Aumento de la profundidad de exploración implementando el método de la “correlación cruzada” de registros pasivos obtenidos por medio de geófonos comerciales de 4.5Hz

dc.contributor.advisorZapata Medina, David Guillermospa
dc.contributor.advisorMonsalve Mejía, Gasparspa
dc.contributor.authorLópez Ruiz, Estebanspa
dc.contributor.researchgroupGRUPO DE GEOTECNIAspa
dc.date.accessioned2021-02-02T14:18:51Zspa
dc.date.available2021-02-02T14:18:51Zspa
dc.date.issued2020-08-13spa
dc.description.abstractEste trabajo presenta la implementación de la técnica de la “Correlación Cruzada” en registros pasivos tomados con geófonos comerciales de 4.5 Hz para definir las propiedades de dispersión representadas en un modo fundamental, mejorar la obtención de velocidades de fase a frecuencias bajas, y determinar perfiles de velocidades de onda cortante a mayores profundidades que los métodos geofísicos indirectos convencionales (MASW y ReMi). Para esto se dispuso entre 3 y 10 geófonos en alineamiento horizontal en tres diferentes sitios de estudio, y se tomaron registros pasivos con duraciones entre 1.8 y 5.8 horas. La parte teórica de esta investigación se llevó acabo programando en un algoritmo con la técnica “Correlación Cruzada” en el software Matlab para obtener diferentes espectros de la “Correlación Cruzada” que se asemejen a la función de Bessel de orden cero de primera clase (Jo) en los cuales se identifican los cruces por cero. En este trabajo se determinan las curvas de dispersión que físicamente son aceptables y se calculan diferentes perfiles unidimensionales en función de la velocidad de onda cortante V_s versus la profundidad. El método propuesto es comparado y validado con métodos geofísicos directos e indirectos. Se encontró que aplicar la técnica “Correlación Cruzada” en registros pasivos con equipos y métodos convencionales aumenta la profundidad de exploración en comparación con métodos geofísicos indirectos (MASW) en un 60 % como mínimo.spa
dc.description.abstractThis study presents an implementation of the Cross-Correlation technique for passive responses measured with 4.5 Hz-commercial geophones. The study addresses the obtention of dispersion properties represented in a fundamental mode, improvement of the phase velocity obtention, and estimation of shear-wave-velocity profiles in deeper ranges than conventional indirect geophysical methods (MASW and ReMi). Between three (3) and ten (10) geophones were placed in a horizontal alignment at tree (3) different sites to measure passive responses. Data was recorded for times ranging from 1.8 to 5.8 hours. The Cross-Correlation technique was implemented in an algorithm in Matlab to define different spectra similar to the Bessel function. Then, dispersion curves were determined and one-dimensional profiles, as a function of the shear wave velocity against depth, calculated. Direct and indirect geophysical methods were performed for comparison purposes and procedure validation. It was found that by applying the Cross-Correlation technique to passive responses, recorded with conventional equipment, the exploration depth increases by a minimum of 60 % in contrast with indirect geophysical methods such as MASW.spa
dc.description.additionalLínea de Investigación: Geofísicaspa
dc.description.degreelevelMaestríaspa
dc.format.extent89spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationLópez, E. (2020)spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79025
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Civilspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAki, K. (1957). Space and time spectra of stationary stochastic waves,with special reference to microtremors. In Bulletin of the Earthquake Research Institute (Vol. 35, pp. 415–457). https://doi.org/http://hdl.handle.net/2261/11892spa
dc.relation.referencesAki, K. (1988). Local site effect on ground motion. In Earthquake Engineering and Soil Dynamics. It: Recent Advances in Ground-Motion Evaluation. (pp. 103–155). Am. Sot. Civil Eng. Geotechnical Spec.spa
dc.relation.referencesAlfaro, A. (2007). Correlación entre el Valor N del Ensayo de Penetración Estándar y Velocidad de Ondas de Corte para Arcillas en Bogotá - Colombia. Epsilon, 13–23.spa
dc.relation.referencesAMVA. (2006). Microzonificación Sísmica Detallada De Los Municipios De Barbosa, Girardota, Copacabana, Sabaneta, La Estrella, Caldas Y Envigado, Informe Final. Área Metropolitana Del Valle de Aburrá, 745.spa
dc.relation.referencesASTM-D6635-15. (2015). Standard Test Method for Performing the Flat Plate Dilatometer. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D6635-15spa
dc.relation.referencesASTM-D7400/D7400M. (2019). Standard Test Methods for Downhole Seismic Testing. https://doi.org/10.1520/D7400_D7400M-19spa
dc.relation.referencesBensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.xspa
dc.relation.referencesBoaga, J., Vaccari, F., & Panza, G. F. (2010). Shear wave structural models of Venice Plain, Italy, from Time Cross Correlation of seismic noise. Engineering Geology, 116(3–4), 189–195. ttps://doi.org/10.1016/j.enggeo.2010.09.001spa
dc.relation.referencesBorcherdt, R. D. (1994). Estimates of Site-Dependent Response Spectra for Design (Methodology and Justification). In Earthquake Spectra (Vol. 10, Issue 4, pp. 617–653). https://doi.org/10.1193/1.1585791spa
dc.relation.referencesBoschi, L., Weemstra, C., Verbeke, J., Ekström, G., Zunino, A., & Giardini, D. (2013). On measuring surface wave phase velocity from station-station cross-correlation of ambient signal. Geophysical Journal International, 192(1), 346–358. https://doi.org/10.1093/gji/ggs023spa
dc.relation.referencesCho, K. H., Herrmann, R. B., Ammon, C. J., & Lee, K. (2007). Imaging the upper crust of the Korean peninsula by surface-wave tomography. Bulletin of the Seismological Society of America, 97(1 B), 198–207. https://doi.org/10.1785/0120060096spa
dc.relation.referencesDal Moro, G., & Pipan, M. (2007). Joint inversion of surface wave dispersion curves and reflection travel times via multi-objective evolutionary algorithms. Journal of Applied Geophysics, 61(1), 56–81. https://doi.org/10.1016/j.jappgeo.2006.04.001spa
dc.relation.referencesDal Moro, Giancarlo, Pipan, M., Forte, E., & Finetti, I. (2003). Determination of rayleigh wave dispersion curves for near surface applications in unconsolidated sediments. SEG Technical Program Expanded Abstracts, 22(1), 1247–1250. https://doi.org/10.1190/1.1817508spa
dc.relation.referencesDal Moro, Giancarlo, Pipan, M., & Gabrielli, P. (2007). Rayleigh wave dispersion curve inversion via genetic algorithms and Marginal Posterior Probability Density estimation. Journal of Applied Geophysics, 61(1), 39–55. https://doi.org/10.1016/j.jappgeo.2006.04.002spa
dc.relation.referencesDearman, W. R. (1991). Principles of engineering geological mapping (pp. 12–18). https://doi.org/10.1016/B978-0-7506-1010-0.50005-Xspa
dc.relation.referencesEkström, G. (2014). Love and Rayleigh phase-velocity maps, 5-40 s, of the western and central USA from USArray data. Earth and Planetary Science Letters, 402(C), 42–49. https://doi.org/10.1016/j.epsl.2013.11.022spa
dc.relation.referencesEkström, G., Abers, G. A., & Webb, S. C. (2009). Determination of surface-wave phase velocities across USArray from noise and Aki’s spectral formulation. Geophysical Research Letters, 36(18), 5–9. https://doi.org/10.1029/2009GL039131spa
dc.relation.referencesFoti, S. (2002). Multistation Methods for Geotechnical Characterization using Surface Waves Dottorato di Ricerca in Ingegneria Geotecnica. 251. https://doi.org/10.6092/polito/porto/2497212spa
dc.relation.referencesFoti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P. Y., Comina, C., Cornou, C., Cox, B., Di Giulio, G., Forbriger, T., Hayashi, K., Lunedei, E., Martin, A., Mercerat, D., Ohrnberger, M., Poggi, V., Renalier, F., Sicilia, D., & Socco, V. (2017). Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. In Bulletin of Earthquake Engineering (Vol. 16, Issue 6). https://doi.org/10.1007/s10518-017-0206-7spa
dc.relation.referencesGaite, B. (2013). Análisis y aplicaciones del ruido sísmico en México, golfo de México y Caribe: Tomografía de ondas superficiales Rayleigh y Love [Universidad Complutense de Madrid]. http://hdl.handle.net/10261/97744spa
dc.relation.referencesGardner, G. H. F., Gardner, L. W., & Gregory, A. R. (1974). Formation Velocity and Density - the Diagnostic Basics for Stratigraphic Traps. Geophysics, 39(6), 770–780. https://doi.org/10.1190/1.1440465spa
dc.relation.referencesGeo2. (2017). Geo2 SAS.spa
dc.relation.referencesGeogiga Technology Corp. (2020). Front End Express. http://www.geogiga.com/en/frontendexpress.phpspa
dc.relation.referencesHannemann, K., Papazachos, C., Ohrnberger, M., Savvaidis, A., Anthymidis, M., & Lontsi, A. M. (2014). Three-dimensional shallow structure from high-frequency ambient noise tomography: New results for the Mygdonia basin-Euroseistest area, northern Greece. Journal of Geophysical Research: Solid Earth, 119(6), 4979–4999. https://doi.org/10.1002/2013JB010914spa
dc.relation.referencesHara, A., Ohta, T., Niwa, M., Tanaka, S., & Banno, T. (1974). Shear modulus and shear strength of cohesive soils. Soils and Foundations, 14(3), 1–12. https://doi.org/10.3208/sandf1972.14.3_1spa
dc.relation.referencesHumire G, F. A. (2013). Aplicación de métodos geofísicos basados en ondas superficiales para la caracterización sísmica de suelos. Aplicación a la microzonificación sísmica del norte y poniente de Santiago.spa
dc.relation.referencesImai, T. (1982). Correlation of N-value with S-wave velocity and shear modulus. Proceedings of the 2nd European Symposium of Penetration Testing, Amsterdam, 1982. https://ci.nii.ac.jp/naid/10029436605/en/spa
dc.relation.referencesImai, T., & Yoshimura, Y. (1970). Elastic Wave Velocity and Soil Properties in Sofá Soil. Tsuchi-ToKiso, 18, 17–22.spa
dc.relation.referencesIngeominas. (2005). Informe de Gestión Institucional 2005. https://www2.sgc.gov.cospa
dc.relation.referencesJolly, R. N. (1956). Investigation of Shear Waves. Geophysics, 21(4), 905–938. https://doi.org/10.1190/1.1438310spa
dc.relation.referencesKohji, T., Shuji, T., & Hisaya, K. (1992). Effects of Multiple Modes on Rayleigh Wave Dispersion Characteristics. Journal of Geotechnical Engineering, 118(10), 1529–1543. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:10(1529)spa
dc.relation.referencesKramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India.spa
dc.relation.referencesLin, F.-C., Ritzwoller, M. H., Townend, J., Bannister, S., & Savage, M. K. (2007). Ambient noise Rayleigh wave tomography of New Zealand. Geophysical Journal International, 170(2), 649–666. https://doi.org/10.1111/j.1365-246X.2007.03414.xspa
dc.relation.referencesLouie, J. N. (2001). Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bulletin of the Seismological Society of America, 91(2), 347–364. https://doi.org/10.1785/0120000098spa
dc.relation.referencesLunne, T., Robertson, P. K., & Powell, J. J. . (1997). Cone Penetration Testing in Geotechnical Practice. In E & FN Spon. https://doi.org/10.1201/9780429505980spa
dc.relation.referencesMarchetti, S, Monaco, P., Totani, G., & Calabrese, M. (2001). The flat dilatometer test (DMT) in soil investigations--A report by the ISSMGE committee TC16. Proc. In Situ, 41.spa
dc.relation.referencesMarchetti, Silvano. (1979). Journal of the Engineering Division. Geotechnical Engineering, 105(May), 655–670.spa
dc.relation.referencesMarchetti, Silvano. (1975). A New in Situ Test for the Measurement of Horizontal Soil Deformability. Proceedings of the Conference on In Situ Measurement of Soil Properties, 2, 255–259.spa
dc.relation.referencesMarchetti, Silvano, Marchetti, D., & Villalobos, F. (2013). El Dilatómetro sísmico SDMT para ensayos de suelos in situ. Obras y Proyectos, 13, 20–29. https://doi.org/10.4067/s0718-28132013000100002spa
dc.relation.referencesMordret, A., Landés, M., Shapiro, N. M., Singh, S. C., & Roux, P. (2014). Ambient noise surface wave tomography to determine the shallow shear velocity structure at Valhall: Depth inversion with a Neighbourhood Algorithm. Geophysical Journal International, 198(3), 1514–1525. https://doi.org/10.1093/gji/ggu217spa
dc.relation.referencesMoschetti, M. P., Ritzwoller, M. H., & Shapiro, N. M. (2007). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochemistry, Geophysics, Geosystems, 8(8). https://doi.org/10.1029/2007GC001655spa
dc.relation.referencesNSR-10. (2010). Reglamento Colombiano de Construccion Sismo Resistente. Asociación Colombiana de Ingeniería Sísmica. Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 530–827.spa
dc.relation.referencesNunziata, C., De Nisco, G., & Panza, G. F. (2009). S-waves profiles from noise cross correlation at small scale. Engineering Geology, 105(3–4), 161–170. https://doi.org/10.1016/j.enggeo.2009.01.005spa
dc.relation.referencesOhba, S., & Toriumi, I. (1970). Dynamic response characteristics of Osaka Plain. Proceedings of the Annual Meeting AIJ (in Japanese).spa
dc.relation.referencesOhta, Y., & Goto, N. (1978). Empirical shear wave velocity equations in terms of characteristic soil indexes. Earthquake Engineering & Structural Dynamics, 6(2), 167–187. https://doi.org/10.1002/eqe.4290060205spa
dc.relation.referencesPark, C. B., Miller, R. D., & Xia, J. (1996). Multi-channel analysis of surface waves using Vibroseis (MASWV). 1996 SEG Annual Meeting, 68–71. https://doi.org/10.1190/1.1826742spa
dc.relation.referencesPark, C. B., Miller, R. D., & Xia, J. (1997). Multi-Channel Analysis of Surface Waves ( MASW ) prepared by. Kansas Geological Survey.spa
dc.relation.referencesPark, C. B., Miller, R. D., & Xia, J. (1998). Imaging dispersion curves of surface waves on multi-channel record. 1998 SEG Annual Meeting. https://doi.org/10.1190/1.1820161spa
dc.relation.referencesPastén, C., Sáez, M., Ruiz, S., Leyton, F., Salomón, J., & Poli, P. (2015). Deep characterization of the Santiago Basin using HVSR and cross-correlation of ambient seismic noise. Engineering Geology, 201, 57–66. https://doi.org/https://doi.org/10.1016/j.enggeo.2015.12.021spa
dc.relation.referencesPicozzi, M., Parolai, S., Bindi, D., & Strollo, A. (2009). Characterization of shallow geology by high-frequency seismic noise tomography. Geophysical Journal International, 176(1), 164–174. https://doi.org/10.1111/j.1365-246X.2008.03966.xspa
dc.relation.referencesPoli, P., Pedersen, H. A., & Campillo, M. (2012). Emergence of body waves from cross-correlation of short period seismic noise. Geophysical Journal International, 188(2), 549–558. https://doi.org/10.1111/j.1365-246X.2011.05271.xspa
dc.relation.referencesPoormirzaee, R., Moghadam, R. H., & Zarean, A. (2015). Inversion seismic refraction data using particle swarm optimization: a case study of Tabriz, Iran. Arabian Journal of Geosciences, 8(8), 5981–5989. https://doi.org/10.1007/s12517-014-1662-xspa
dc.relation.referencesPrieto, G. A., Lawrence, J. F., & Beroza, G. C. (2009). Anelastic Earth structure from the coherency of the ambient seismic field. Journal of Geophysical Research: Solid Earth, 114(7), 1–15. https://doi.org/10.1029/2008JB006067spa
dc.relation.referencesRickett, J., & Claerbout, J. (1999). Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring. 1999 SEG Annual Meeting, 957–960. https://doi.org/10.1190/1.1820854spa
dc.relation.referencesSabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., & Fehler, M. C. (2005). Extracting time-domain Green’s function estimates from ambient seismic noise. Geophysical Research Letters, 32(3), 1–5. https://doi.org/10.1029/2004GL021862spa
dc.relation.referencesSambridge, M., & Mosegaard, K. (2002). Monte Carlo methods in geophysical inverse problems. Reviews of Geophysics, 40(3). https://doi.org/10.1029/2000RG000089spa
dc.relation.referencesSánchez-sesma, F. J., & Campillo, M. (2006). Retrieval of the Green function from Cross-Correlation: the canonical elastic problem. 1998.spa
dc.relation.referencesSantamarina, J., & Fratta, D. (2005). Discrete Signals and Inverse Problems: An Introduction for Engineers and Scientists. https://doi.org/10.1002/0470021896spa
dc.relation.referencesScott, J. B., Clark, M., Rennie, T., Pancha, A., Park, H., & Louie, J. N. (2004). A shallow shear-wave velocity transect across the Reno, Nevada, area basin. Bulletin of the Seismological Society of America, 94(6), 2222–2228. https://doi.org/10.1785/0120030221spa
dc.relation.referencesSerna, F. (2015). Evaluación de la resolución del método de análisis de dispersión de ondas superficiales MASW (multichannel analysis of surface waves) en suelos residuales.spa
dc.relation.referencesShapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7), 8–11. https://doi.org/10.1029/2004GL019491spa
dc.relation.referencesShapiro, Nikolai M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615–1618. https://doi.org/10.1126/science.1108339spa
dc.relation.referencesSheriff, R. E. (2002). Encyclopedic Dictionary of Applied Geophysics, Fourth Edition. Society of Exploration Geophysicists.spa
dc.relation.referencesStephenson, W. J., Louie, J. N., Pullammanappallil, S., Williams, R. A., & Odum, J. K. (2005). Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley: Implications for earthquake ground-motion assessment. Bulletin of the Seismological Society of America, 95(6), 2506–2516. https://doi.org/10.1785/0120040240spa
dc.relation.referencesTsai, V. C., & Moschetti, M. P. (2010). An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results. Geophysical Journal International, 182(1), 454–460. https://doi.org/10.1111/j.1365-246X.2010.04633.xspa
dc.relation.referencesWalker, S. C. (2012). Coherence and interference in diffuse noise: On the information and statistics associated with spatial wave correlations in directional noise fields. The Journal of the Acoustical Society of America, 131(3), 1987–1998. https://doi.org/10.1121/1.3682050spa
dc.relation.referencesWard, K. M., Porter, R. C., Zandt, G., Beck, S. L., Wagner, L. S., Minaya, E., & Tavera, H. (2013). Ambient noise tomography across the Central Andes. Geophysical Journal International, 194(3), 1559–1573. https://doi.org/10.1093/gji/ggt166spa
dc.relation.referencesWroth, C. P. (1979). A review of the engineering properties of soils with particular reference to the shear modulus. OUEL Report 1523/84, Univ. of Oxford. https://ci.nii.ac.jp/naid/10007804592/en/spa
dc.relation.referencesXia, J., Cakir, R., Miller, R. D., Zeng, C., & Luo, Y. (1999). Estimation of near-surface shear-wave velocity by inversion of Love waves. 79th Society of Exploration Geophysicists International Exposition and Annual Meeting 2009, SEG 2009, 64(3), 691–700. https://doi.org/10.1190/1.3255109spa
dc.relation.referencesXia, J., Miller, R. D., Park, C. B., Hunter, J. A., Harris, J. B., & Ivanov, J. (2002). Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements. Soil Dynamics and Earthquake Engineering, 22(3), 181–190. https://doi.org/10.1016/S0267-7261(02)00008-8spa
dc.relation.referencesXia, J., Xu, Y., & Miller, R. D. (2007). Generating an image of dispersive energy by frequency decomposition and slant stacking. Pure and Applied Geophysics, 164(5), 941–956. https://doi.org/10.1007/s00024-007-0204-9spa
dc.relation.referencesYang, Y., Ritzwoller, M. H., Levshin, A. L., & Shapiro, N. M. (2007). Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International, 168(1), 259–274. https://doi.org/10.1111/j.1365-246X.2006.03203.xspa
dc.relation.referencesYao, H., van der Hilst, R. D., & de Hoop, M. V. (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps. Geophysical Journal International, 166(2), 732–744. https://doi.org/10.1111/j.1365-246X.2006.03028.xspa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalshear wave velocityeng
dc.subject.proposalvelocidad de onda cortantespa
dc.subject.proposaldispersion curveeng
dc.subject.proposalcurva de dispersiónspa
dc.subject.proposalgeófonospa
dc.subject.proposalgeophoneeng
dc.subject.proposalMASWeng
dc.subject.proposalMASWspa
dc.subject.proposalvelocidad de fasespa
dc.subject.proposalphase velocityeng
dc.subject.proposalfrequencyeng
dc.subject.proposalfrecuenciaspa
dc.subject.proposalsurface waveseng
dc.subject.proposalondas superficialesspa
dc.subject.proposalruido ambientalspa
dc.subject.proposalambient noiseeng
dc.subject.proposalCross-correlationeng
dc.subject.proposalCorrelación cruzadaspa
dc.titleAumento de la profundidad de exploración implementando el método de la “correlación cruzada” de registros pasivos obtenidos por medio de geófonos comerciales de 4.5Hzspa
dc.title.alternativeIncrease in the depth of exploration by implementing the “cross-correlation” method of passive records obtained through commercial geophones of 4.5Hzspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037579587.2020.pdf
Tamaño:
2.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: