Evaluación espacial y temporal de la calidad del aire en Colombia a partir de los datos del servicio de monitoreo atmosférico de Copernicus (CAMS) y monitoreos en superficie
| dc.contributor.advisor | Belalcazar Cerón, Luis Carlos | spa |
| dc.contributor.author | Vargas González, Jorge Mario | spa |
| dc.contributor.researchgroup | Calidad del Aire | spa |
| dc.date.accessioned | 2020-06-01T20:58:00Z | spa |
| dc.date.available | 2020-06-01T20:58:00Z | spa |
| dc.date.issued | 2020-01-06 | spa |
| dc.description.abstract | Nowadays satellite information is a viable alternative to obtain information for the analysis of the behavior and composition of the atmosphere, an example of this is the CAMS service (Copernicus Atmosphere Monitoring Service) which provides information on air quality and meteorology parameters for the entire planet. Currently, no studies are evaluating the CAMS service to determine its level of performance in Colombia. This despite the great potential that it has for the analysis of the composition and behavior of the atmosphere on a global scale. For this reason, the present work has as objective to evaluate the air quality in Colombia based on data from the Copernicus Atmosphere Monitoring Service (CAMS) and surface monitoring. This work focused on evaluating the information coming from the CAMSRA (CAMS REANALYSIS) service, comparing it with the data coming from surface monitoring networks in three Colombian cities (Bogotá, Medellín, and Bucaramanga) for the period 2003-2017. The parameters of meteorology and air quality that were evaluated are: Relative humidity, Pressure, Solar radiation, Temperature, Wind speed and direction, particulate matter PM10 and PM2.5, carbon monoxide, and nitrogen dioxide. The monitoring and CAMSRA service databases were the raw material for this investigation and were obtained through the official monitoring networks of each city and the COPERNICUS (ECMWF) servers respectively. It should be noted that to date no similar works were found for Latin America. By establishing the points of the CAMSRA spatial mesh (11 x 11 km) that overlap on each of the cities, the closest point to each monitoring station was determined to establish with which point of the model the information observed on the surface would be compared for each station. After the definition of these comparison pairs, a comparative graphical analysis of annual trends for all studied parameters in the three cities was performed. Besides, a quantitative analysis of the most important statistical parameters for model evaluation was carried out: the mean squared error and the correlation coefficient. Another analysis that was done for the air quality data was the comparison of the daily air quality index calculated for the three cities based on the modeled and monitored information using the EPA methodology. All the analyses were made with the Openair library for R programming language. Regarding the spatial and temporal variability of air quality in Colombia, this work determined that by 2017 the cities with the highest surface concentrations of PM2.5 were: Bogotá, Cali, Barranquilla, Bucaramanga and Medellín in that order. On the other hand, an analysis was carried out of the effect that the quarantine due to COVID-19 had (before and during) on PM2.5 concentrations in the country, where it was evidenced that instead of an improvement there was an increase in concentrations. This work concludes that the model has a good performance for meteorological parameters like relative humidity, pressure, solar radiation, temperature and also for air quality parameters like particulate matter PM10 and PM2.5. In the other hand, deficiencies to simulate some of the parameters studied was observed, including wind speed and direction, as well as concentrations of carbon monoxide and nitrogen dioxide gases. Although in most of the cases analyzed, the CAMSRA service shows good adjustments, cases were found where CAMSRA underestimated or overestimated the magnitude of the parameters, so it is recommended to use this information as a complement to other sources of primary information, at least until the necessary changes are implemented in the model (through international cooperation with the European Union) for a better concordance between the modeled and the observed. | spa |
| dc.description.abstract | En la actualidad la información satelital es una alternativa viable para obtener información para el análisis del comportamiento y composición de la atmósfera. Un ejemplo de ello es el servicio CAMS (Copernicus Atmosphere Monitoring Service) el cual brinda información de parámetros de calidad del aire y meteorología para todo el planeta. Actualmente no existen estudios de evaluación del servicio CAMS para determinar su nivel de desempeño en Colombia. Esto a pesar del gran potencial que este posee para el análisis de la composición y comportamiento de la atmósfera a escala global. Por eso, el presente trabajo tiene como objetivo evaluar espacial y temporalmente la calidad del aire en Colombia a partir de los datos de servicio de monitoreo atmosférico de Copernicus (CAMS) y monitoreos en superficie. Este trabajo se enfocó en evaluar la información proveniente del servicio CAMSRA (CAMS REANALYSIS) comparándola con la información proveniente de las redes de monitoreo en superficie en tres ciudades colombianas (Bogotá, Medellín y Bucaramanga) para el periodo 2003-2017. Los parámetros de meteorología y calidad del aire que fueron evaluados son: Humedad relativa, Presión, Radiación solar, Temperatura, Velocidad y dirección del viento, Material particulado PM10 y PM2.5, monóxido de carbono y dióxido de nitrógeno. Las bases de datos de monitoreo y del servicio CAMSRA fueron la materia prima para esta investigación y se obtuvieron a través de las redes de monitoreo oficiales de cada una de las ciudades y de los servidores de COPERNICUS (ECMWF) respectivamente. Cabe resaltar que a la fecha no se encontraron trabajos similares para América Latina. Estableciendo los puntos de la malla espacial de CAMSRA (11 x 11 km) que se sobreponen sobre cada una de las ciudades, se determinó el punto más cercano a cada estación de monitoreo para establecer con cual punto del modelo se compararía la información observada en superficie por cada estación. Luego de la definición de estos pares de comparación se realizó un análisis gráfico comparativo de tendencias anuales para todos los parámetros bajo estudio y para las tres ciudades. Además, se llevó a cabo un análisis cuantitativo de los parámetros estadísticos más importantes en la evaluación de modelos: el error cuadrático medio y el coeficiente de correlación. Otro análisis que se hizo para los datos de calidad del aire fue la comparación de los índices de calidad de aire diarios calculados para las tres ciudades basados en la información modelada y monitoreada usando la metodología de la agencia de protección ambiental (EPA). Todos los análisis se llevaron a cabo haciendo uso de las herramientas del paquete Openair de lenguaje de programación R. Respecto a la variabilidad espacial y temporal de la calidad del aire en Colombia, este trabajo determinó que para el año 2017 las ciudades con mayores concentraciones en superficie de PM2.5 fueron: Bogotá, Cali, Barranquilla, Bucaramanga y Medellín en ese orden. Por otra parte se llevó a cabo un análisis del efecto que tuvo la cuarentena (antes y durante) por COVID-19 en las concentraciones de PM2.5 sobre el país, en donde se evidenció que en lugar de una mejora se presentó un aumento en las concentraciones. El trabajo concluye que el modelo posee un buen desempeño cualitativo, el cual se evidenció en la modelación de los índices de calidad del aire en sus diferentes rangos. No obstante se observaron deficiencias para simular cuantitativamente algunos de los parámetros meteorológicos estudiados, entre ellos la velocidad y dirección del viento, así como parámetros de calidad del aire tales como las concentraciones de monóxido de carbono y dióxido de nitrógeno. Además, a pesar de que en la mayoría de los casos analizados el servicio CAMSRA muestra buenos ajustes, se encontraron casos en donde CAMSRA subestimó o sobrestimó la magnitud de los parámetros, por eso se recomienda utilizar esta información como complemento a otras fuentes de información primaria, al menos hasta que en el modelo sean implementados los cambios necesarios (a través de la cooperación internacional con la Unión Europea) para una mejor concordancia entre lo modelado y lo observado | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 130 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77585 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental | spa |
| dc.relation.references | Agustí-Panareda, A., Massart, S., Chevallier, F., Boussetta, S., Balsamo, G., Beljaars, A., ... Wunch, D. (2014). Forecasting global atmospheric CO2. Atmospheric Chemistry and Physics, 14(21), 11959–11983. https://doi.org/10.5194/acp-14-11959-2014 | spa |
| dc.relation.references | Alvarez E.; Menéndez J. & Bravo M. (2018). Calidad del aire: Monitoreo y modelado de contaminantes atmosféricos. Efectos en la salud pública. Orkesta, 2–173. https://doi.org/10.1590/S1020-49891998001200018 | spa |
| dc.relation.references | Barten, J. G. M., Ganzeveld, L. N., Visser, A. J., Jiménez, R., & Krol, C. (2019). Evaluation of nitrogen oxides sources and sinks and ozone production in Colombia and surrounding areas, (x), 1–30. | spa |
| dc.relation.references | Boylan, J. W., & Russell, A. G. (2006). PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmospheric Environment, 40(26), 4946–4959. https://doi.org/10.1016/j.atmosenv.2005.09.087 | spa |
| dc.relation.references | Bozzo, A., Remy, S., Benedetti, A., Bechtold, P., Rodwell, M. J., & Morcrette, J. (2017). Implementation of a CAMS-based aerosol climatology in the IFS. Technical Memorandum, ECMWF, (April). | spa |
| dc.relation.references | CAMS. (2018). Validation report for the CAMS global reanalyses of aerosols and reactive trace gases , year 2003-2018. Knmi, 1–90. | spa |
| dc.relation.references | Carriazo, F., & Gomez, J. (2015). The Demand for Air Quality: A Case Study in Bogotá, Colombia. SSRN. https://doi.org/10.2139/ssrn.2695110 | spa |
| dc.relation.references | Carslaw, D. (2015). The openair manual open-source tools for analysing air pollution data. King’s College London, (January), 287. | spa |
| dc.relation.references | Carslaw, D. C., & Ropkins, K. (2012). Openair - An r package for air quality data analysis. Environmental Modelling and Software, 27–28, 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008 | spa |
| dc.relation.references | Colombia, D. de la U. E. (2018). Comisión Europea firma Acuerdos de Cooperación para observación espacial con Colombia, Chile y Brasil. Retrieved from https://eeas.europa.eu/delegations/colombia/40977/comisión- europea-firma-acuerdos-de-cooperación-para-observación-espacial-con- colombia-chile-y_es | spa |
| dc.relation.references | Deeter, M. N., Martínez-Alonso, S., Edwards, D. P., Emmons, L. K., Gille, J. C., Worden, H. M., ... Wofsy, S. C. (2013). Validation of MOPITT Version 5 thermal-infrared, near-infrared, and multispectral carbon monoxide profile retrievals for 2000-2011. Journal of Geophysical Research Atmospheres, 118(12), 6710–6725. https://doi.org/10.1002/jgrd.50272 | spa |
| dc.relation.references | Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe, C., ... Venkatram, A. (2010). A framework for evaluating regional-scale numerical photochemical modeling systems. Environmental Fluid Mechanics, 10(4), 471–489. https://doi.org/10.1007/s10652-009-9163-2 | spa |
| dc.relation.references | Emery, C., Tai, E., & Yarwood, G. (2001). Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes. Environ International Corporation, 235. | spa |
| dc.relation.references | EPA. (1991). US EPA 1991 Guideline for application air quality models.pdf. | spa |
| dc.relation.references | EPA. (2007). Guidance on the Use of Models and Other Air Quality Goals for Ozone , PM 2 . 5 , and Regional Haze, EPA-454/B-07-002. Retrieved from www.epa.gov/scram001/guidance/guide/final-03-pm-rh-guidance.pdf | spa |
| dc.relation.references | EPA. (2014). Modeling Guidance for Demonstrating Attainment of Air Quality Goals for Ozone, PM2s, and Regional Haze, (October). | spa |
| dc.relation.references | Eskes, H., Huijnen, V., Arola, A., Benedictow, A., Blechschmidt, A. M., Botek, E., ... Zerefos, C. (2015). Validation of reactive gases and aerosols in the MACC global analysis and forecast system. Geoscientific Model Development, 8(11), 3523–3543. https://doi.org/10.5194/gmd-8-3523-2015 | spa |
| dc.relation.references | Fang, X., Fan, Q., Li, H., Liao, Z., Xie, J., & Fan, S. (2018). Multi-scale correlations between air quality and meteorology in the Guangdong−Hong Kong−Macau Greater Bay Area of China during 2015–2017. Atmospheric Environment, 191, 463–477. https://doi.org/10.1016/j.atmosenv.2018.08.018 | spa |
| dc.relation.references | Flemming, J., Huijnen, V., Arteta, J., Bechtold, P., Beljaars, A., Blechschmidt, A. M., ... Tsikerdekis, A. (2015). Tropospheric chemistry in the integrated forecasting system of ECMWF. Geoscientific Model Development, 8(4), 975– 1003. https://doi.org/10.5194/gmd-8-975-2015 | spa |
| dc.relation.references | García Ávila, P. A. (2013). Implementación del software estadístico Openair para el procesamiento y análisis de la información de la base de datos de la red de calidad de aire de Bogotá, 152. Retrieved from http://www.bdigital.unal.edu.co/39469/ | spa |
| dc.relation.references | Google. (2020). Colombia March 29, 2020 Mobility changes. | spa |
| dc.relation.references | Gu, K., Qiao, J., & Lin, W. (2018). Recurrent Air Quality Predictor Based on Meteorology- and Pollution-Related Factors. IEEE Transactions on Industrial Informatics, 14(9), 3946–3955. https://doi.org/10.1109/TII.2018.2793950 | spa |
| dc.relation.references | Guevara Luna, M. A., Guevara Luna, F. A., Méndez Espinosa, J. F., & Belalcázar Cerón, L. C. (2018). Spatial and Temporal Assessment of Particulate Matter Using AOD Data from MODIS and Surface Measurements in the Ambient Air of Colombia. Asian Journal of Atmospheric Environment, 12(2), 165–177. https://doi.org/10.5572/ajae.2018.12.2.165 | spa |
| dc.relation.references | Holtslag, A. A. M. (2014). Boundary Layer (Atmospheric) and Air Pollution: Modeling and Parameterization. In Encyclopedia of Atmospheric Sciences: Second Edition (pp. 265–273). Elsevier Inc. https://doi.org/10.1016/B978-0- 12-382225-3.00087-6 | spa |
| dc.relation.references | Hu, D., Wu, J., Tian, K., Liao, L., Xu, M., & Du, Y. (2017). Urban air quality, meteorology and traffic linkages: Evidence from a sixteen-day particulate matter pollution event in December 2015, Beijing. Journal of Environmental Sciences, 59(December 2015), 30–38. https://doi.org/10.1016/j.jes.2017.02.005 | spa |
| dc.relation.references | Huijnen, V., Pozzer, A., Arteta, J., Brasseur, G., Bouarar, I., Chabrillat, S., ... Pelletier, S. (2019). Quantifying uncertainties due to chemistry modelling - Evaluation of tropospheric composition simulations in the CAMS model (cycle 43R1). Geoscientific Model Development, 12(4), 1725–1752. https://doi.org/10.5194/gmd-12-1725-2019 | spa |
| dc.relation.references | Inness, A., Ades, M., Agustí-Panareda, A., Barr, J., Benedictow, A., Blechschmidt, A. M., ... Suttie, M. (2019). The CAMS reanalysis of atmospheric composition. Atmospheric Chemistry and Physics, 19(6), 3515–3556. https://doi.org/10.5194/acp-19-3515-2019 | spa |
| dc.relation.references | Jutz, S., & Milagro-Pérez, M. P. (2017). Copernicus Program. In Comprehensive Remote Sensing (pp. 150–191). Elsevier. https://doi.org/10.1016/b978-0-12- 409548-9.10317-3 | spa |
| dc.relation.references | Li, J., Liu, K., & Huang, Q. (2016). Utilizing Cloud Computing to Support Scalable Atmospheric Modeling. In Cloud Computing in Ocean and Atmospheric Sciences (pp. 347–364). https://doi.org/10.1016/b978-0-12-803192-6.00017-7 | spa |
| dc.relation.references | Liao, Z., Sun, J., Yao, J., Liu, L., Li, H., Liu, J., ... Fan, S. (2018). Self-organized classification of boundary layer meteorology and associated characteristics of air quality in Beijing. Atmospheric Chemistry and Physics, 18(9), 6771–6783. https://doi.org/10.5194/acp-18-6771-2018 | spa |
| dc.relation.references | Massart, S., Agusti-Panareda, A., Aben, I., Butz, A., Chevallier, F., Crevosier, C., ... Hasekamp, O. (2014). Assimilation of atmospheric methane products into the MACC-II system: From SCIAMACHY to TANSO and IASI. Atmospheric Chemistry and Physics, 14(12), 6139–6158. https://doi.org/10.5194/acp-14- 6139-2014 | spa |
| dc.relation.references | Massart, Sébastien, Agusti-Panareda, A., Heymann, J., Buchwitz, M., Chevallier, F., Reuter, M., ... Velazco, V. A. (2016). Ability of the 4-D-Var analysis of the GOSAT BESD XCO 2 retrievals to characterize atmospheric CO 2 at large and synoptic scales. Atmospheric Chemistry and Physics, 16(3), 1653–1671. https://doi.org/10.5194/acp-16-1653-2016 | spa |
| dc.relation.references | Mcnally, D. (2009). Meteorological modeling performance guidelines to replace old standards. Proc. 10th Annual Ad-Hoc Meteorological Modelers Meeting, (June), 1–46. Retrieved from https://www3.epa.gov/scram001/adhoc/mcnally2009.pdf | spa |
| dc.relation.references | Mihelcic, J., & Zimmerman, J. (2012). Ingeniería Ambiental: Fundamentos, Sustentabilidad, Diseño. Alfaomega. México. | spa |
| dc.relation.references | Ministerio de Ambiente Vivivenda y Desarrollo Territorial. (2010). Manual de diseño de sistemas de vigilancia de la calidad del aire. Protocolo Para El Monitoreo y Seguimiento de La Calidad Del Aire, 137. | spa |
| dc.relation.references | NRC. (2007). Models in Environmental Regulatory Decision Making. Models in Environmental Regulatory Decision Making. https://doi.org/10.17226/11972 | spa |
| dc.relation.references | Oikonomakis, E., Aksoyoglu, S., Ciarelli, G., Baltensperger, U., & Prévôt, A. S. H. (2018). Low modeled ozone production suggests underestimation of precursor emissions (especially NOx) in Europe. Atmospheric Chemistry and Physics, 18(3), 2175–2198. https://doi.org/10.5194/acp-18-2175-2018 | spa |
| dc.relation.references | OMS. (2005). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. Actualización mundial 2005. Organización Mundial de La Salud, 25. Retrieved from http://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/es/ | spa |
| dc.relation.references | ONU. (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Asamblea General. https://doi.org/10.1093/cdj/bsq047 | spa |
| dc.relation.references | Pérez-Cardenas, J. E. (2017). La Calidad Del Aire En Colombia: Un Problema De Salud Pública: Un Problema De Todos. Biosalud, 16(2), 5–6. https://doi.org/10.17151/biosa.2017.16.2.1 | spa |
| dc.relation.references | Ropkins, K., & Carslaw, David, C. (2019). openair - Data Analysis Tools for the Air Quality Community. The R Journal, 4(1), 20. https://doi.org/10.32614/rj-2012- 003 | spa |
| dc.relation.references | Säll, B. (2018). Evaluation and validation of Copernicus Atmosphere Monitoring Service regional ensemble forecast of air pollutants and birch pollen in the Stockholm region. | spa |
| dc.relation.references | Seo, J., Park, D. S. R., Kim, J. Y., Youn, D., Lim, Y. Bin, & Kim, Y. (2018). Effects of meteorology and emissions on urban air quality: A quantitative statistical approach to long-term records (1999-2016) in Seoul, South Korea. Atmospheric Chemistry and Physics, 18(21), 16121–16137. https://doi.org/10.5194/acp-18-16121-2018 | spa |
| dc.relation.references | Sportisse, B. (2010). Fundamentals in air pollution: From processes to modelling. Fundamentals in Air Pollution: From Processes to Modelling. https://doi.org/10.1007/978-90-481-2970-6 | spa |
| dc.relation.references | Sullivan, D. M., & Krupnick, A. (2003). Using Satellite Data to Fill the Gaps in the US Air Pollution Monitoring Network *. Retrieved from www.rff.org | spa |
| dc.relation.references | Szulecka, A., Oleniacz, R., & Rzeszutek, M. (2017). Functionality of openair package in air pollution assessment and modeling - A case study of Krakow. Ochrona Srodowiska i Zasobow Naturalnych, 28(2), 22–27. https://doi.org/10.1515/oszn-2017-0009 | spa |
| dc.relation.references | United States Environmental Protection Agency. (2014). Air Quality Index: a guide to air quality and your health. Epa. https://doi.org/10.1023/A:1020370119096 | spa |
| dc.relation.references | USEPA. (2000). Meteorological Monitoring Guidance for Regulatory Modeling Applications. Epa-454/R-99-005, 171. Retrieved from http://www.epa.gov/scram001/guidance/met/mmgrma.pdf | spa |
| dc.relation.references | USEPA. (2013). Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index ( AQI ). Environmental Protection, 1–28. | spa |
| dc.relation.references | Zhang, Z., & Moore, J. C. (2014). Climate and Earth System Models. In Mathematical and Physical Fundamentals of Climate Change (pp. 457–472). Elsevier. https://doi.org/10.1016/b978-0-12-800066-3.00014-0 | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 660 - Ingeniería química | spa |
| dc.subject.proposal | Atmospheric modeling | eng |
| dc.subject.proposal | Modelación atmosférica | spa |
| dc.subject.proposal | Air Quality | eng |
| dc.subject.proposal | Calidad del aire | spa |
| dc.subject.proposal | Meteorología | spa |
| dc.subject.proposal | Meteorology | eng |
| dc.subject.proposal | COPERNICUS | eng |
| dc.subject.proposal | COPERNICUS | spa |
| dc.subject.proposal | CAMS | eng |
| dc.subject.proposal | CAMS | spa |
| dc.subject.proposal | Openair | eng |
| dc.subject.proposal | Openair | spa |
| dc.title | Evaluación espacial y temporal de la calidad del aire en Colombia a partir de los datos del servicio de monitoreo atmosférico de Copernicus (CAMS) y monitoreos en superficie | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

