, et al. Three-dimensional printing of gyroid-structured composite bioceramic scaffolds with tuneable degradability. Biomater Adv. 2022;133:112595.spa
dc.relation.referencesBattulga B, Shiizaki K, Miura Y, Osanai Y, Yamazaki R, Shinohara Y, et al. Correlative light and electron microscopic observation of calcium phosphate particles in a mouse kidney formed under a high-phosphate diet. 2023;852.spa
dc.relation.referencesKanwar S, Vijayavenkataraman S. 3D printable bone-mimicking functionally gradient stochastic scaffolds for tissue engineering and bone implant applications. Mater Des. 2022;223:111199.spa
dc.relation.referencesFeng J, Fu J, Yao X, He Y. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. Int J Extreme Manuf. 2022;4(2):022001.spa
dc.relation.referencesHuang YC, Hsiao PC, Chai HJ. Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceram Int. 2011;37(6):1825-31.spa
dc.relation.referencesGomes PS, Fernandes MH. Effect of therapeutic levels of doxycycline and minocycline in the proliferation and differentiation of human bone marrow osteoblastic cells. Arch Oral Biol. 2007;52(3):251-9.spa
dc.relation.referencesSong K, Kong Q, Li L, Wang Y, Parungao R, Zheng S, et al. In Vitro Fabrication and Biocompatibility Assay of a Biomimetic Osteoblastic Niche. Appl Biochem Biotechnol. 2019;189(2):471-84.spa
dc.relation.referencesHuang YC, Hsiao PC, Chai HJ. Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceram Int.2011;37(6):1825-31.spa
dc.relation.referencesIqbal H, Ali M, Zeeshan R, Mutahir Z, Iqbal F, Nawaz MAH, et al. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Colloids Surf B Biointerfaces. 2017;160:553-63.spa
dc.relation.referencesRincón-Kohli L, Zysset PK. Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol. 2009;8(3):195-208.spa
dc.relation.referencesGerhardt LC, Boccaccini AR. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials. 2010;3(7):3867-910.spa
dc.relation.referencesKaur G, Kumar V, Baino F, Mauro JC, Pickrell G, Evans I, et al. Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges. Mater Sci Eng C. 2019;104:109895.spa
dc.relation.referencesAbueidda DW, Elhebeary M, Shiang CS (Andrew), Pang S, Abu Al-Rub RK, Jasiuk IM. Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Mater Des. 2019;165:107597.spa
dc.relation.referencesAbueidda DW, Elhebeary M, Shiang CS (Andrew), Pang S, Abu Al-Rub RK, Jasiuk IM. Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Mater Des. 2019;165:107597.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::602 - Misceláneaspa
dc.subject.ddc660 - Ingeniería química::666 - Cerámica y tecnologías afinesspa
dc.subject.ddc680 - Manufactura para usos específicos::686 - Imprenta y actividades relacionadasspa
dc.subject.decsRegeneración Ósea
dc.subject.decsOsteomielitis
dc.subject.decsProductos con Acción Antimicrobiana
dc.subject.decsIngeniería de Tejidos
dc.subject.decsPrópolis
dc.subject.decsAntimicrobianos
dc.subject.decsAntiinfecciosos
dc.subject.decsImpresión Tridimensional
dc.subject.proposalImpresion 3Dspa
dc.subject.proposalRegeneración óseaspa
dc.subject.proposalActividad antimicrobianaspa
dc.subject.proposalPropóleosspa
dc.subject.proposal3D printingeng
dc.subject.proposalBone regenerationeng
dc.subject.proposalWollastoniteeng
dc.subject.proposalAntimicrobial activityeng
dc.subject.proposalPropoliseng
dc.titleProducción por manufactura aditiva de andamios con propiedades antimicrobianas a partir de Propóleos de Tame (Arauca) para regeneración óseaspa
dc.title.translatedProduction by additive manufacturing of scaffolds with antimicrobial properties from Propolis from Tame (Arauca) for bone regeneration.eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitlePotencialización de los propóleos obtenidos de la apicultura de Tame (Arauca) como agentes bactericidas y antimicrobianos en andamios para regeneración ósea.spa
oaire.fundernameMinciencias Plan Bienal de Convocatorias 2019spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1116795956.2023.pdf
Tamaño:
5.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: