Aumento de la profundidad de exploración implementando el método de la “correlación cruzada” de registros pasivos obtenidos por medio de geófonos comerciales de 4.5Hz
dc.contributor.advisor | Zapata Medina, David Guillermo | spa |
dc.contributor.advisor | Monsalve Mejía, Gaspar | spa |
dc.contributor.author | López Ruiz, Esteban | spa |
dc.contributor.researchgroup | GRUPO DE GEOTECNIA | spa |
dc.date.accessioned | 2021-02-02T14:18:51Z | spa |
dc.date.available | 2021-02-02T14:18:51Z | spa |
dc.date.issued | 2020-08-13 | spa |
dc.description.abstract | Este trabajo presenta la implementación de la técnica de la “Correlación Cruzada” en registros pasivos tomados con geófonos comerciales de 4.5 Hz para definir las propiedades de dispersión representadas en un modo fundamental, mejorar la obtención de velocidades de fase a frecuencias bajas, y determinar perfiles de velocidades de onda cortante a mayores profundidades que los métodos geofísicos indirectos convencionales (MASW y ReMi). Para esto se dispuso entre 3 y 10 geófonos en alineamiento horizontal en tres diferentes sitios de estudio, y se tomaron registros pasivos con duraciones entre 1.8 y 5.8 horas. La parte teórica de esta investigación se llevó acabo programando en un algoritmo con la técnica “Correlación Cruzada” en el software Matlab para obtener diferentes espectros de la “Correlación Cruzada” que se asemejen a la función de Bessel de orden cero de primera clase (Jo) en los cuales se identifican los cruces por cero. En este trabajo se determinan las curvas de dispersión que físicamente son aceptables y se calculan diferentes perfiles unidimensionales en función de la velocidad de onda cortante V_s versus la profundidad. El método propuesto es comparado y validado con métodos geofísicos directos e indirectos. Se encontró que aplicar la técnica “Correlación Cruzada” en registros pasivos con equipos y métodos convencionales aumenta la profundidad de exploración en comparación con métodos geofísicos indirectos (MASW) en un 60 % como mínimo. | spa |
dc.description.abstract | This study presents an implementation of the Cross-Correlation technique for passive responses measured with 4.5 Hz-commercial geophones. The study addresses the obtention of dispersion properties represented in a fundamental mode, improvement of the phase velocity obtention, and estimation of shear-wave-velocity profiles in deeper ranges than conventional indirect geophysical methods (MASW and ReMi). Between three (3) and ten (10) geophones were placed in a horizontal alignment at tree (3) different sites to measure passive responses. Data was recorded for times ranging from 1.8 to 5.8 hours. The Cross-Correlation technique was implemented in an algorithm in Matlab to define different spectra similar to the Bessel function. Then, dispersion curves were determined and one-dimensional profiles, as a function of the shear wave velocity against depth, calculated. Direct and indirect geophysical methods were performed for comparison purposes and procedure validation. It was found that by applying the Cross-Correlation technique to passive responses, recorded with conventional equipment, the exploration depth increases by a minimum of 60 % in contrast with indirect geophysical methods such as MASW. | spa |
dc.description.additional | Línea de Investigación: Geofísica | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 89 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | López, E. (2020) | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79025 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.department | Departamento de Ingeniería Civil | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Geotecnia | spa |
dc.relation.references | Aki, K. (1957). Space and time spectra of stationary stochastic waves,with special reference to microtremors. In Bulletin of the Earthquake Research Institute (Vol. 35, pp. 415–457). https://doi.org/http://hdl.handle.net/2261/11892 | spa |
dc.relation.references | Aki, K. (1988). Local site effect on ground motion. In Earthquake Engineering and Soil Dynamics. It: Recent Advances in Ground-Motion Evaluation. (pp. 103–155). Am. Sot. Civil Eng. Geotechnical Spec. | spa |
dc.relation.references | Alfaro, A. (2007). Correlación entre el Valor N del Ensayo de Penetración Estándar y Velocidad de Ondas de Corte para Arcillas en Bogotá - Colombia. Epsilon, 13–23. | spa |
dc.relation.references | AMVA. (2006). Microzonificación Sísmica Detallada De Los Municipios De Barbosa, Girardota, Copacabana, Sabaneta, La Estrella, Caldas Y Envigado, Informe Final. Área Metropolitana Del Valle de Aburrá, 745. | spa |
dc.relation.references | ASTM-D6635-15. (2015). Standard Test Method for Performing the Flat Plate Dilatometer. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D6635-15 | spa |
dc.relation.references | ASTM-D7400/D7400M. (2019). Standard Test Methods for Downhole Seismic Testing. https://doi.org/10.1520/D7400_D7400M-19 | spa |
dc.relation.references | Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x | spa |
dc.relation.references | Boaga, J., Vaccari, F., & Panza, G. F. (2010). Shear wave structural models of Venice Plain, Italy, from Time Cross Correlation of seismic noise. Engineering Geology, 116(3–4), 189–195. ttps://doi.org/10.1016/j.enggeo.2010.09.001 | spa |
dc.relation.references | Borcherdt, R. D. (1994). Estimates of Site-Dependent Response Spectra for Design (Methodology and Justification). In Earthquake Spectra (Vol. 10, Issue 4, pp. 617–653). https://doi.org/10.1193/1.1585791 | spa |
dc.relation.references | Boschi, L., Weemstra, C., Verbeke, J., Ekström, G., Zunino, A., & Giardini, D. (2013). On measuring surface wave phase velocity from station-station cross-correlation of ambient signal. Geophysical Journal International, 192(1), 346–358. https://doi.org/10.1093/gji/ggs023 | spa |
dc.relation.references | Cho, K. H., Herrmann, R. B., Ammon, C. J., & Lee, K. (2007). Imaging the upper crust of the Korean peninsula by surface-wave tomography. Bulletin of the Seismological Society of America, 97(1 B), 198–207. https://doi.org/10.1785/0120060096 | spa |
dc.relation.references | Dal Moro, G., & Pipan, M. (2007). Joint inversion of surface wave dispersion curves and reflection travel times via multi-objective evolutionary algorithms. Journal of Applied Geophysics, 61(1), 56–81. https://doi.org/10.1016/j.jappgeo.2006.04.001 | spa |
dc.relation.references | Dal Moro, Giancarlo, Pipan, M., Forte, E., & Finetti, I. (2003). Determination of rayleigh wave dispersion curves for near surface applications in unconsolidated sediments. SEG Technical Program Expanded Abstracts, 22(1), 1247–1250. https://doi.org/10.1190/1.1817508 | spa |
dc.relation.references | Dal Moro, Giancarlo, Pipan, M., & Gabrielli, P. (2007). Rayleigh wave dispersion curve inversion via genetic algorithms and Marginal Posterior Probability Density estimation. Journal of Applied Geophysics, 61(1), 39–55. https://doi.org/10.1016/j.jappgeo.2006.04.002 | spa |
dc.relation.references | Dearman, W. R. (1991). Principles of engineering geological mapping (pp. 12–18). https://doi.org/10.1016/B978-0-7506-1010-0.50005-X | spa |
dc.relation.references | Ekström, G. (2014). Love and Rayleigh phase-velocity maps, 5-40 s, of the western and central USA from USArray data. Earth and Planetary Science Letters, 402(C), 42–49. https://doi.org/10.1016/j.epsl.2013.11.022 | spa |
dc.relation.references | Ekström, G., Abers, G. A., & Webb, S. C. (2009). Determination of surface-wave phase velocities across USArray from noise and Aki’s spectral formulation. Geophysical Research Letters, 36(18), 5–9. https://doi.org/10.1029/2009GL039131 | spa |
dc.relation.references | Foti, S. (2002). Multistation Methods for Geotechnical Characterization using Surface Waves Dottorato di Ricerca in Ingegneria Geotecnica. 251. https://doi.org/10.6092/polito/porto/2497212 | spa |
dc.relation.references | Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P. Y., Comina, C., Cornou, C., Cox, B., Di Giulio, G., Forbriger, T., Hayashi, K., Lunedei, E., Martin, A., Mercerat, D., Ohrnberger, M., Poggi, V., Renalier, F., Sicilia, D., & Socco, V. (2017). Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. In Bulletin of Earthquake Engineering (Vol. 16, Issue 6). https://doi.org/10.1007/s10518-017-0206-7 | spa |
dc.relation.references | Gaite, B. (2013). Análisis y aplicaciones del ruido sísmico en México, golfo de México y Caribe: Tomografía de ondas superficiales Rayleigh y Love [Universidad Complutense de Madrid]. http://hdl.handle.net/10261/97744 | spa |
dc.relation.references | Gardner, G. H. F., Gardner, L. W., & Gregory, A. R. (1974). Formation Velocity and Density - the Diagnostic Basics for Stratigraphic Traps. Geophysics, 39(6), 770–780. https://doi.org/10.1190/1.1440465 | spa |
dc.relation.references | Geo2. (2017). Geo2 SAS. | spa |
dc.relation.references | Geogiga Technology Corp. (2020). Front End Express. http://www.geogiga.com/en/frontendexpress.php | spa |
dc.relation.references | Hannemann, K., Papazachos, C., Ohrnberger, M., Savvaidis, A., Anthymidis, M., & Lontsi, A. M. (2014). Three-dimensional shallow structure from high-frequency ambient noise tomography: New results for the Mygdonia basin-Euroseistest area, northern Greece. Journal of Geophysical Research: Solid Earth, 119(6), 4979–4999. https://doi.org/10.1002/2013JB010914 | spa |
dc.relation.references | Hara, A., Ohta, T., Niwa, M., Tanaka, S., & Banno, T. (1974). Shear modulus and shear strength of cohesive soils. Soils and Foundations, 14(3), 1–12. https://doi.org/10.3208/sandf1972.14.3_1 | spa |
dc.relation.references | Humire G, F. A. (2013). Aplicación de métodos geofísicos basados en ondas superficiales para la caracterización sísmica de suelos. Aplicación a la microzonificación sísmica del norte y poniente de Santiago. | spa |
dc.relation.references | Imai, T. (1982). Correlation of N-value with S-wave velocity and shear modulus. Proceedings of the 2nd European Symposium of Penetration Testing, Amsterdam, 1982. https://ci.nii.ac.jp/naid/10029436605/en/ | spa |
dc.relation.references | Imai, T., & Yoshimura, Y. (1970). Elastic Wave Velocity and Soil Properties in Sofá Soil. Tsuchi-ToKiso, 18, 17–22. | spa |
dc.relation.references | Ingeominas. (2005). Informe de Gestión Institucional 2005. https://www2.sgc.gov.co | spa |
dc.relation.references | Jolly, R. N. (1956). Investigation of Shear Waves. Geophysics, 21(4), 905–938. https://doi.org/10.1190/1.1438310 | spa |
dc.relation.references | Kohji, T., Shuji, T., & Hisaya, K. (1992). Effects of Multiple Modes on Rayleigh Wave Dispersion Characteristics. Journal of Geotechnical Engineering, 118(10), 1529–1543. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:10(1529) | spa |
dc.relation.references | Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India. | spa |
dc.relation.references | Lin, F.-C., Ritzwoller, M. H., Townend, J., Bannister, S., & Savage, M. K. (2007). Ambient noise Rayleigh wave tomography of New Zealand. Geophysical Journal International, 170(2), 649–666. https://doi.org/10.1111/j.1365-246X.2007.03414.x | spa |
dc.relation.references | Louie, J. N. (2001). Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bulletin of the Seismological Society of America, 91(2), 347–364. https://doi.org/10.1785/0120000098 | spa |
dc.relation.references | Lunne, T., Robertson, P. K., & Powell, J. J. . (1997). Cone Penetration Testing in Geotechnical Practice. In E & FN Spon. https://doi.org/10.1201/9780429505980 | spa |
dc.relation.references | Marchetti, S, Monaco, P., Totani, G., & Calabrese, M. (2001). The flat dilatometer test (DMT) in soil investigations--A report by the ISSMGE committee TC16. Proc. In Situ, 41. | spa |
dc.relation.references | Marchetti, Silvano. (1979). Journal of the Engineering Division. Geotechnical Engineering, 105(May), 655–670. | spa |
dc.relation.references | Marchetti, Silvano. (1975). A New in Situ Test for the Measurement of Horizontal Soil Deformability. Proceedings of the Conference on In Situ Measurement of Soil Properties, 2, 255–259. | spa |
dc.relation.references | Marchetti, Silvano, Marchetti, D., & Villalobos, F. (2013). El Dilatómetro sísmico SDMT para ensayos de suelos in situ. Obras y Proyectos, 13, 20–29. https://doi.org/10.4067/s0718-28132013000100002 | spa |
dc.relation.references | Mordret, A., Landés, M., Shapiro, N. M., Singh, S. C., & Roux, P. (2014). Ambient noise surface wave tomography to determine the shallow shear velocity structure at Valhall: Depth inversion with a Neighbourhood Algorithm. Geophysical Journal International, 198(3), 1514–1525. https://doi.org/10.1093/gji/ggu217 | spa |
dc.relation.references | Moschetti, M. P., Ritzwoller, M. H., & Shapiro, N. M. (2007). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochemistry, Geophysics, Geosystems, 8(8). https://doi.org/10.1029/2007GC001655 | spa |
dc.relation.references | NSR-10. (2010). Reglamento Colombiano de Construccion Sismo Resistente. Asociación Colombiana de Ingeniería Sísmica. Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 530–827. | spa |
dc.relation.references | Nunziata, C., De Nisco, G., & Panza, G. F. (2009). S-waves profiles from noise cross correlation at small scale. Engineering Geology, 105(3–4), 161–170. https://doi.org/10.1016/j.enggeo.2009.01.005 | spa |
dc.relation.references | Ohba, S., & Toriumi, I. (1970). Dynamic response characteristics of Osaka Plain. Proceedings of the Annual Meeting AIJ (in Japanese). | spa |
dc.relation.references | Ohta, Y., & Goto, N. (1978). Empirical shear wave velocity equations in terms of characteristic soil indexes. Earthquake Engineering & Structural Dynamics, 6(2), 167–187. https://doi.org/10.1002/eqe.4290060205 | spa |
dc.relation.references | Park, C. B., Miller, R. D., & Xia, J. (1996). Multi-channel analysis of surface waves using Vibroseis (MASWV). 1996 SEG Annual Meeting, 68–71. https://doi.org/10.1190/1.1826742 | spa |
dc.relation.references | Park, C. B., Miller, R. D., & Xia, J. (1997). Multi-Channel Analysis of Surface Waves ( MASW ) prepared by. Kansas Geological Survey. | spa |
dc.relation.references | Park, C. B., Miller, R. D., & Xia, J. (1998). Imaging dispersion curves of surface waves on multi-channel record. 1998 SEG Annual Meeting. https://doi.org/10.1190/1.1820161 | spa |
dc.relation.references | Pastén, C., Sáez, M., Ruiz, S., Leyton, F., Salomón, J., & Poli, P. (2015). Deep characterization of the Santiago Basin using HVSR and cross-correlation of ambient seismic noise. Engineering Geology, 201, 57–66. https://doi.org/https://doi.org/10.1016/j.enggeo.2015.12.021 | spa |
dc.relation.references | Picozzi, M., Parolai, S., Bindi, D., & Strollo, A. (2009). Characterization of shallow geology by high-frequency seismic noise tomography. Geophysical Journal International, 176(1), 164–174. https://doi.org/10.1111/j.1365-246X.2008.03966.x | spa |
dc.relation.references | Poli, P., Pedersen, H. A., & Campillo, M. (2012). Emergence of body waves from cross-correlation of short period seismic noise. Geophysical Journal International, 188(2), 549–558. https://doi.org/10.1111/j.1365-246X.2011.05271.x | spa |
dc.relation.references | Poormirzaee, R., Moghadam, R. H., & Zarean, A. (2015). Inversion seismic refraction data using particle swarm optimization: a case study of Tabriz, Iran. Arabian Journal of Geosciences, 8(8), 5981–5989. https://doi.org/10.1007/s12517-014-1662-x | spa |
dc.relation.references | Prieto, G. A., Lawrence, J. F., & Beroza, G. C. (2009). Anelastic Earth structure from the coherency of the ambient seismic field. Journal of Geophysical Research: Solid Earth, 114(7), 1–15. https://doi.org/10.1029/2008JB006067 | spa |
dc.relation.references | Rickett, J., & Claerbout, J. (1999). Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring. 1999 SEG Annual Meeting, 957–960. https://doi.org/10.1190/1.1820854 | spa |
dc.relation.references | Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., & Fehler, M. C. (2005). Extracting time-domain Green’s function estimates from ambient seismic noise. Geophysical Research Letters, 32(3), 1–5. https://doi.org/10.1029/2004GL021862 | spa |
dc.relation.references | Sambridge, M., & Mosegaard, K. (2002). Monte Carlo methods in geophysical inverse problems. Reviews of Geophysics, 40(3). https://doi.org/10.1029/2000RG000089 | spa |
dc.relation.references | Sánchez-sesma, F. J., & Campillo, M. (2006). Retrieval of the Green function from Cross-Correlation: the canonical elastic problem. 1998. | spa |
dc.relation.references | Santamarina, J., & Fratta, D. (2005). Discrete Signals and Inverse Problems: An Introduction for Engineers and Scientists. https://doi.org/10.1002/0470021896 | spa |
dc.relation.references | Scott, J. B., Clark, M., Rennie, T., Pancha, A., Park, H., & Louie, J. N. (2004). A shallow shear-wave velocity transect across the Reno, Nevada, area basin. Bulletin of the Seismological Society of America, 94(6), 2222–2228. https://doi.org/10.1785/0120030221 | spa |
dc.relation.references | Serna, F. (2015). Evaluación de la resolución del método de análisis de dispersión de ondas superficiales MASW (multichannel analysis of surface waves) en suelos residuales. | spa |
dc.relation.references | Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7), 8–11. https://doi.org/10.1029/2004GL019491 | spa |
dc.relation.references | Shapiro, Nikolai M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615–1618. https://doi.org/10.1126/science.1108339 | spa |
dc.relation.references | Sheriff, R. E. (2002). Encyclopedic Dictionary of Applied Geophysics, Fourth Edition. Society of Exploration Geophysicists. | spa |
dc.relation.references | Stephenson, W. J., Louie, J. N., Pullammanappallil, S., Williams, R. A., & Odum, J. K. (2005). Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley: Implications for earthquake ground-motion assessment. Bulletin of the Seismological Society of America, 95(6), 2506–2516. https://doi.org/10.1785/0120040240 | spa |
dc.relation.references | Tsai, V. C., & Moschetti, M. P. (2010). An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results. Geophysical Journal International, 182(1), 454–460. https://doi.org/10.1111/j.1365-246X.2010.04633.x | spa |
dc.relation.references | Walker, S. C. (2012). Coherence and interference in diffuse noise: On the information and statistics associated with spatial wave correlations in directional noise fields. The Journal of the Acoustical Society of America, 131(3), 1987–1998. https://doi.org/10.1121/1.3682050 | spa |
dc.relation.references | Ward, K. M., Porter, R. C., Zandt, G., Beck, S. L., Wagner, L. S., Minaya, E., & Tavera, H. (2013). Ambient noise tomography across the Central Andes. Geophysical Journal International, 194(3), 1559–1573. https://doi.org/10.1093/gji/ggt166 | spa |
dc.relation.references | Wroth, C. P. (1979). A review of the engineering properties of soils with particular reference to the shear modulus. OUEL Report 1523/84, Univ. of Oxford. https://ci.nii.ac.jp/naid/10007804592/en/ | spa |
dc.relation.references | Xia, J., Cakir, R., Miller, R. D., Zeng, C., & Luo, Y. (1999). Estimation of near-surface shear-wave velocity by inversion of Love waves. 79th Society of Exploration Geophysicists International Exposition and Annual Meeting 2009, SEG 2009, 64(3), 691–700. https://doi.org/10.1190/1.3255109 | spa |
dc.relation.references | Xia, J., Miller, R. D., Park, C. B., Hunter, J. A., Harris, J. B., & Ivanov, J. (2002). Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements. Soil Dynamics and Earthquake Engineering, 22(3), 181–190. https://doi.org/10.1016/S0267-7261(02)00008-8 | spa |
dc.relation.references | Xia, J., Xu, Y., & Miller, R. D. (2007). Generating an image of dispersive energy by frequency decomposition and slant stacking. Pure and Applied Geophysics, 164(5), 941–956. https://doi.org/10.1007/s00024-007-0204-9 | spa |
dc.relation.references | Yang, Y., Ritzwoller, M. H., Levshin, A. L., & Shapiro, N. M. (2007). Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International, 168(1), 259–274. https://doi.org/10.1111/j.1365-246X.2006.03203.x | spa |
dc.relation.references | Yao, H., van der Hilst, R. D., & de Hoop, M. V. (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps. Geophysical Journal International, 166(2), 732–744. https://doi.org/10.1111/j.1365-246X.2006.03028.x | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.proposal | shear wave velocity | eng |
dc.subject.proposal | velocidad de onda cortante | spa |
dc.subject.proposal | dispersion curve | eng |
dc.subject.proposal | curva de dispersión | spa |
dc.subject.proposal | geófono | spa |
dc.subject.proposal | geophone | eng |
dc.subject.proposal | MASW | eng |
dc.subject.proposal | MASW | spa |
dc.subject.proposal | velocidad de fase | spa |
dc.subject.proposal | phase velocity | eng |
dc.subject.proposal | frequency | eng |
dc.subject.proposal | frecuencia | spa |
dc.subject.proposal | surface waves | eng |
dc.subject.proposal | ondas superficiales | spa |
dc.subject.proposal | ruido ambiental | spa |
dc.subject.proposal | ambient noise | eng |
dc.subject.proposal | Cross-correlation | eng |
dc.subject.proposal | Correlación cruzada | spa |
dc.title | Aumento de la profundidad de exploración implementando el método de la “correlación cruzada” de registros pasivos obtenidos por medio de geófonos comerciales de 4.5Hz | spa |
dc.title.alternative | Increase in the depth of exploration by implementing the “cross-correlation” method of passive records obtained through commercial geophones of 4.5Hz | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1037579587.2020.pdf
- Tamaño:
- 2.29 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis Maestría en Ingeniería - Geotecnia
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: