Obtención de la rugosidad a partir de imágenes obtenidas en un Microscopio Electrónico de Barrido

dc.contributor.advisorSandino del Busto, John Williamspa
dc.contributor.authorGómez Mateus, José Alfredospa
dc.contributor.researchgroupMicroscopía Electrónicaspa
dc.date.accessioned2024-05-24T20:58:20Z
dc.date.available2024-05-24T20:58:20Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEsta investigación se enfoca en determinar la rugosidad superficial y su correlación con la dimensión fractal a partir de imágenes obtenidas mediante microscopía electrónica de barrido (SEM). Se empleó software libre para procesar imágenes y calcular parámetros de rugosidad y dimensión fractal en 3D. El estudio se centró en micrografías de una incisión en una lámina de aluminio, utilizando SIFT para detectar puntos característicos y el método de box counting para la dimensión fractal. Los resultados demostraron coherencia entre los perfiles de rugosidad medidos y los obtenidos mediante un perfilómetro, además de establecer correlaciones significativas entre la rugosidad promediada y la dimensión fractal. Este enfoque multidimensional proporciona una perspectiva más completa de la rugosidad, superando las limitaciones de las mediciones lineales y contribuyendo al entendimiento detallado de las superficies a nivel microscópico. (Texto tomado de la fuente).spa
dc.description.abstractThis research focuses on determining surface roughness and its correlation with the fractal dimension from images obtained through Scanning Electron Microscopy (SEM). Open-source software was used to process images and calculate roughness parameters and fractal dimension in 3D. The study centered on micrographs of an incision in an aluminum sheet, using SIFT to detect characteristic points and the box counting method for fractal dimension. The results demonstrated coherence between the measured roughness profiles and those obtained by a profilometer, in addition to establishing significant correlations between averaged roughness and fractal dimension. This multidimensional approach provides a more comprehensive perspective on roughness, overcoming the limitations of linear measurements and contributing to a detailed understanding of surfaces at the microscopic level.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaMicroscopía electrónicaspa
dc.format.extentxv, 73 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86160
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesAkhtar, K., Khan, S. A., Khan, S. B. K., & Asiri, A. M. (2018). Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. Springer. https://doi.org/10.1007/978-3-319-92955-2 4spa
dc.relation.referencesAlcantarilla, P. F., Bartoli, A., & Davison, A. J. (2012). KAZE Features. Eur. Conf. on Computer Vision (ECCV)spa
dc.relation.referencesArasan, S., Akbulut, S., & Hasiloglu, A. S. (2011). The relationship between the fractal dimension and shape properties of particles. KSCE Journal of Civil Engineering, 15 (7), 1219-1225. https://doi.org/10.1007/s12205-011-1310-xspa
dc.relation.referencesBarash, D., Israeli, M., & Kimmel, R. (2001). An Accurate Operator Splitting Scheme for Nonlinear Diffusion Filtering. En M. Kerckhove (Ed.), Scale-Space and Morphology in Computer Vision (pp. 281-289, Vol. 2106). Springer. https://doi.org/10.1007/3- 540-47778-0 25spa
dc.relation.referencesBernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G. (1999). The ballpivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5 (4), 349-359spa
dc.relation.referencesBlachowski, A., & Ruebenbauer, K. (2009). Roughness method to estimate fractal dimension. Acta Physica Polonica A, 115 (3), 636-640spa
dc.relation.referencesBland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 327 (8476), 307-310. https://doi.org/ 10.1016/S0140-6736(86)90837-8spa
dc.relation.referencesBonetto, R. D., Ladaga, J. L., & Ponz, E. (2006). Measuring Surface Topography by Scanning Electron Microscopy. II. Analysis of Three Estimators of Surface Roughness in Second Dimension and Third Dimension. Microscopy and Microanalysis, 12, 178-186spa
dc.relation.referencesBotsch, M., Kobbelt, L., Pauly, M., Alliez, P., & L´evy, B. (2010). Polygon Mesh Processing. A K Peters/CRC Pressspa
dc.relation.referencesBradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV library. O’Reilly Media, Incspa
dc.relation.referencesBrown, M., & Lowe, D. G. (2002). Invariant features from interest point groups. British Machine Vision Conferencespa
dc.relation.referencesCalonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010). BRIEF: Binary Robust Independent Elementary Features. European conference on computer vision, 778-792spa
dc.relation.referencesChongpu, Z., Hanaor, D., Proust, G., & Gan, Y. (2017). Stress-Dependent Electrical Contact Resistance at Fractal Rough Surfaces. Journal of Engineering Mechanics, 143 (3), B4015001. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000967spa
dc.relation.referencesDatatab. (2021). Tutorial: Kendall’s Tau. Consultado el 8 de diciembre de 2023, desde https: //datatab.es/tutorial/kendalls-tauspa
dc.relation.referencesDektak 150 Profiler User’s Manual [Available from Veeco Instruments Inc., (www.veeco.com)]. (2007). Veeco Instruments Inc. Plainview, NY.spa
dc.relation.referencesEdelsbrunner, H., Kirkpatrick, D. G., & Seidel, R. (1983). On the shape of a set of points in the plane. IEEE Transactions on Information Theory, 29 (4), 551-559.spa
dc.relation.referencesElcometer. (2022). Rugosímetro MarSurf PS1 Elcometer 7061 [ Último acceso: 2023-04-04]. http ://www.elcometer .com/es/inspeccin - revestimientos/limpieza- de- superficie - perfil - de - la - superficie / rugosidad - de - la - superficie / rugosimetro - marsurf - ps1 - elcometer-7061.htmlspa
dc.relation.referencesEl-Gomati, M. M., Wells, T., Zha, X., Sykes, R., Russo, C. J., Henderson, R., & McMullan, G. (2021). 100 keV vacuum sealed field emission gun for high resolution electron microscopy. Journal of Vacuum Science & Technology B, 39 (6), 062804. https://doi. org/10.1116/6.0001275spa
dc.relation.referencesForum, O. Q. (2013, agosto). Is SURF algorithm used in OPENCV patented? https : / / answers.opencv.org/question/18259/is-surf-algorithm-used-in-opencv-patented/spa
dc.relation.referencesForum, O. Q. (2020, noviembre). Expired US patent on SIFT. https://answers.opencv.org/ question/238447/expired-us-patent-on-sift/spa
dc.relation.referencesGadelmawla, E., Koura, M., Maksoud, T., Elewa, I., & Soliman, H. (2002). Roughness parameters. Journal of Materials Processing Technology, 123 (1), 133-145. https://doi. org/https://doi.org/10.1016/S0924-0136(02)00060-2spa
dc.relation.referencesGoldstein, J. I., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., & Michael, J. R. (2003). Scanning Electron Microscopy and X-Ray Microanalysis. Springer.spa
dc.relation.referencesGontard, L., L´opez-Castro, J., Gonz´alez-Rovira, L., V´azquez-Mart´ınez, J., Varela-Feria, F., Marcos, M., & Calvino, J. (2017). Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry. Ultramicroscopy, 177, 106-114. https:// doi.org/https://doi.org/10.1016/j.ultramic.2017.03.007spa
dc.relation.referencesHanaor, D., Gan, Y., & Einav, I. (2016). Static friction at fractal interfaces. Tribology International, 93, 229-238. https://doi.org/10.1016/j.triboint.2015.09.016spa
dc.relation.referencesHartley, R., & Zisserman, A. (2003). Multiple View Geometry in Computer Vision. Cambridge University Pressspa
dc.relation.referencesHenao-Londoño, J. C., Riaño-Rojas, J. C., Gómez-Mendoza, J. B., & Restrepo-Parra, E. (2018). 3D Stereo Reconstruction of SEM Images. Modern Applied Science, 12 (12), 57. https://doi.org/10.5539/mas.v12n12p57spa
dc.relation.referencesKalvani, P. R., Jahangiri, A. R., Shapouri, S., Sari, A., & Jalili, Y. S. (2019). Multimode AFM analysis of aluminum-doped zinc oxide thin films sputtered under various substrate temperatures for optoelectronic applications. Superlattices and Microstructures, 132, 106173. https://doi.org/10.1016/j.spmi.2019.106173spa
dc.relation.referencesKayaalp, A., Rao, A. R., & Jain, R. (1990). Scanning Electron Microscope-Based Stereo Analysis. Machine Vision and Applications, 3, 231-246.spa
dc.relation.referencesKazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. Proceedings of the fourth Eurographics symposium on Geometry processing, 7.spa
dc.relation.referencesKoga, D., Kusumi, S., Shibata, H., & Watanabe, M. (2021). Applications of Scanning Electron Microscopy Using Secondary and Backscattered Electron Signals in Neural Structure. Frontiers in Neuroanatomy, 15. https://doi.org/10.3389/fnana.2021.647428spa
dc.relation.referencesLi, Y., Shum, H.-Y., Tang, C.-K., & Szeliski, R. (2004). Stereo reconstruction from multiperspective panoramas. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (1), 45-62. https://doi.org/10.1109/TPAMI.2004.1261078spa
dc.relation.referencesLin Chen, F. R., & Heipke, C. (2021). Feature detection and description for image matching: from hand-crafted design to deep learning. Geo-spatial Information Science, 24 (1), 58-74. https://doi.org/10.1080/10095020.2020.1843376spa
dc.relation.referencesLindeberg, T. (1998). Feature detection with automatic scale selection. International Journal of Computer Vision, 30 (2), 77-116spa
dc.relation.referencesLiu, Z., Wang, Y., Chen, J., Li, X., & Zhang, Z. (2019). Anisotropy of surface roughness of metals. Applied Surface Science, 479, 796-805. https://doi.org/10.1016/j.apsusc. 2019.02.163spa
dc.relation.referencesLowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the seventh IEEE international conference on computer vision, 2, 1150-1157.spa
dc.relation.referencesLowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60 (2), 91-110.spa
dc.relation.referencesLuo, W., Schwing, A. G., & Urtasun, R. (2016). Efficient Deep Learning for Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5695-5703.spa
dc.relation.referencesMa, Z., & Liu, S. (2018). A review of 3D reconstruction techniques in civil engineering and their applications. Advanced Engineering Informatics, 37, 163-174. https://doi.org/ https://doi.org/10.1016/j.aei.2018.05.005spa
dc.relation.referencesMajumdar, A., & Bhushan, B. (1990). Fractal Characterization and Simulation of Rough Surfaces. American Society of Mechanical Engineersspa
dc.relation.referencesMandelbrot, B. (1983). The Fractal Geometry of Nature. Henry Holt; Company. https:// books.google.com.co/books?id=0R2LkE3N7-oCspa
dc.relation.referencesMate, C. M. (2008). Tribology on the Small Scale: Mesoscopic Physics and Nanotechnology. Oxford University Pressspa
dc.relation.referencesMilanese, E., Brink, T., Aghababaei, R., & Molinari, J.-F. (2019). Emergence of self-affine surfaces during adhesive wear. Nature Communications, 10 (1), 1116. https://doi. org/10.1038/s41467-019-09127-8spa
dc.relation.referencesMinitab. (2021). Estadísticos y gráficas para t de 1 muestra. Consultado el 8 de diciembre de 2023, desde https://support.minitab.com/es-mx/minitab/21/help-and-howto/ statistics/basic-statistics/how-to/1-sample-t/interpret-the-results/all-statisticsand- graphs/spa
dc.relation.referencesMoeslund, T. B. (2012). BLOB Analysis. En Introduction to Video and Image Processing: Building Real Systems and Applications (pp. 103-115). Springer London. https://doi. org/10.1007/978-1-4471-2503-7 7spa
dc.relation.referencesMontakhabi, F., Poursaeidi, E., Rahimi, J., & Sigaroodi, M. R. J. (2022). Investigation of the effect of BC layer surface roughness and TC layer porosity on stress values in plasma sprayed coatings based on SEM images. Materials Today Communications, 33, 104737. https://doi.org/https://doi.org/10.1016/j.mtcomm.2022.104737spa
dc.relation.referencesMoons, T., Van Gool, L., & Vergauwen, M. (2009). 3D Reconstruction from Multiple Images: Part 1 - Principles. Foundations and Trends in Computer Graphics and Vision, 4, 287-404spa
dc.relation.referencesNayak, S. R., Mishra, J., & Palai, G. (2019). Analysing roughness of surface through fractal dimension: A review. Image and Vision Computing, 89, 21-34. https://doi.org/https: //doi.org/10.1016/j.imavis.2019.06.015spa
dc.relation.referencesOdling, N. E. (1994). Natural fracture profiles, fractal dimension and joint roughness coefficients. Rock Mechanics and Rock Engineering, 27 (3), 135-153. https://doi.org/10. 1007/BF01020307spa
dc.relation.referencesOho, E. (2002). Digital image-processing technology useful for scanning electron microscopy and its practical applications. En P. W. Hawkes (Ed.), Electron Microscopy and Holography II (pp. 251-IV, Vol. 122). Elsevier. https://doi.org/https://doi.org/10. 1016/S1076-5670(02)80054-4spa
dc.relation.referencesOliveira, S. M. (2005). Analysis of Surface Roughness and Models of Mechanical Contacts [Tesis de grado]. Universita di Pisaspa
dc.relation.referencesOpen3D. (2023). Surface Reconstruction. http://www.open3d.org/docs/release/tutorial/ geometry/surface reconstruction.htmlspa
dc.relation.referencesOpenCV. (2021). Understanding Features [Consultado el 15 de Octubre de 2022]. https : //docs.opencv.org/3.4/df/d54/tutorial py features meaning.htmlspa
dc.relation.referencesParker, K. A., Ribet, S., Kimmel, B. R., dos Reis, R., Mrksich, M., & Dravid, V. P. (2022). Scanning Transmission Electron Microscopy in a Scanning Electron Microscope for the High-Throughput Imaging of Biological Assemblies. Biomacromolecules, 23 (8), 3235-3242. https://doi.org/https://doi.org/10.1021/acs.biomac.2c00323spa
dc.relation.referencesParsons, D. F., Walsh, R. B., & Craig, V. S. J. (2014). Surface forces: Surface roughness in theory and experiment. Journal of Chemical Physics, 140 (16), 164701. https://doi. org/10.1063/1.4871412spa
dc.relation.referencesPerona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (7), 629-639.spa
dc.relation.referencesPfeifer, P. (1988). Fractals in Surface Science: Scattering and Thermodynamics of Adsorbed Films. En R. Vanselow & R. Howe (Eds.), Chemistry and Physics of Solid Surfaces VII (pp. 283-305, Vol. 10). Springer Berlin Heidelberg. https://doi.org/10.1007/978- 3-642-73902-6 10spa
dc.relation.referencesQuan, L. (2010). Image-based modeling. Springer Science & Business Media.spa
dc.relation.referencesQuestionPro. (2020). Coeficiente de correlación de Spearman: ¿Qué es y cómo se calcula? Consultado el 8 de diciembre de 2023, desde https://www.questionpro.com/blog/es/ coeficiente-de-correlacion-de-spearman/spa
dc.relation.referencesReimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. Springer.spa
dc.relation.referencesRivera, M. H., & Melo, M. E. R. (2001). La rugosidad de las superficies: Topometría. Ingenierías, 4, 27-33.spa
dc.relation.referencesRosin, P. L. (1999). Measuring corner properties. Computer Vision and Image Understanding, 73 (2), 291-307.spa
dc.relation.referencesRosten, E., & Drummond, T. (2006). Machine learning for high-speed corner detection. European conference on computer vision, 430-443.spa
dc.relation.referencesRublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: an efficient alternative to SIFT or SURF. in Proc. of the IEEE International Conf. on Computer Vision (ICCV).spa
dc.relation.referencesSarode, V. (2022). What Are Point Clouds? https://medium.com/analytics-vidhya/whatare- point-clouds-3655d565e142spa
dc.relation.referencesSato, H., O-Hori, M., & Nakayama, K. (1982). Surface Roughness Measurement by Scanning Electron Microscope. CIRP Annals, 31 (1), 457-462. https://doi.org/https://doi.org/ 10.1016/S0007-8506(07)63347-2spa
dc.relation.referencesShet, V., & Picard, R. W. (2005). Python for scientific computing. Computing in Science & Engineering, 7 (3), 10-20spa
dc.relation.referencesSun, T., Li, Y., Liu, Y., Deng, B., Liao, C., & Zhu, Y. (2023). Advanced scanning electron microscopy and microanalysis: Applications to nanomaterials. En Y. Yin, Y. Lu & Y. Xia (Eds.), Encyclopedia of Nanomaterials (First Edition) (First Edition, pp. 183-209). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822425-0.00104-4spa
dc.relation.referencesTeam, O. (2023). Feature Detection and Description. https://docs.opencv.org/4.x/d5/d51/ group features2d main.htmlspa
dc.relation.referencesTESCAN a.s. (2014). Scanning Electron Microscope: Instructions for Use. TESCAN. https: //www.csuchico.edu/sem/ assets/documents/vega-manual-2014.pdfspa
dc.relation.referencesThäle, C., & Freiberg, U. (2008). A Markov Chain Algorithm for Determining Crossing Times Through Nested Graphs. Discrete Mathematics & Theoretical Computer Science.spa
dc.relation.referencesTöberg, S., & Reithmeier, E. (2020). Quantitative 3D Reconstruction from Scanning Electron Microscope Images Based on Affine Camera Models. Sensors, 20 (12), 3598. https: //doi.org/10.3390/s20123598spa
dc.relation.referencesVanderbilt University. (s.f.). The Hausdorff Dimensionspa
dc.relation.referencesViper, Q. (2022). Making Fractal Shapes with Pythonspa
dc.relation.referencesWang, J., Wu, Y., Cao, Y., et al. (2020). Influence of surface roughness on contact angle hysteresis and spreading work. Colloid and Polymer Science, 298, 1107-1112. https: //doi.org/10.1007/s00396-020-04680-xspa
dc.relation.referencesWang, Y., Liu, R., Ji, H., Li, S., Yu, L., & Feng, X. (2022). Correlating mechanical properties to fractal dimensions of shales under uniaxial compression tests. Environmental Earth Sciences, 82 (1), 2. https://doi.org/10.1007/s12665-022-10642-zspa
dc.relation.referencesWeickert, J., Ishikawa, S., & Imiya, A. (1999). Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision, 10.spa
dc.relation.referencesWeisstein, E. W. (2023). Menger Spongespa
dc.relation.referencesWhitehouse, D. J. (2010). Surfaces and their Measurement. Butterworth-Heinemann. https: //www.elsevier.com/books/surfaces-and- their-measurement/whitehouse/978- 1- 4377-3465-6spa
dc.relation.referencesZhai, C., Hanaor, D., & Gan, Y. (2017). Contact stiffness of multiscale surfaces by truncation analysis. International Journal of Mechanical Sciences, 131. https://doi.org/10.1016/ j.ijmecsci.2017.07.018spa
dc.relation.referencesZhou, Q.-Y., Park, J., & Koltun, V. (2018). Open3D: A Modern Library for 3D Data Processing. arXiv:1801.09847.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.proposalRugosidadspa
dc.subject.proposalMicroscopio Electrónico de Barridospa
dc.subject.proposalReconstrucción en 3Dspa
dc.subject.proposalNubes de puntosspa
dc.subject.proposalRoughnesseng
dc.subject.proposalScanning Electron Microscopyeng
dc.subject.proposal3D reconstructioneng
dc.subject.proposalPoint cloudseng
dc.subject.proposalFractal dimensioneng
dc.subject.proposalAlgoritmos de detección de puntos característicosspa
dc.subject.proposalDimensión fractalspa
dc.subject.proposalCharacteristic point detection algorithmseng
dc.subject.wikidataRugosidad (electrónica)spa
dc.subject.wikidatamicroscopio electrónicospa
dc.subject.wikidataelectron microscopeeng
dc.subject.wikidatadimensión fractalspa
dc.subject.wikidatafractal dimensioneng
dc.subject.wikidataalgoritmospa
dc.subject.wikidataalgorithmeng
dc.titleObtención de la rugosidad a partir de imágenes obtenidas en un Microscopio Electrónico de Barridospa
dc.title.translatedDetermination of roughness from images obtained with a Scanning Electron Microscopeeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79925312.2024.pdf
Tamaño:
33.94 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: