Estructuras funiculares de bambú (Guadua Angustifolia Kunth) : Búsqueda de forma y análisis estático

dc.contributor.advisorGuerra Riaño, Andrés Felipespa
dc.contributor.advisorLozano Peña, Jorge Enriquespa
dc.contributor.authorEscobar Buitrago, Nataliaspa
dc.contributor.researchgroupMadera y Guaduaspa
dc.date.accessioned2024-01-26T14:11:21Z
dc.date.available2024-01-26T14:11:21Z
dc.date.issued2023-09
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractDando respuesta al impacto nocivo de la industria de la construcción en el ambiente mediante prácticas sostenibles, esta investigación hace frente a esta problemática desde dos pilares principales: Primero, la eficiencia estructural mediante la optimización del material, para lo cual el diseño se realiza con métodos de búsqueda de formas funiculares altamente eficientes para cubrir grandes luces debido a la ausencia de momentos flectores. En segunda medida, el uso de bambú (Guadua Angustifolia Kunth), un material renovable abundante en Latinoamérica con características físico-mecánicas que lo hacen altamente resistente ante cargas axiales. Este estudio presenta el método de diseño para estructuras de Guadua Angustifolia Kunth discretizadas en elementos rectos sometidos netamente a esfuerzos axiales obteniendo formas óptimas para resistir cargas estáticas las cuales se consideran dominantes. Así mismo, se explora el uso del bambú en estado rollizo y en latillas haciendo uso de diferentes métodos de búsqueda de forma. Además de modelos informáticos y de diseño paramétrico se realizan ensayos mecánicos de latillas de Guadua Angustifolia Kunth ante esfuerzos de tensión y compresión. Como resultado, se finaliza el proceso de búsqueda de formas con el diseño estructural bajo la premisa de no sobrepasar los esfuerzos admisibles del material. Por último, se presentan ejemplos de diseño de estructuras en estado rollizo en compresión, estructuras de latillas en tensión y estructuras mixtas demostrando la fiabilidad del método de diseño. (Texto tomado de la fuente).spa
dc.description.abstractResponding to the construction industry impact on the environment through sustainable practices, this research faces the problem from two main pillars: First, structural efficiency through material optimization, for which the design is carried out using form finding methods for structures looking for funicular structures, these are highly efficient to cover large spans due to the absence of bending moments. Secondly, the use of an abundant renewable material in Latin America called bamboo (Guadua Angustifolia Kunth), which has physical-mechanical characteristics that make it highly resistant to axial loads. This study presents the design method for discretized Guadua Angustifolia Kunth structures in straight elements with only axial forces, the goal is to get an optimal structural shape able to resist static loads which are considered dominant. Likewise, the use of bamboo in its round state and in lattices is explored using different form finding methods. In addition to computational models and parametric design, mechanical tests of Guadua Angustifolia Kunth lattices are carried out under tension and compression stresses. As a result, the form finding process is completed with structural design under the premise of not exceeding the admissible stresses of the material. Finally, examples of the design of structures in round state in pure compression, lattice structures in pure tension and mixed structures are presented demonstrating the robustness of the proposed method.eng
dc.description.curricularareaArquitectura y Urbanismo.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Construcciónspa
dc.description.methodsMixta: Cualitativa y Cuantitativaspa
dc.description.researchareaMateriales para construcciónspa
dc.format.extentxx, 138 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85450
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Artesspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Artes - Maestría en Construcciónspa
dc.relation.referencesAboul-Nasr, G., & Mourad, S. A. (2015). An extended force density method for form finding of constrained cable nets. Case Studies in Structural Engineering, 3, 19-32. https://doi.org/https://doi.org/10.1016/j.csse.2015.02.001spa
dc.relation.referencesAcevedo Agudelo, H., Vásquez Hernández, A., & Ramírez Cardona, D. A. (2012). Sostenibilidad: Actualidad y necesidad en el sector de la construcción en Colombia. Gestión y Ambiente, 15(1), 105-117. https://www.redalyc.org/articulo.oa?id=169424101009spa
dc.relation.referencesAcosta, D. (2009). Arquitectura y construcción sostenibles: CONCEPTOS, PROBLEMAS Y ESTRATEGIAS. Dearq(4), 14-23. https://doi.org/10.18389/dearq4.2009.02spa
dc.relation.referencesAdriaenssens, S., Block, P., Veenendaal, D., & Williams, C. (2014). Shell structures for architecture: form finding and optimization. Routledge.spa
dc.relation.referencesAllen, E. (1995). Cómo funciona un edificio: principios elementales. Gustavo Gili. https://books.google.com.co/books?id=FkOtQgAACAAJspa
dc.relation.referencesBel Hadj Ali, N., Rhode-Barbarigos, L., Pascual Albi, A. A., & Smith, I. F. C. (2010). Design optimization and dynamic analysis of a tensegrity-based footbridge. Engineering Structures, 32(11), 3650-3659. https://doi.org/https://doi.org/10.1016/j.engstruct.2010.08.009spa
dc.relation.referencesBellés, P., Ortega, N., Rosales, M., & Andrés, O. (2009). Shell form-finding: Physical and numerical design tools. Engineering Structures, 31(11), 2656-2666. https://doi.org/https://doi.org/10.1016/j.engstruct.2009.06.013spa
dc.relation.referencesBletzinger, K.-U., Wüchner, R., Daoud, F., & Camprubí, N. (2005). Computational methods for form finding and optimization of shells and membranes. Computer Methods in Applied Mechanics and Engineering, 194(30), 3438-3452. https://doi.org/https://doi.org/10.1016/j.cma.2004.12.026spa
dc.relation.referencesBranam, N. J., Arcaro, V., & Adeli, H. (2019). A unified approach for analysis of cable and tensegrity structures using memoryless quasí-newton minimization of total strain energy. Engineering Structures, 179, 332-340. https://doi.org/https://doi.org/10.1016/j.engstruct.2018.11.004spa
dc.relation.referencesBuckminster Fuller, R. J. P., & Annual, A. N. (1961). Tensegrity. 4, 112-127.spa
dc.relation.referencesCarvajal, W., Ortegón, W., & Romero, C. J. B. T. d. g. U. N. d. C., Bogotá, Colombia. (1981). Elementos estructurales en bambú.spa
dc.relation.referencesChilton, J., & Isler, H. (2000). Heinz isler. Thomas Telford.spa
dc.relation.referencesCONPES 3919. (2018). Politíca Nacional de Edificaciones Sostenibles. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3919.pdfspa
dc.relation.referencesCONPES 3934. (2018). Politíca de Crecimiento Verde. https://www.dnp.gov.co/Crecimiento-Verde/Documents/Pol%C3%ADtica%20CONPES%203934/CONPES%203934%20-%20Pol%C3%ADtica%20de%20Crecimiento%20Verde.pdfspa
dc.relation.referencesElnagar, O., & Sharma, B. (2017). Gridshell structures in laminated bamboo.spa
dc.relation.referencesEscallón Gartner, C., & Villate Matiz, C. (2014). La necesidad de un Código de Construcción Sostenible para Bogotá:¿ Cómo construir una propuesta?spa
dc.relation.referencesEstrada Mejia, M. (2016). Modelo numérico micromecánico del proceso de fractura de estructuras fabricadas con mambú Guadua angustifolia. https://repositorio.unal.edu.co/handle/unal/58711spa
dc.relation.referencesFeng, X. (2017). The óptimal initial self-stress design for tensegrity grid structures. Computers & Structures, 193, 21-30. https://doi.org/https://doi.org/10.1016/j.compstruc.2017.07.029spa
dc.relation.referencesFernandes, J., Kirkegaard, P., & Branco, J. (2016). TECTONIC DESIGN OF ELASTIC TIMBER GRIDSHELLS.spa
dc.relation.referencesFresl, K., Gidak, P., & Vrančić, R. (2013). Generalized minimal nets in form finding of prestressed cable nets. Gradevinar, 65, 707-720. https://doi.org/10.14256/JCE.902.2013spa
dc.relation.referencesGere, J. M., & Goodno, B. J. (2009). Mecánica de Materiales (Septima ed.).spa
dc.relation.referencesGhavami, K. (2005). Bamboo as reinforcement in structural concrete elements. Cement and Concrete Composites, 27(6), 637-649. https://doi.org/https://doi.org/10.1016/j.cemconcomp.2004.06.002spa
dc.relation.referencesGreen, H., & Lauri, D. (2017). Form Finding of Grid Shells-a Parametric Approach using Dynamic Relaxation. In.spa
dc.relation.referencesHappold, E. (2000). Widespan roof structures. Thomas Telford.spa
dc.relation.referencesHeng, T., Zhao, L., Liu, K., Yi, J., Duan, X., & Sun, Z. (2021, 3-7 Dec. 2021). An Improved Form-Finding Method for Calculating Force Density with Group Theory. 2021 11th International Conference on Intelligent Control and Information Processing (ICICIP),spa
dc.relation.referencesHofstra, N., & Huisingh, D. (2014). Eco-innovations characterized: a taxonomic classification of relationships between humans and nature. Journal of Cleaner Production, 66, 459-468.spa
dc.relation.referencesICONTEC. (2016). NTC 6112 de 2016. Etiquetas ambientales tipo I, Sello Abiental Colombiano (SAC). Criterios Ambientales para diseño y construccion de edificaciones sostenibles para uso diferente a vivienda. . https://tienda.icontec.org/gp-etiquetas-ambientales-tipo-i-sello-ambiental-colombiano-sac-criterios-ambientales-para-diseno-y-construccion-de-edificaciones-sostenibles-para-uso-diferente-a-vivienda-ntc6112-2016.htmlspa
dc.relation.referencesImanishi, N., Hinoki, S., Muraoka, M., Tateyama, R., ABE, Y., Kensuke, H., & Ikeda, Y. (2017). Bamboo concrete shells. 22nd International Conference on Computer-Aided Architectural Design Research in Asía: Protocols, Flows and Glitches, CAADRIA 2017,spa
dc.relation.referencesINBAR. (2021). El bambú y la economía circular.spa
dc.relation.referencesIsler, H. (1993). Generating shell shapes by physical experiments. International Association for Shell and Spatial Structures, 34(1), 53-63.spa
dc.relation.referencesJuan, S. H., & Mirats Tur, J. M. (2008). Tensegrity frameworks: Static analysis review. Mechanism and Machine Theory, 43(7), 859-881. https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2007.06.010spa
dc.relation.referencesKilian, A., & Ochsendorf, J. (2005). Particle-spring systems for structural form finding. Journal of the international association for shell, 46(2), 77-84.spa
dc.relation.referencesKoohestani, K. (2014). Nonlinear force density method for the form-finding of minimal surface membrane structures. Communications in Nonlinear Science and Numerical Simulation, 19(6), 2071-2087. https://doi.org/https://doi.org/10.1016/j.cnsns.2013.10.023spa
dc.relation.referencesLangdon, D. (2015). Clásicos de Arquitectura: Pabellón Alemán, Expo '67 / Frei Otto y Rolf Gutbrod. Retrieved 24 Marzo 2022 from https://www.archdaily.co/co/768540/clasícos-de-arquitectura-pabellon-aleman-expo-67-frei-otto-rolf-gutbrod> ISSN 0719-8914spa
dc.relation.referencesLewis, W. J. (2003). Tension structures: form and behaviour. Thomas Telford.spa
dc.relation.referencesLey 2206 de 2022. Por medio del cual se incentiva el uso productivo de la guadua y el bambú y su sostenibilidad ambiental en el territorio Nacional. D.O. No. 52037, (2022).spa
dc.relation.referencesLi, Q., Su, Y., Wu, Y., Borgart, A., & Rots, J. (2017). Form-finding of shell structures generated from physical models. International Journal of Space Structures, 32. https://doi.org/10.1177/0266351117696577spa
dc.relation.referencesLienhard, J., Alpermann, H., Gengnagel, C., & Knippers, J. (2013). Active bending, a review on structures where bending is used as a self-formation process. International Journal of Space Structures, 28(3-4), 187-196.spa
dc.relation.referencesLienhard, J., & Gengnagel, C. (2018). Recent developments in bending-active structures. Proceedings of IASS Annual Symposia,spa
dc.relation.referencesLienhard, J., & Knippers, J. (2014). Bending-active structures. Institut für Tragkonstruktionen und Konstruktives Entwerfen der Universität Stuttgart, Forschungsbericht, 36.spa
dc.relation.referencesLiew, A. (2020). Constrained Force Density Method optimisation for compression-only shell structures. Structures, 28, 1845-1856. https://doi.org/https://doi.org/10.1016/j.istruc.2020.09.078spa
dc.relation.referencesLozano Peña, J. E. (2020). Determinación de los esfuerzos últimos de la Guadua Angustifolia Kunth en la región andina de Colombia correlacionada con variables de clima. [Doctoral, Universitat Politècnica de València.]. Velencia, España. https://riunet.upv.es/handle/10251/165379spa
dc.relation.referencesLuna, P., Takeuchi, C., Granados, G., Lamus Báez, F., & Lozano, J. (2011). Metodología de diseño de estructuras en guadua angustifolia como material estructural por el método de esfuerzos admisibles. 6.spa
dc.relation.referencesMalek, S. R. (2012). The effect of geometry and topology on the mechanics of grid shells Massachusetts Institute of Technology].spa
dc.relation.referencesMichiels, T., Lu, L., Archer, R., Adriaenssens, S., & Tresserra, G. (2017). Design of three hypar roofs made of Guadua bamboo [Article]. Journal of the International Association for Shell and Spatial Structures, 58(1), 95-104. https://doi.org/10.20898/j.iass.2017.191.844spa
dc.relation.referencesMinisterio de Vivienda Ciudad y Territorio. (2015). Resolución número 0549 de 2015. Bogotá Retrieved from https://www.minvivienda.gov.co/node/48921spa
dc.relation.referencesNaciones Unidas. (2015). Objetivos de Desarrollo del Milenio Informe 2015. New York: ONU Retrieved from https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/spa
dc.relation.referencesNie, R., He, B., Hodges, D. H., & Ma, X. (2019). Form finding and design optimization of cable network structures with flexible frames. Computers & Structures, 220, 81-91. https://doi.org/https://doi.org/10.1016/j.compstruc.2019.05.004spa
dc.relation.referencesO’Sullivan, D., & Dooley, L. (2009). Applying innovation. https://doi.org/10.4135/9781452274898spa
dc.relation.referencesOtto, F., Nerdinger, W., Meissner, I., Möller, E., & Grdanjski, M. (2008). Frei Otto. Complete Works: Lightweight Construction - Natural Design.spa
dc.relation.referencesSchek, H. J. (1974). The force density method for form finding and computation of general networks. Computer Methods in Applied Mechanics and Engineering, 3(1), 115-134. https://doi.org/10.1016/0045-7825(74)90045-0spa
dc.relation.referencesSchlaich, J., & Schlaich, M. (2000). Lightweight structures. Widespan roof structures, 177-188.spa
dc.relation.referencesSeixas, M., Bina, J., Stoffel, P., Ripper, J. L., Moreira, L. E., & Ghavami, K. (2017). Active bending and tensile pantographic bamboo hybrid amphitheater structure [Review]. Journal of the International Association for Shell and Spatial Structures, 58(3), 239-252. https://doi.org/10.20898/j.iass.2017.193.872spa
dc.relation.referencesSernizon Costa, R., Cesar Campos Lavall, A., Gomes Lanna da Silva, R., Porcino dos Santos, A., & Francisco Viana, H. (2022). Cable structures: An exact geometric analysis using catenary curve and considering the material nonlinearity and temperature effect. Engineering Structures, 253, 113738. https://doi.org/https://doi.org/10.1016/j.engstruct.2021.113738spa
dc.relation.referencesSharma, B., Konstantatou, M., Reynolds, T., & Ramage, M. (2015). Engineered bamboo for shell structures. Proceedings of IASS Annual Symposia,spa
dc.relation.referencesTakeuchi Tam, C. P. (2004). Comportamiento estructural de la guadua angustifolia. Uniones en guadua. Revista Ingenieria e Investigación, 24, 3-7.spa
dc.relation.referencesTakeuchi Tam, C. P. (2014). CARACTERIZACIÓN MECÁNICA DEL BAMBÚ GUADUA LAMINADO PARA USO ESTRUCTURAL UNIVERSIDAD NACIONAL DE COLOMBIA]. BOGOTA, COLOMBIA.spa
dc.relation.referencesTamplin, R., & Iuorio, O. (2018). Challenges in designing and fabrication of a thin concrete shell.spa
dc.relation.referencesTang, Y., & Li, T. (2017). Equivalent-force density method as a shape-finding tool for cable-membrane structures. Engineering Structures, 151, 11-19. https://doi.org/https://doi.org/10.1016/j.engstruct.2017.08.010spa
dc.relation.referencesVaezzadeh, A., Ahmadizadeh, M., & Dolatshahi, K. M. (2021). Three-dimensional nonlinear dynamic analysis of slack cable structures using node Relaxation method. Structures, 29, 586-599. https://doi.org/https://doi.org/10.1016/j.istruc.2020.11.026spa
dc.relation.referencesVeenendaal, D., & Block, P. (2012). An overview and comparison of structural form finding methods for general networks. International Journal of Solids and Structures, 49(26), 3741-3753. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2012.08.008spa
dc.relation.referencesWahlström, M., Laine-Ylijoki, J., Järnström, H., Kaartinen, T., Erlandsson, M., Palm Cousins, A., Wik, O., Suer, P., Oberender, A., & Hjelmar, O. (2013). Environmentally Sustainable Construction Products and Materials: Assessment of Release and Emissions. Nordic Innovation.spa
dc.relation.referencesWang, T.-H., Espinosa Trujillo, O., Chang, W.-S., & Deng, B. J. I. J. o. A. C. (2017). Encoding bamboo’s nature for freeform structure design. 15(2), 169-182.spa
dc.relation.referencesZhang, J. Y., & Ohsaki, M. (2006). Adaptive force density method for form-finding problem of tensegrity structures. International Journal of Solids and Structures, 43(18), 5658-5673. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2005.10.011spa
dc.relation.referencesZhang, L., Maurin, B., & Motro, R. (2006). Form-finding of nonregular tensegrity systems. Journal of Structural Engineering, 132(9), 1435-1440.spa
dc.relation.referencesZhang, P., Zhou, J., & Chen, J. (2021). Form-finding of complex tensegrity structures using constrained optimization method. Composite Structures, 268, 113971. https://doi.org/https://doi.org/10.1016/j.compstruct.2021.113971spa
dc.relation.referencesZhang, P., Zhou, J., & Chen, J. (2021). Form-finding of complex tensegrity structures using constrained optimization method. Composite Structures, 268, 113971. https://doi.org/https://doi.org/10.1016/j.compstruct.2021.113971spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.ddc690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicosspa
dc.subject.proposalBúsqueda de formaspa
dc.subject.proposalGuadua Angustifolia Kunthspa
dc.subject.proposalForm findingeng
dc.subject.proposalEstructuras funicularesspa
dc.subject.proposalBambúspa
dc.subject.proposalMétodo de la densidad de fuerzaspa
dc.subject.proposalSstema de resorte de partículasspa
dc.subject.proposalFunicular structureseng
dc.subject.proposalBambooeng
dc.subject.proposalForce density methodeng
dc.subject.proposalParticle spring systemeng
dc.subject.proposalParticle spring systemeng
dc.subject.unescoMateriales de construcciónspa
dc.subject.unescoBuilding materialseng
dc.subject.unescoBambúspa
dc.subject.unescoBambooeng
dc.subject.unescoEnsayo de materialesspa
dc.subject.unescoMaterials testingeng
dc.titleEstructuras funiculares de bambú (Guadua Angustifolia Kunth) : Búsqueda de forma y análisis estáticospa
dc.title.translatedBamboo funicular structures (Guadua Angustifolia Kunth): Form Finding and static analysiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
VERSION FINAL TESIS NATALIA ESCOBAR.pdf
Tamaño:
11.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Construcción

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: