Métodos numéricos eficientes para ecuaciones diferenciales elípticas en medios porosos

dc.contributor.advisorGalvis Arrieta, Juan Carlos
dc.contributor.authorCuervo Fernández, Omar Andrés
dc.contributor.orcidGalvis Arrieta, Juan Carlos [0000-0001-8904-1877]
dc.contributor.researchgroupDiseño y Análisis de Métodos Numéricos
dc.date.accessioned2025-09-02T17:03:14Z
dc.date.available2025-09-02T17:03:14Z
dc.date.issued2025
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractModeling flow and transport in porous media with uncertain properties is of critical importance in many scientific and engineering applications, including groundwater hydrology, petroleum reservoir simulation, and environmental risk assessment. The spatial heterogeneity of properties such as permeability is often modeled through stochastic processes defined by covariance functions. These formulations require the use of efficient numerical methods to simulate and quantify uncertainty. A brief review of modeling strategies and numerical approximations in this context is included in this thesis. The random coefficient field is represented using Karhunen Loève (KL) expansions and related spectral techniques, allowing for finite-dimensional parameterizations of infinite-dimensional random fields. This facilitates the application of both sampling-based and deterministic approximation methods in stochastic settings. This thesis investigates numerical methods based on the combination of finite element discretizations with random sampling techniques, including Monte Carlo and polynomial chaos expansions. The spatial discretization uses standard conforming and non-conforming methods, while uncertainty is treated using random inputs derived from the KL expansion. The main contributions of this thesis are as follows. First, the work focuses on simple design and efficient iterative solvers based on null space strategies and operator splitting that weakly depend on the coefficient realization dividing the computation into two stages, and offline stage that does not depend on the coefficient and an online stage that requires few operations per iterations. Second, a modified Monte Carlo method is developed and analyzed, in which the Galerkin matrices are approximated through sample-based numerical integration. This approach extends the standard Monte Carlo method and includes the study of cases where it provides more accurate and computationally efficient approximations of the quantities of interest. Numerical experiments are presented to illustrate the performance of the proposed methods. Initial theoretical estimates are provided for the approximation error, and their behavior is evaluated numerically across a range of model problems and solver configurations. Finally, this thesis concludes with a summary of the key findings from each chapter, and outlines several directions for future research, including the integration of the proposed solver strategies into multilevel Monte Carlo framework and adaptive sampling schemes. (Tomado de la fuente)eng
dc.description.abstractModelar el flujo y el transporte en medios porosos con propiedades inciertas es de importancia crítica en muchas aplicaciones científicas de ingeniería, incluyendo la hidrología subterránea, la simulación de yacimientos petroleros y la evaluación del riesgo ambiental. La heterogeneidad espacial de propiedades como la permeabilidad a menudo se modela mediante procesos estocásticos definidos por funciones de covarianza. Estas formulaciones requieren el uso de métodos numéricos eficientes para simular y cuantificar la incertidumbre. En esta tesis se incluye una breve revisión de estrategias de modelado y aproximaciones numéricas en este contexto. El campo de coeficientes aleatorios se representa utilizando expansiones de Karhunen Loève (KL) y técnicas espectrales relacionadas, lo que permite parametrizaciones de dimensión finita de campos aleatorios de dimensión infinita. Esto facilita la aplicación de métodos de aproximación tanto basados en muestreo como deterministas en entornos estocásticos. Esta tesis investiga métodos numéricos basados en la combinación de discretizaciones por elementos finitos con técnicas de muestreo aleatorio, incluyendo el método de Monte Carlo y las expansiones en caos polinomial. La discretización espacial utiliza métodos conformes y no conformes estándar, mientras que la incertidumbre se trata utilizando entradas aleatorias derivadas de la expansión KL. Las principales contribuciones de esta tesis son las siguientes. Primero, el trabajo se enfoca en un diseño simple de precondicionadores iterativos eficientes basados en estrategias de espacio nulo y descomposición de operadores que dependen débilmente de la realización del coeficiente aleatorio de la ecuación, dividiendo el cálculo en dos etapas: una etapa offline que no depende del coeficiente y una etapa online que requiere pocas operaciones por iteración (realización de las variables aleatorias). Segundo, se desarrolla y analiza un método de Monte Carlo modificado en el cual las matrices de Galerkin se aproximan mediante integración numérica basada en muestras. Este enfoque extiende el método estándar de Monte Carlo e incluye el estudio de casos donde proporciona aproximaciones más precisas y computacionalmente eficientes de las cantidades de interés. Se presentan experimentos numéricos para ilustrar el rendimiento de los métodos propuestos. Se proporcionan estimaciones teóricas iniciales para el error de aproximación y se evalúa su comportamiento numéricamente en una variedad de problemas modelo y configuraciones de solucionadores. Finalmente, esta tesis concluye con un resumen de los hallazgos clave de cada capítulo y esboza varias direcciones para investigaciones futuras, incluyendo la integración de las estrategias de solucionadores propuestas en el marco de Monte Carlo multinivel y esquemas de muestreo adaptativo.spa
dc.description.curricularareaMatemáticas.Sede Bogotá
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Matemáticas
dc.description.researchareaAnálisis numérico para la solución de ecuaciones diferenciales parciales con coeficientes aleatorios
dc.format.extent200 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88548
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticas
dc.relation.indexedLaReferencia
dc.relation.referencesMilton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55. US Government printing office, 1968.
dc.relation.referencesMilton Abramowitz, Irene A Stegun, and David Miller. Handbook of mathematical functions with formulas, graphs and mathematical tables (national bureau of standards applied mathematics series no. 55). 1965.
dc.relation.referencesEduardo Abreu, Ciro Diaz, Juan Galvis, and John Pérez. On the conservation properties in multiple scale coupling and simulation for darcy flow with hyperbolic-transport in complex flows. Multiscale Modeling & Simulation, 18(4):1375–1408, 2020.
dc.relation.referencesEduardo Cardoso de Abreu et al. Modelagem e simulação computacional de escoamentos trifásicos em reservatórios de petróleo heterogêneos. 2007.
dc.relation.referencesPierre M Adler, Jean-Francois Thovert, and Valeri V Mourzenko. Fractured porous media. Oxford University Press, USA, 2013.
dc.relation.referencesShakeel Ahmed, Ghislain de Marsily, and Alain Talbot. Combined use of hydraulic and electrical properties of an aquifer in a geostatistical estimation of transmissivity. Groundwater, 26(1):78-86, 1988.
dc.relation.referencesTarek AHMED and Paul D MCKINNEY. Well testing analysis. advanced reservoir engi-neering,[sl], 2005.
dc.relation.referencesMary P Anderson, William W Woessner, and Randall J Hunt. Applied groundwater modeling: simulation of flow and advective transport. Academic press, 2015.
dc.relation.referencesSilvia Angelone, María Teresa Garibay, and Marina Cauhape Casaux. Permeabilidad de suelos. Geol. y Geotec-Permeabilidad Suelos, 2006.
dc.relation.referencesJH Argyris and OE Brønlund. The natural factor formulation of the stiffness for the matrix displacement method. Computer Methods in Applied Mechanics and Engineering, 5(1):97-119, 1975.
dc.relation.referencesIvo Babuška and Panagiotis Chatzipantelidis. On solving elliptic stochastic partial differential equations. Computer Methods in Applied Mechanics and Engineering, 191(37-38): 4093-4122, 2002.
dc.relation.referencesIvo Babuska, Raúl Tempone, and Georgios E Zouraris. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM Journal on Numerical Analysis, 42(2):800-825, 2004.
dc.relation.referencesIvo Babuška, Fabio Nobile, and Raul Tempone. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Journal on Numerical Analysis, 45(3):1005-1034, 2007.
dc.relation.referencesIvo Babuška, Fabio Nobile, and Raul Tempone. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM review, 52(2):317-355, 2010.
dc.relation.referencesMarkus Bachmayr, Albert Cohen, and Giovanni Migliorati. Sparse polynomial approximation of parametric elliptic pdes. part i: affine coefficients. ESAIM: Mathematical Modelling and Numerical Analysis, 51(1):321-339, 2017.
dc.relation.referencesJacob Bear. Dynamics of fluids in porous media. Courier Corporation, 2013.
dc.relation.referencesJacob Bear and Alexander H-D Cheng. Modeling groundwater flow and contaminant transport, volume 23. Springer, 2010.
dc.relation.referencesMichele Benzi, Gene H Golub, and Jorg Liesen. Numerical solution of saddle point problems. Acta numerica, 14:1-137, 2005.
dc.relation.referencesAlex Bespalov and Feng Xu. A posteriori error estimation and adaptivity in stochastic galerkin fem for parametric elliptic pdes: beyond the affine case. Computers & Mathematics with Applications, 80(5):1084-1103, 2020.
dc.relation.referencesAlex Bespalov, Dirk Praetorius, Ilaria Rocchi, and Valeria Ruggeri. Convergence of adaptive stochastic galerkin fem. IMA Journal of Numerical Analysis, 38:1888-1922, 2018.
dc.relation.referencesPatrick Billingsley. Convergence of probability measures. John Wiley & Sons, 2013.
dc.relation.referencesSabine Le Borne. Preconditioned nullspace method for the two-dimensional oseen problem. SIAM journal on scientific computing, 31(4):2494-2509, 2009.
dc.relation.referencesNyle C Brady, Ray R Weil, and Ray R Weil. The nature and properties of soils, volume 13. Prentice Hall Upper Saddle River, NJ, 2008.
dc.relation.referencesDietrich Braess. Finite elements: Theory, fast solvers, and applications in solid mechanics. Cambridge University Press, 2007.
dc.relation.referencesRussel E Caflisch. Monte carlo and quasi-monte carlo methods. Acta numerica, 7:1-49, 1998.
dc.relation.referencesClaudio Canuto and Tomas Kozubek. A fictitious domain approach to the numerical solution of pdes in stochastic domains. Numerische mathematik, 107:257-293, 2007.
dc.relation.referencesJose M Carcione, Gerard C Herman, and APE Ten Kroode. Seismic modeling. Geophysics, 67(4):1304-1325, 2002.
dc.relation.referencesJean-Paul Chiles and Pierre Delfiner. Geostatistics: modeling spatial uncertainty, volume 713. John Wiley & Sons, 2012.
dc.relation.referencesK A Cliffe, M B Giles, R Scheichl, and A L Teckentrup. Multilevel monte carlo methods and applications to elliptic pdes with random coefficients. Computing and Visualization in Science, 14(1):3-15, 2011.
dc.relation.referencesPaul G Constantine, David F Gleich, and Gianluca Iaccarino. A factorization of the spectral galerkin system for parameterized matrix equations: Derivation and applications. SIAM Journal on Scientific Computing, 33(5):2995-3009, 2011.
dc.relation.referencesNoel Cressie. Statistics for spatial data. John Wiley & Sons, 2015.
dc.relation.referencesO Andres Cuervo, Juan Galvis, and Marcus Sarkis. Natural factor based solvers. arXiv preprint arXiv:2106.05419, 2021.
dc.relation.referencesJun Cui and Daniel B. Szyld. Weak regular splittings of matrices and their applications to iterative methods. Numerical Linear Algebra with Applications, 23:897-915, 2016. doi:10.1002/nla.2054.
dc.relation.referencesGiuseppe Da Prato. An introduction to infinite-dimensional analysis. Springer Science & Business Media, 2006.
dc.relation.referencesGedeon Dagan. Flow and transport in porous formations. Springer Science & Business Media, 2012.
dc.relation.referencesM De Ghislain. Quantitative hydrogeology; groundwater hydrology for engineers. 1986.
dc.relation.referencesJosef Dick, Frances Y Kuo, and Ian H Sloan. High-dimensional integration: the quasi-monte carlo way. Acta Numerica, 22:133-288, 2013.
dc.relation.referencesPatrick A Domenico and Franklin W Schwartz. Physical and chemical hydrogeology. John wiley & sons, 1997.
dc.relation.referencesZlatko Drmač. Numerical methods for accurate computation of the eigenvalues of hermitian matrices and the singular values of general matrices. SeMA Journal, 78(1):53-92, 2021.
dc.relation.referencesFrancis AL Dullien. Porous media: fluid transport and pore structure. Academic press, 2012.
dc.relation.referencesAlexandre Ern and Jean-Luc Guermond. Theory and practice of finite elements, volume 159. Springer, 2004.
dc.relation.referencesOliver G Ernst, Catherine Elizabeth Powell, David J Silvester, and Elisabeth Ullmann. Efficient solvers for a linear stochastic galerkin mixed formulation of diffusion problems with random data. SIAM Journal on Scientific Computing, 31(2):1424-1447, 2009.
dc.relation.referencesOliver G Ernst, Antje Mugler, Hans-Jorg Starkloff, and Elisabeth Ullmann. On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2):317-339, 2012.
dc.relation.referencesLawrence C Evans. Partial differential equations, volume 19. American Mathematical Society, 2022.
dc.relation.referencesRichard E Ewing. The mathematics of reservoir simulation. SIAM, 1983a.
dc.relation.referencesRichard E Ewing. Problems arising in the modeling of processes for hydrocarbon recovery. In The mathematics of reservoir simulation, pages 3-34. SIAM, 1983b.
dc.relation.referencesJohn R Fanchi. Principles of applied reservoir simulation. Elsevier, 2005.
dc.relation.referencesAlbert Ferreiro-Castilla, Andreas E Kyprianou, Robert Scheichl, and Gowri Suryanarayana. Multilevel monte carlo simulation for lévy processes based on the wiener-hopf factorisation. Stochastic Processes and their Applications, 124(2):985-1010, 2014.
dc.relation.referencesCharles Willard Fetter. Applied hydrogeology. Waveland Press, 2018.
dc.relation.referencesPhilipp Frauenfelder, Christoph Schwab, and Radu Alexandru Todor. Finite elements for elliptic problems with stochastic coefficients. Computer methods in applied mechanics and engineering, 194(2-5):205-228, 2005.
dc.relation.referencesAndreas Frommer and Daniel B Szyld. H-splittings and two-stage iterative methods. Numerische Mathematik, 63:345-356, 1992.
dc.relation.referencesAndreas Frommer and Daniel B Szyld. Weighted max norms, splittings, and overlapping additive schwarz iterations. Numerische Mathematik, 83:259-278, 1999.
dc.relation.referencesAndreas Frommer and Daniel B Szyld. An algebraic convergence theory for restricted additive schwarz methods using weighted max norms. SIAM journal on numerical analysis, 39(2):463-479, 2001.
dc.relation.referencesFrederico Furtado and Felipe Pereira. Crossover from nonlinearity controlled to heterogeneity controlled mixing in two-phase porous media flows. Computational Geosciences, 7:115-135, 2003.
dc.relation.referencesJuan Galvis. Introducao aos metodos de decomposicao de dominio. IMPA, 2009.
dc.relation.referencesJuan Galvis and O Andrés Cuervo. A monte carlo approach to computing stiffness matrices arising in polynomial chaos approximations. Mathematics and Computers in Simulation, 160:72-81, 2019.
dc.relation.referencesJuan Galvis and Marcus Sarkis. Approximating infinity-dimensional stochastic darcy's equations without uniform ellipticity. SIAM Journal on Numerical Analysis, 47(5):3624-3651, 2009
dc.relation.referencesJuan Galvis and Marcus Sarkis. Regularity results for the ordinary product stochastic pressure equation. SIAM Journal on Mathematical Analysis, 44(4):2637-2665, 2012.
dc.relation.referencesJuan Galvis and Henrique Versieux. Introdução à aprorimação numérica de equações diferenciais parciais via o método de elementos finitos. IMPA, 2011.
dc.relation.referencesJuan Galvis, Marcus Sarkis, and O Andres Cuervo. Natural factor based solvers. In Domain Decomposition Methods in Science and Engineering XXVI, pages 247-255. Springer, 2023.
dc.relation.referencesLynn W Gelhar. Stochastic subsurface hydrology from theory to applications. Water Resources Research, 22(9S):135S-145S, 1986.
dc.relation.referencesMarc G Genton. Classes of kernels for machine learning: a statistics perspective. Journal of machine learning research, 2(Dec):299-312, 2001.
dc.relation.referencesMarc G Genton. Classes of kernels for machine learning: a statistics perspective. Journal of machine learning research, 2(Dec):299-312, 2001.
dc.relation.referencesRoger G Ghanem and Pol D Spanos. Stochastic finite elements: a spectral approach. Courier Corporation, 2003.
dc.relation.referencesAlexander D. Gilbert and Robert Scheichl. Multilevel quasimonte carlo for random elliptic eigenvalue problems ii: Efficient algorithms and numerical results. SIAM Journal on Scientific Computing, 2020.
dc.relation.referencesMichael B. Giles. Multilevel monte carlo methods. Acta Numerica, 24:259-328, 2015.
dc.relation.referencesMike B Giles. Multilevel monte carlo path simulation. Operations Research, 56(3):607-617, 2008.
dc.relation.referencesPaul Glasserman. Monte Carlo methods in financial engineering, volume 53. Springer, 2004.
dc.relation.referencesGene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.
dc.relation.referencesIvan G Graham, Frances Y Kuo, Dirk Nuyens, Robert Scheichl, and Ian H Sloan. Quasimonte carlo methods for elliptic pdes with random coefficients and applications. Journal of Computational Physics, 230(10):3668-3694, 2011.
dc.relation.referencesIvan G Graham, Frances Y Kuo, James A Nichols, Robert Scheichl, Ch Schwab, and Ian H Sloan. Quasi-monte carlo finite element methods for elliptic pdes with lognormal random coefficients. Numerische Mathematik, 131:329-368, 2015.
dc.relation.referencesConstantin Grigo and Phaedon-Stelios Koutsourelakis. Bayesian model and dimension reduction for uncertainty propagation: applications in random media. SIAM/ASA Journal on Uncertainty Quantification, 7(1):292-323, 2019.
dc.relation.referencesJohn H Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik, 2:84-90, 1960.
dc.relation.referencesStefan Heinrich. Multilevel monte carlo methods. Large-scale scientific computing, pages 58-67,2001.
dc.relation.referencesHelge Holden, Bernt Øksendal, Jan Ubøe, Tusheng Zhang, Helge Holden, Bernt Øksendal, Jan Ubøe, and Tusheng Zhang. Stochastic partial differential equations. Springer, 1996.
dc.relation.referencesPaul F Hudak. Principles of hydrogeology. CRC Press, 2004.
dc.relation.referencesMartin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, Tuan Anh Nguyen, and Philippe von Wurstemberger. Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations. Proceedings of the Royal Society A, 476(2244):20190630, 2020.
dc.relation.referencesPeter S Huyakorn. Computational methods in subsurface flow. academic press, 2012.
dc.relation.referencesArieh Iserles. A first course in the numerical analysis of differential equations. Number 44. Cambridge university press, 2009.
dc.relation.referencesJean Jacod and Philip Protter. Probability essentials. Springer Science & Business Media, 2004.
dc.relation.referencesClaes Johnson. Numerical solution of partial differential equations by the finite element method. Courier Corporation, 2012.
dc.relation.referencesKari Karhunen. Under lineare methoden in der wahr scheinlichkeitsrechnung. Annales Academiae Scientiarun Fennicae Series A1: Mathematia Physica, 47, 1947.
dc.relation.referencesDavid Ronald Kincaid and Elliott Ward Cheney. Numerical analysis: mathematics of scientific computing, volume 2. American Mathematical Soc., 2009.
dc.relation.referencesDirk P Kroese, Thomas Taimre, and Zdravko I Botev. Handbook of monte carlo methods. John Wiley & Sons, 2013.
dc.relation.referencesLauwerens Kuipers and Harald Niederreiter. Uniform distribution of sequences. Courier Corporation, 2012.
dc.relation.referencesLarry W Lake. Enhanced oil recovery. 1989.
dc.relation.referencesBoyan Stefanov Lazarov and Ole Sigmund. Filters in topology optimization based on helmholtz-type differential equations. International journal for numerical methods in engineering, 86(6):765-781, 2011.
dc.relation.referencesOlivier Le Maître and Omar M Knio. Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer Science & Business Media, 2010.
dc.relation.referencesYuwen Li and Ludmil Zikatanov. A posteriori error estimates of finite element methods by preconditioning. Computers & Mathematics with Applications, 91:192-201, 2021.
dc.relation.referencesFinn Lindgren, Håvard Rue, and Johan Lindstrom. An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4):423-498, 2011.
dc.relation.referencesMichel Loève. Probability theory. Courier Dover Publications, 2017.
dc.relation.referencesGabriel J Lord, Catherine E Powell, and Tony Shardlow. An introduction to computational stochastic PDEs, volume 50. Cambridge University Press, 2014.
dc.relation.referencesWuan Luo. Wiener chaos expansion and numerical solutions of stochastic partial differential equations. PhD thesis, California Institute of Technology, 2006.
dc.relation.referencesBertil Matern. Spatial variation, volume 36. Springer Science & Business Media, 2013.
dc.relation.referencesHermann G Matthies and Andreas Keese. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Computer methods in applied mechanics and engineering, 194(12-16):1295-1331, 2005.
dc.relation.referencesM Maučec, JM Yarus, and RL Chambers. Next generation geological modeling for hydrocarbon reservoir characterization. Advances in data, methods, models and their applications in geoscience, page 215, 2011.
dc.relation.referencesAkil Narayan and Dongbin Xiu. Stochastic collocation methods on unstructured grids in high dimensions via interpolation. SIAM Journal on Scientific Computing, 34(3):A1729-A1752, 2012.
dc.relation.referencesHarald Niederreiter. Random number generation and quasi-Monte Carlo methods. SIAM, 1992.
dc.relation.referencesNobuaki Obata. White noise calculus and Fock space. Springer, 2006.
dc.relation.referencesMA Oliver and R Webster. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena, 113:56-69, 2014.
dc.relation.referencesEvangelos K Paleologos. Stochastic methods for flow in porous media, coping with uncertainties, 2003.
dc.relation.referencesWilliam H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, UK, 2nd edition, 1992. ISBN 9780521431088.
dc.relation.referencesMichael J Pyrcz and Clayton V Deutsch. Geostatistical reservoir modeling. Oxford University Press, USA, 2014.
dc.relation.referencesAlfio Quarteroni and Alberto Valli. Numerical approrimation of partial differential equations, volume 23. Springer Science & Business Media, 2008.
dc.relation.referencesTyrone Rees and Jennifer Scott. A comparative study of null-space factorizations for sparse symmetric saddle point systems. Numerical Linear Algebra with Applications, 25(1):e2103, 2018.
dc.relation.referencesFrigyes Riesz and Béla Sz Nagy. Functional analysis. Courier Corporation, 2012.
dc.relation.referencesLuis J Roman and Marcus Sarkis. Stochastic galerkin method for elliptic spdes: A white noise approach. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS SERIES B, 6(4):941, 2006.
dc.relation.referencesMiroslav Rozložník. Saddle-point problems and their iterative solution. Springer, 2018.
dc.relation.referencesWalter Rudin. Principles of mathematical analysis. 2021.
dc.relation.referencesGalen R Shorack and Jon A Wellner. Empirical processes with applications to statistics. SIAM, 2009.
dc.relation.referencesValeria Simoncini and Daniel B Szyld. Theory of inexact krylov subspace methods and applications to scientific computing. SIAM Journal on Scientific Computing, 25(2):454-477, 2003.
dc.relation.referencesValeria Simoncini and Daniel B Szyld. Recent computational developments in krylov subspace methods for linear systems. Numerical Linear Algebra with Applications, 14(1):1-59, 2007.
dc.relation.referencesNicole Spillane and Daniel B Szyld. New convergence analysis of gmres with weighted norms, preconditioning, and deflation, leading to a new deflation space. SIAM Journal on Matrix Analysis and Applications, 45(4):1721-1745, 2024.
dc.relation.referencesMichael L Stein. Interpolation of spatial data: some theory for kriging. Springer Science & Business Media, 1999.
dc.relation.referencesDjebbar Tiab and Erle C Donaldson. Petrophysics: theory and practice of measuring reservoir rock and fluid transport properties. Gulf professional publishing, 2015.
dc.relation.referencesTheodor D van Golf-Racht. Fundamentals of fractured reservoir engineering. Elsevier, 1982.
dc.relation.referencesStephen A Vavasis. Stable numerical algorithms for equilibrium systems. SIAM Journal on Matrir Analysis and Applications, 15(4):1108-1131, 1994.
dc.relation.referencesStephen A Vavasis. Stable finite elements for problems with wild coefficients. SIAM journal on numerical analysis, 33(3):890-916, 1996.
dc.relation.referencesHans Wackernagel. Multivariate geostatistics: an introduction with applications. Springer Science & Business Media, 2003.
dc.relation.referencesXiaoliang Wan. A note on stochastic elliptic models. Computer methods in applied mechanics and engineering, 199(45-48):2987-2995, 2010.
dc.relation.referencesLimin Wang. Karhunen-Loeve expansions and their applications. London School of Economics and Political Science (United Kingdom), 2008.
dc.relation.referencesStephen Whitaker. Flow in porous media i: A theoretical derivation of darcy's law. Transport in porous media, 1:3-25, 1986.
dc.relation.referencesChristopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning, volume 2. MIT press Cambridge, MA, 2006.
dc.relation.referencesDongbin Xiu and George Em Karniadakis. The wiener-askey polynomial chaos for stochastic differential equations. SIAM journal on scientific computing, 24(2):619-644, 2002.
dc.relation.referencesAkiva M Yaglom. Correlation Theory of Stationary and Related Random Functions, Volume I: Basic Results, volume 131. Springer, 1987.
dc.relation.referencesYou-Kuan Zhang. Stochastic methods for flow in porous media: coping with uncertainties, 2006.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc510 - Matemáticas::515 - Análisis
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.lembEcuaciones diferenciales elípticas - Soluciones numéricasspa
dc.subject.lembMateriales porososspa
dc.subject.lembMétodo de elementos finitosspa
dc.subject.proposalEcuaciones diferenciales parciales con coeficientes aleatoriosspa
dc.subject.proposalSimulación Monte Carlospa
dc.subject.proposalCuantificación de incertidumbrespa
dc.subject.proposalSolucionadores multinivelspa
dc.subject.proposalPartial differential equations with random coefficientsspa
dc.subject.proposalFinite element methodseng
dc.subject.proposalMonte Carlo simulationeng
dc.subject.proposalUncertainty quantificationeng
dc.subject.proposalMultilevel solverseng
dc.titleMétodos numéricos eficientes para ecuaciones diferenciales elípticas en medios porososspa
dc.title.translatedEfficient numerical methods for elliptic differential equations in porous mediaeng
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Doctorado en Ciencias - Matemáticas
Tamaño:
3.67 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: