Estructuras funiculares de bambú (Guadua Angustifolia Kunth) : Búsqueda de forma y análisis estático
dc.contributor.advisor | Guerra Riaño, Andrés Felipe | spa |
dc.contributor.advisor | Lozano Peña, Jorge Enrique | spa |
dc.contributor.author | Escobar Buitrago, Natalia | spa |
dc.contributor.researchgroup | Madera y Guadua | spa |
dc.date.accessioned | 2024-01-26T14:11:21Z | |
dc.date.available | 2024-01-26T14:11:21Z | |
dc.date.issued | 2023-09 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Dando respuesta al impacto nocivo de la industria de la construcción en el ambiente mediante prácticas sostenibles, esta investigación hace frente a esta problemática desde dos pilares principales: Primero, la eficiencia estructural mediante la optimización del material, para lo cual el diseño se realiza con métodos de búsqueda de formas funiculares altamente eficientes para cubrir grandes luces debido a la ausencia de momentos flectores. En segunda medida, el uso de bambú (Guadua Angustifolia Kunth), un material renovable abundante en Latinoamérica con características físico-mecánicas que lo hacen altamente resistente ante cargas axiales. Este estudio presenta el método de diseño para estructuras de Guadua Angustifolia Kunth discretizadas en elementos rectos sometidos netamente a esfuerzos axiales obteniendo formas óptimas para resistir cargas estáticas las cuales se consideran dominantes. Así mismo, se explora el uso del bambú en estado rollizo y en latillas haciendo uso de diferentes métodos de búsqueda de forma. Además de modelos informáticos y de diseño paramétrico se realizan ensayos mecánicos de latillas de Guadua Angustifolia Kunth ante esfuerzos de tensión y compresión. Como resultado, se finaliza el proceso de búsqueda de formas con el diseño estructural bajo la premisa de no sobrepasar los esfuerzos admisibles del material. Por último, se presentan ejemplos de diseño de estructuras en estado rollizo en compresión, estructuras de latillas en tensión y estructuras mixtas demostrando la fiabilidad del método de diseño. (Texto tomado de la fuente). | spa |
dc.description.abstract | Responding to the construction industry impact on the environment through sustainable practices, this research faces the problem from two main pillars: First, structural efficiency through material optimization, for which the design is carried out using form finding methods for structures looking for funicular structures, these are highly efficient to cover large spans due to the absence of bending moments. Secondly, the use of an abundant renewable material in Latin America called bamboo (Guadua Angustifolia Kunth), which has physical-mechanical characteristics that make it highly resistant to axial loads. This study presents the design method for discretized Guadua Angustifolia Kunth structures in straight elements with only axial forces, the goal is to get an optimal structural shape able to resist static loads which are considered dominant. Likewise, the use of bamboo in its round state and in lattices is explored using different form finding methods. In addition to computational models and parametric design, mechanical tests of Guadua Angustifolia Kunth lattices are carried out under tension and compression stresses. As a result, the form finding process is completed with structural design under the premise of not exceeding the admissible stresses of the material. Finally, examples of the design of structures in round state in pure compression, lattice structures in pure tension and mixed structures are presented demonstrating the robustness of the proposed method. | eng |
dc.description.curriculararea | Arquitectura y Urbanismo.Sede Bogotá | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Construcción | spa |
dc.description.methods | Mixta: Cualitativa y Cuantitativa | spa |
dc.description.researcharea | Materiales para construcción | spa |
dc.format.extent | xx, 138 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85450 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Artes | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Artes - Maestría en Construcción | spa |
dc.relation.references | Aboul-Nasr, G., & Mourad, S. A. (2015). An extended force density method for form finding of constrained cable nets. Case Studies in Structural Engineering, 3, 19-32. https://doi.org/https://doi.org/10.1016/j.csse.2015.02.001 | spa |
dc.relation.references | Acevedo Agudelo, H., Vásquez Hernández, A., & Ramírez Cardona, D. A. (2012). Sostenibilidad: Actualidad y necesidad en el sector de la construcción en Colombia. Gestión y Ambiente, 15(1), 105-117. https://www.redalyc.org/articulo.oa?id=169424101009 | spa |
dc.relation.references | Acosta, D. (2009). Arquitectura y construcción sostenibles: CONCEPTOS, PROBLEMAS Y ESTRATEGIAS. Dearq(4), 14-23. https://doi.org/10.18389/dearq4.2009.02 | spa |
dc.relation.references | Adriaenssens, S., Block, P., Veenendaal, D., & Williams, C. (2014). Shell structures for architecture: form finding and optimization. Routledge. | spa |
dc.relation.references | Allen, E. (1995). Cómo funciona un edificio: principios elementales. Gustavo Gili. https://books.google.com.co/books?id=FkOtQgAACAAJ | spa |
dc.relation.references | Bel Hadj Ali, N., Rhode-Barbarigos, L., Pascual Albi, A. A., & Smith, I. F. C. (2010). Design optimization and dynamic analysis of a tensegrity-based footbridge. Engineering Structures, 32(11), 3650-3659. https://doi.org/https://doi.org/10.1016/j.engstruct.2010.08.009 | spa |
dc.relation.references | Bellés, P., Ortega, N., Rosales, M., & Andrés, O. (2009). Shell form-finding: Physical and numerical design tools. Engineering Structures, 31(11), 2656-2666. https://doi.org/https://doi.org/10.1016/j.engstruct.2009.06.013 | spa |
dc.relation.references | Bletzinger, K.-U., Wüchner, R., Daoud, F., & Camprubí, N. (2005). Computational methods for form finding and optimization of shells and membranes. Computer Methods in Applied Mechanics and Engineering, 194(30), 3438-3452. https://doi.org/https://doi.org/10.1016/j.cma.2004.12.026 | spa |
dc.relation.references | Branam, N. J., Arcaro, V., & Adeli, H. (2019). A unified approach for analysis of cable and tensegrity structures using memoryless quasí-newton minimization of total strain energy. Engineering Structures, 179, 332-340. https://doi.org/https://doi.org/10.1016/j.engstruct.2018.11.004 | spa |
dc.relation.references | Buckminster Fuller, R. J. P., & Annual, A. N. (1961). Tensegrity. 4, 112-127. | spa |
dc.relation.references | Carvajal, W., Ortegón, W., & Romero, C. J. B. T. d. g. U. N. d. C., Bogotá, Colombia. (1981). Elementos estructurales en bambú. | spa |
dc.relation.references | Chilton, J., & Isler, H. (2000). Heinz isler. Thomas Telford. | spa |
dc.relation.references | CONPES 3919. (2018). Politíca Nacional de Edificaciones Sostenibles. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3919.pdf | spa |
dc.relation.references | CONPES 3934. (2018). Politíca de Crecimiento Verde. https://www.dnp.gov.co/Crecimiento-Verde/Documents/Pol%C3%ADtica%20CONPES%203934/CONPES%203934%20-%20Pol%C3%ADtica%20de%20Crecimiento%20Verde.pdf | spa |
dc.relation.references | Elnagar, O., & Sharma, B. (2017). Gridshell structures in laminated bamboo. | spa |
dc.relation.references | Escallón Gartner, C., & Villate Matiz, C. (2014). La necesidad de un Código de Construcción Sostenible para Bogotá:¿ Cómo construir una propuesta? | spa |
dc.relation.references | Estrada Mejia, M. (2016). Modelo numérico micromecánico del proceso de fractura de estructuras fabricadas con mambú Guadua angustifolia. https://repositorio.unal.edu.co/handle/unal/58711 | spa |
dc.relation.references | Feng, X. (2017). The óptimal initial self-stress design for tensegrity grid structures. Computers & Structures, 193, 21-30. https://doi.org/https://doi.org/10.1016/j.compstruc.2017.07.029 | spa |
dc.relation.references | Fernandes, J., Kirkegaard, P., & Branco, J. (2016). TECTONIC DESIGN OF ELASTIC TIMBER GRIDSHELLS. | spa |
dc.relation.references | Fresl, K., Gidak, P., & Vrančić, R. (2013). Generalized minimal nets in form finding of prestressed cable nets. Gradevinar, 65, 707-720. https://doi.org/10.14256/JCE.902.2013 | spa |
dc.relation.references | Gere, J. M., & Goodno, B. J. (2009). Mecánica de Materiales (Septima ed.). | spa |
dc.relation.references | Ghavami, K. (2005). Bamboo as reinforcement in structural concrete elements. Cement and Concrete Composites, 27(6), 637-649. https://doi.org/https://doi.org/10.1016/j.cemconcomp.2004.06.002 | spa |
dc.relation.references | Green, H., & Lauri, D. (2017). Form Finding of Grid Shells-a Parametric Approach using Dynamic Relaxation. In. | spa |
dc.relation.references | Happold, E. (2000). Widespan roof structures. Thomas Telford. | spa |
dc.relation.references | Heng, T., Zhao, L., Liu, K., Yi, J., Duan, X., & Sun, Z. (2021, 3-7 Dec. 2021). An Improved Form-Finding Method for Calculating Force Density with Group Theory. 2021 11th International Conference on Intelligent Control and Information Processing (ICICIP), | spa |
dc.relation.references | Hofstra, N., & Huisingh, D. (2014). Eco-innovations characterized: a taxonomic classification of relationships between humans and nature. Journal of Cleaner Production, 66, 459-468. | spa |
dc.relation.references | ICONTEC. (2016). NTC 6112 de 2016. Etiquetas ambientales tipo I, Sello Abiental Colombiano (SAC). Criterios Ambientales para diseño y construccion de edificaciones sostenibles para uso diferente a vivienda. . https://tienda.icontec.org/gp-etiquetas-ambientales-tipo-i-sello-ambiental-colombiano-sac-criterios-ambientales-para-diseno-y-construccion-de-edificaciones-sostenibles-para-uso-diferente-a-vivienda-ntc6112-2016.html | spa |
dc.relation.references | Imanishi, N., Hinoki, S., Muraoka, M., Tateyama, R., ABE, Y., Kensuke, H., & Ikeda, Y. (2017). Bamboo concrete shells. 22nd International Conference on Computer-Aided Architectural Design Research in Asía: Protocols, Flows and Glitches, CAADRIA 2017, | spa |
dc.relation.references | INBAR. (2021). El bambú y la economía circular. | spa |
dc.relation.references | Isler, H. (1993). Generating shell shapes by physical experiments. International Association for Shell and Spatial Structures, 34(1), 53-63. | spa |
dc.relation.references | Juan, S. H., & Mirats Tur, J. M. (2008). Tensegrity frameworks: Static analysis review. Mechanism and Machine Theory, 43(7), 859-881. https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2007.06.010 | spa |
dc.relation.references | Kilian, A., & Ochsendorf, J. (2005). Particle-spring systems for structural form finding. Journal of the international association for shell, 46(2), 77-84. | spa |
dc.relation.references | Koohestani, K. (2014). Nonlinear force density method for the form-finding of minimal surface membrane structures. Communications in Nonlinear Science and Numerical Simulation, 19(6), 2071-2087. https://doi.org/https://doi.org/10.1016/j.cnsns.2013.10.023 | spa |
dc.relation.references | Langdon, D. (2015). Clásicos de Arquitectura: Pabellón Alemán, Expo '67 / Frei Otto y Rolf Gutbrod. Retrieved 24 Marzo 2022 from https://www.archdaily.co/co/768540/clasícos-de-arquitectura-pabellon-aleman-expo-67-frei-otto-rolf-gutbrod> ISSN 0719-8914 | spa |
dc.relation.references | Lewis, W. J. (2003). Tension structures: form and behaviour. Thomas Telford. | spa |
dc.relation.references | Ley 2206 de 2022. Por medio del cual se incentiva el uso productivo de la guadua y el bambú y su sostenibilidad ambiental en el territorio Nacional. D.O. No. 52037, (2022). | spa |
dc.relation.references | Li, Q., Su, Y., Wu, Y., Borgart, A., & Rots, J. (2017). Form-finding of shell structures generated from physical models. International Journal of Space Structures, 32. https://doi.org/10.1177/0266351117696577 | spa |
dc.relation.references | Lienhard, J., Alpermann, H., Gengnagel, C., & Knippers, J. (2013). Active bending, a review on structures where bending is used as a self-formation process. International Journal of Space Structures, 28(3-4), 187-196. | spa |
dc.relation.references | Lienhard, J., & Gengnagel, C. (2018). Recent developments in bending-active structures. Proceedings of IASS Annual Symposia, | spa |
dc.relation.references | Lienhard, J., & Knippers, J. (2014). Bending-active structures. Institut für Tragkonstruktionen und Konstruktives Entwerfen der Universität Stuttgart, Forschungsbericht, 36. | spa |
dc.relation.references | Liew, A. (2020). Constrained Force Density Method optimisation for compression-only shell structures. Structures, 28, 1845-1856. https://doi.org/https://doi.org/10.1016/j.istruc.2020.09.078 | spa |
dc.relation.references | Lozano Peña, J. E. (2020). Determinación de los esfuerzos últimos de la Guadua Angustifolia Kunth en la región andina de Colombia correlacionada con variables de clima. [Doctoral, Universitat Politècnica de València.]. Velencia, España. https://riunet.upv.es/handle/10251/165379 | spa |
dc.relation.references | Luna, P., Takeuchi, C., Granados, G., Lamus Báez, F., & Lozano, J. (2011). Metodología de diseño de estructuras en guadua angustifolia como material estructural por el método de esfuerzos admisibles. 6. | spa |
dc.relation.references | Malek, S. R. (2012). The effect of geometry and topology on the mechanics of grid shells Massachusetts Institute of Technology]. | spa |
dc.relation.references | Michiels, T., Lu, L., Archer, R., Adriaenssens, S., & Tresserra, G. (2017). Design of three hypar roofs made of Guadua bamboo [Article]. Journal of the International Association for Shell and Spatial Structures, 58(1), 95-104. https://doi.org/10.20898/j.iass.2017.191.844 | spa |
dc.relation.references | Ministerio de Vivienda Ciudad y Territorio. (2015). Resolución número 0549 de 2015. Bogotá Retrieved from https://www.minvivienda.gov.co/node/48921 | spa |
dc.relation.references | Naciones Unidas. (2015). Objetivos de Desarrollo del Milenio Informe 2015. New York: ONU Retrieved from https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/ | spa |
dc.relation.references | Nie, R., He, B., Hodges, D. H., & Ma, X. (2019). Form finding and design optimization of cable network structures with flexible frames. Computers & Structures, 220, 81-91. https://doi.org/https://doi.org/10.1016/j.compstruc.2019.05.004 | spa |
dc.relation.references | O’Sullivan, D., & Dooley, L. (2009). Applying innovation. https://doi.org/10.4135/9781452274898 | spa |
dc.relation.references | Otto, F., Nerdinger, W., Meissner, I., Möller, E., & Grdanjski, M. (2008). Frei Otto. Complete Works: Lightweight Construction - Natural Design. | spa |
dc.relation.references | Schek, H. J. (1974). The force density method for form finding and computation of general networks. Computer Methods in Applied Mechanics and Engineering, 3(1), 115-134. https://doi.org/10.1016/0045-7825(74)90045-0 | spa |
dc.relation.references | Schlaich, J., & Schlaich, M. (2000). Lightweight structures. Widespan roof structures, 177-188. | spa |
dc.relation.references | Seixas, M., Bina, J., Stoffel, P., Ripper, J. L., Moreira, L. E., & Ghavami, K. (2017). Active bending and tensile pantographic bamboo hybrid amphitheater structure [Review]. Journal of the International Association for Shell and Spatial Structures, 58(3), 239-252. https://doi.org/10.20898/j.iass.2017.193.872 | spa |
dc.relation.references | Sernizon Costa, R., Cesar Campos Lavall, A., Gomes Lanna da Silva, R., Porcino dos Santos, A., & Francisco Viana, H. (2022). Cable structures: An exact geometric analysis using catenary curve and considering the material nonlinearity and temperature effect. Engineering Structures, 253, 113738. https://doi.org/https://doi.org/10.1016/j.engstruct.2021.113738 | spa |
dc.relation.references | Sharma, B., Konstantatou, M., Reynolds, T., & Ramage, M. (2015). Engineered bamboo for shell structures. Proceedings of IASS Annual Symposia, | spa |
dc.relation.references | Takeuchi Tam, C. P. (2004). Comportamiento estructural de la guadua angustifolia. Uniones en guadua. Revista Ingenieria e Investigación, 24, 3-7. | spa |
dc.relation.references | Takeuchi Tam, C. P. (2014). CARACTERIZACIÓN MECÁNICA DEL BAMBÚ GUADUA LAMINADO PARA USO ESTRUCTURAL UNIVERSIDAD NACIONAL DE COLOMBIA]. BOGOTA, COLOMBIA. | spa |
dc.relation.references | Tamplin, R., & Iuorio, O. (2018). Challenges in designing and fabrication of a thin concrete shell. | spa |
dc.relation.references | Tang, Y., & Li, T. (2017). Equivalent-force density method as a shape-finding tool for cable-membrane structures. Engineering Structures, 151, 11-19. https://doi.org/https://doi.org/10.1016/j.engstruct.2017.08.010 | spa |
dc.relation.references | Vaezzadeh, A., Ahmadizadeh, M., & Dolatshahi, K. M. (2021). Three-dimensional nonlinear dynamic analysis of slack cable structures using node Relaxation method. Structures, 29, 586-599. https://doi.org/https://doi.org/10.1016/j.istruc.2020.11.026 | spa |
dc.relation.references | Veenendaal, D., & Block, P. (2012). An overview and comparison of structural form finding methods for general networks. International Journal of Solids and Structures, 49(26), 3741-3753. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2012.08.008 | spa |
dc.relation.references | Wahlström, M., Laine-Ylijoki, J., Järnström, H., Kaartinen, T., Erlandsson, M., Palm Cousins, A., Wik, O., Suer, P., Oberender, A., & Hjelmar, O. (2013). Environmentally Sustainable Construction Products and Materials: Assessment of Release and Emissions. Nordic Innovation. | spa |
dc.relation.references | Wang, T.-H., Espinosa Trujillo, O., Chang, W.-S., & Deng, B. J. I. J. o. A. C. (2017). Encoding bamboo’s nature for freeform structure design. 15(2), 169-182. | spa |
dc.relation.references | Zhang, J. Y., & Ohsaki, M. (2006). Adaptive force density method for form-finding problem of tensegrity structures. International Journal of Solids and Structures, 43(18), 5658-5673. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2005.10.011 | spa |
dc.relation.references | Zhang, L., Maurin, B., & Motro, R. (2006). Form-finding of nonregular tensegrity systems. Journal of Structural Engineering, 132(9), 1435-1440. | spa |
dc.relation.references | Zhang, P., Zhou, J., & Chen, J. (2021). Form-finding of complex tensegrity structures using constrained optimization method. Composite Structures, 268, 113971. https://doi.org/https://doi.org/10.1016/j.compstruct.2021.113971 | spa |
dc.relation.references | Zhang, P., Zhou, J., & Chen, J. (2021). Form-finding of complex tensegrity structures using constrained optimization method. Composite Structures, 268, 113971. https://doi.org/https://doi.org/10.1016/j.compstruct.2021.113971 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | spa |
dc.subject.ddc | 690 - Construcción de edificios::691 - Materiales de construcción | spa |
dc.subject.ddc | 690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos | spa |
dc.subject.proposal | Búsqueda de forma | spa |
dc.subject.proposal | Guadua Angustifolia Kunth | spa |
dc.subject.proposal | Form finding | eng |
dc.subject.proposal | Estructuras funiculares | spa |
dc.subject.proposal | Bambú | spa |
dc.subject.proposal | Método de la densidad de fuerza | spa |
dc.subject.proposal | Sstema de resorte de partículas | spa |
dc.subject.proposal | Funicular structures | eng |
dc.subject.proposal | Bamboo | eng |
dc.subject.proposal | Force density method | eng |
dc.subject.proposal | Particle spring system | eng |
dc.subject.proposal | Particle spring system | eng |
dc.subject.unesco | Materiales de construcción | spa |
dc.subject.unesco | Building materials | eng |
dc.subject.unesco | Bambú | spa |
dc.subject.unesco | Bamboo | eng |
dc.subject.unesco | Ensayo de materiales | spa |
dc.subject.unesco | Materials testing | eng |
dc.title | Estructuras funiculares de bambú (Guadua Angustifolia Kunth) : Búsqueda de forma y análisis estático | spa |
dc.title.translated | Bamboo funicular structures (Guadua Angustifolia Kunth): Form Finding and static analysis | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- VERSION FINAL TESIS NATALIA ESCOBAR.pdf
- Tamaño:
- 11.89 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Construcción
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: