Modelos cuantitativos de evolución del paisaje y su aplicabilidad a cambios inducidos en el cauce aguas arriba de un embalse en cuencas de montaña
dc.contributor.advisor | Vélez Upegui, Jaime Ignacio | |
dc.contributor.advisor | Cataño Álvarez, Santiago | |
dc.contributor.author | Martínez Pérez, Katherine | |
dc.contributor.orcid | Vélez Upegui, Jaime Ignacio [0000-0002-2042-9459] | spa |
dc.contributor.orcid | Cataño Álvarez, Santiago [0000-0003-3844-5761] | spa |
dc.contributor.researchgroup | Posgrado en Aprovechamiento de Recursos Hidráulicos | spa |
dc.date.accessioned | 2023-07-19T14:45:35Z | |
dc.date.available | 2023-07-19T14:45:35Z | |
dc.date.issued | 2023-01-31 | |
dc.description | ilustraciones, diagramas, mapas | spa |
dc.description.abstract | Los embalses modifican el nivel base de las corrientes y por lo tanto tienen impactos en la evolución del cauce aguas arriba, producto de la erosión y depositación de sedimentos por efectos del flujo del agua. La presente investigación se enfoca en la evolución del cauce aguas arriba de un embalse, evaluando la posibilidad de tener una aproximación cuantitativa adecuada de los cambios en la morfología del cauce a largo plazo humano (50 a 100 años). Para ello se exploró la utilidad de los modelos de evolución de paisaje y la aplicabilidad de modelos hidrodinámicos y de transporte de sedimentos diseñados para corto plazo. Fueron seleccionados los modelos más usados por la comunidad y que podían ser útiles al objeto del estudio y se aplicaron en un sitio de estudio para identificar sus capacidades y limitaciones. La evaluación de estos modelos indica que mientras que la mayoría de los modelos de evolución del paisaje son pensados para estudios de más largo plazo (escala geológica), la mayoría de los modelos hidrodinámicos que simulan transporte de sedimentos presentan limitaciones por estabilidad y largos tiempos de cómputo por lo que su aplicabilidad se restringe a estudios de corto plazo. Producto de la evaluación y comparación de los modelos, se encontró que el modelo HEC-RAS 1D puede configurarse en una herramienta que permite analizar tendencias de evolución del cauce aguas arriba de un embalse, y con información de calidad podría emplearse para predecir cambios morfológicos y tomar decisiones para la planificación de largo plazo de los proyectos. (Texto tomado de la fuente) | spa |
dc.description.abstract | Reservoirs modify base level of rivers and because of this have impacts on the upstream channel evolution, as a result of erosion and deposition of the water flow. This investigation focuses on the channel evolution upstream from dam reservoirs, evaluating the possibility of having a quantitative approximation adequate to morphology changes in the channel on a human long term (50 to 100 years). To accomplish this, the utility of landscape evolution models and the applicability of hydrodynamic and sediment transport models designed for short term simulations were explored. The models most used by the community and that could be useful for the purpose of this study were selected and applied to a study site to identify the models’ capacities and limitations. The evaluation of this models suggests that most of the landscape evolution models are designed for a long term in geological scale, while most of hydrodynamics models that simulate sediment transport have limitation for stability and long computational times and for this reason their applicability is restrained to short term studies. As a result of the evaluation and comparison of the models, it was found that the HEC-RAS 1D model can be configured in a tool that allows analyzing trends in the evolution of the channel upstream of a reservoir, and with detailed information it could be used to predict morphological changes and make decisions for long-term planning of projects. | eng |
dc.description.curriculararea | Área Curricular de Medio Ambiente | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Recursos Hidráulicos | spa |
dc.description.researcharea | Hidráulica e Hidrodinámica | spa |
dc.format.extent | xvii, 128 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84218 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos | spa |
dc.relation.indexed | RedCol | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., & Istanbulluoglu, E. (2017). The Landlab v1.0 OverlandFlow component: A Python tool for computing shallow-water flow across watersheds. Geoscientific Model Development, 10(4), 1645–1663. https://doi.org/10.5194/gmd-10-1645-2017 | spa |
dc.relation.references | ALOS PALSAR. (2011). Dataset: ALPSRP JAXA/METI. Retrieved from https://www.asf.alaska.edu | spa |
dc.relation.references | Baker, V. R. (1998). Catastrophism and uniformitarianism: logical roots and current relevance in geology. Geological Society Special Publication, 143, 171–182. https://doi.org/10.1144/GSL.SP.1998.143.01.15 | spa |
dc.relation.references | Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1–2), 33–45. https://doi.org/10.1016/j.jhydrol.2010.03.027 | spa |
dc.relation.references | Benoit Bovy; Jean Braun; Guillaume Cordonnier; Raphael Lange; Xiaoping Yuan. (2020). The FastScape software stack: reusable tools for landscape evolution modelling. EGU General Assembly 2020. | spa |
dc.relation.references | Biedenharn, D. S., Watson, C. C., & Thorne, C. R. (2008). Fundamentals of Fluvial Geomorphology. In Fundamentals of Fluvial Geomorphology. | spa |
dc.relation.references | Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez‐Cendón, M. E., … Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 30, 1–10. | spa |
dc.relation.references | Braun, J., & Sambridge, M. (1997). Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization. Basin Research, 9(1), 27–52. https://doi.org/10.1046/j.1365-2117.1997.00030.x | spa |
dc.relation.references | Braun, J., & Willett, S. D. (2013). A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorphology, 180–181, 170–179. https://doi.org/10.1016/j.geomorph.2012.10.008 | spa |
dc.relation.references | Braun, J., Zwartz, D., & Tomkin, J. H. (1999). A new surface-processes model combining glacial and fluvial erosion. Annals of Glaciology, 28, 282–290. https://doi.org/10.3189/172756499781821797 | spa |
dc.relation.references | Bureau of Reclamation. (2020). SHR-2D User’s Manual: Sediment Transport and Mobile-Bed Modeling. U.S. Department of Interior. | spa |
dc.relation.references | CAESAR-Lisflood. (n.d.). CAESAR-Lisflood wiki. Retrieved from https://sourceforge.net/p/caesar-lisflood/wiki/Instructions/ | spa |
dc.relation.references | Castro, J. M., & Thorne, C. R. (2019). The stream evolution triangle: Integrating geology, hydrology, and biology. River Research and Applications, 35(4), 315–326. https://doi.org/10.1002/rra.3421 | spa |
dc.relation.references | Cataño-Álvarez, S., & Vélez Upegui, J. I. (2016). Aggregated conceptual model of sediment transport for mountain basins in Antioquia- Colombia. Boletín de Ciencias de La Tierra, (39), 38–48. https://doi.org/10.15446/rbct.n39.52888 | spa |
dc.relation.references | Cataño Álvarez, S. (2015). Modelo conceptual agregado de transporte de sedimentos para cuencas de montaña en Antioquia (Universidad Nacional de Colombia). https://doi.org/10.15446/rbct.n39.52888 | spa |
dc.relation.references | Cataño Álvarez, S. (2021). Critical transition of incising gravel channel to evacuate alluvial lateral supply. Physical Geography. https://doi.org/10.1080/02723646.2021.1923368 | spa |
dc.relation.references | Cataño Álvarez, S. (2022). Coupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basins (Universidad Nacional de Colombia). Retrieved from https://repositorio.unal.edu.co/handle/unal/81480 | spa |
dc.relation.references | Cataño Álvarez, S., Osorio Yepes, S., Montoya Monsalve, J. J., Contreras Trujillo, C. Y., Vargas Martínez, N. O., Zambrano, J., … Vélez Upegui, J. I. (2016). Modelo De Estimación Y Distribución Espacial De Tasas Medias De Producción De Sedimentos En Cuencas Tropicales De Montaña. XXVII CONGRESO LATINOAMERICANO DE HIDRÁULICA, (August 2021). Retrieved from http://ladhi2016.org/ | spa |
dc.relation.references | Charlton, R. (2008). Fundamentals of fluvial geomorphology. London and New York: Routledge. | spa |
dc.relation.references | Chen, A., Darbon, J., & Morel, J.-M. (2014). Landscape evolution models: A review of their fundamental equations. Geomorphology, 219, 68–86. | spa |
dc.relation.references | Claessens, L., Schoorl, J. M., & Veldkamp, A. (2007). Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: An application for Northern New Zealand. Geomorphology, 87(1–2), 16–27. https://doi.org/10.1016/j.geomorph.2006.06.039 | spa |
dc.relation.references | Cluer, B., & Thorne, C. R. (2014). A stream Evolution model integrating habitat and ecosystem benefits. River Research and Applications, 30(January), 135–154. https://doi.org/10.1002/rra | spa |
dc.relation.references | Coulthard, T. (2001). Landscape evolution models: a software review. Hydrological Processes, 15(1), 165–173. https://doi.org/10.1007/BF01890548 | spa |
dc.relation.references | Coulthard, T. J., Macklin, M. G., & Kirkby, M. J. (2002). A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms, 27(3), 269–288. https://doi.org/10.1002/esp.318 | spa |
dc.relation.references | Coulthard, Tom J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida, G. A. M., & Hancock, G. R. (2013). Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: Implications for modelling landscape evolution. Earth Surface Processes and Landforms, 38(15), 1897–1906. https://doi.org/10.1002/esp.3478 | spa |
dc.relation.references | Coulthard, Tom J., & Van De Wiel, M. J. (2006). A cellular model of river meandering. Earth Surface Processes and Landforms, 31(1), 123–132. https://doi.org/10.1002/esp.1315 | spa |
dc.relation.references | Deltares. (2022). Delft3D Flow - User Manual. | spa |
dc.relation.references | Densmore, A. L., Anderson, R. S., Ellis, M. A., & McAdoo, B. . (1997). Hillslope evolution by bedrock landslide. Science, 275, 369–372. https://doi.org/10.1126/science.275.5298.369 | spa |
dc.relation.references | Einstein, A. H. (1950). The Bed-Load Function for Sediment Transportation in Open Channel Flows UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE. Technical Bulleting, 1026(1026), 7. Retrieved from https://naldc.nal.usda.gov/download/CAT86201017/PDF | spa |
dc.relation.references | Farias, H. D., & Domínguez Ruben, L. G. (2014). Análisis conceptual y cuantificación de la relación de Lane para predecir tendencias evolutivas de cauces fluviales. Memorias Del 1er Congreso Iberoamericano Sobre Sedimentos y Ecología, 1–7. Retrieved from https://www.academia.edu/41133167/ANÁLISIS_CONCEPTUAL_Y_CUANTIFICACIÓN_DE_LA_RELACIÓN_DE_LANE_PARA_PREDECIR_TENDENCIAS_EVOLUTIVAS_DE_CAUCES_FLUVIALES | spa |
dc.relation.references | FastScape Developers. (2019). Fastscape: a fast, versatile and user-friendly landscape evolution model. https://doi.org/https://zenodo.org/badge/133702738.svg | spa |
dc.relation.references | Gibson, S. A., & Cai, C. (2017). Flow Dependence of Suspended Sediment Gradations. Water Resources Research, 53(11), 9546–9563. https://doi.org/10.1002/2016WR020135 | spa |
dc.relation.references | Hancock, GR Willgoose, G. (2018). Sustainable mine rehabilitation – 25 years of the SIBERIA landform evolution and long-term erosion model. From Start to Finish: A Life-of-Mine Perspective. Australian Institute of Mining and Metallurgy, Carlton, 1–12. | spa |
dc.relation.references | Hobley, D. E. J., Adams, J. M., Siddhartha Nudurupati, S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., & Tucker, G. E. (2017). Creative computing with Landlab: An open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics. Earth Surface Dynamics, 5(1), 21–46. https://doi.org/10.5194/esurf-5-21-2017 | spa |
dc.relation.references | ISAGEN-UNAL. (2020). Estudios para modelación y análisis hidrosedimentológico de las cuencas tributarias al embalse Topocoro. Medellin: Universidad Nacional de Colombia, Sede Medellin. | spa |
dc.relation.references | ISAGEN. (n.d.). Central Hidroelectrica Jaguas. Retrieved from www.isagen.com.co | spa |
dc.relation.references | ISAGEN. (2014). Manual de llenado del embalse. | spa |
dc.relation.references | Keesstra, S. D., Schoorl, J., & Temme, A. J. A. M. (2009). Modelling daily sediment yield from a meso-scale catchment, a case study in SW Poland. International Conference on Desertification, Advances in Studies on Desertification. Murcia, Spain. | spa |
dc.relation.references | Lane, E. W. (1955). The importance of fluvial morphology in hydraulic Engineering (pp. 1–17). pp. 1–17. Proceedings of American Society of Civil Engineers. | spa |
dc.relation.references | Leopold, L. B., & Maddock, T. J. (1953). The Hydraulic Geometry of Stream Channels and Some Physiographic Implications (USGS Numbered Series No. 252). Professional Paper. U. S. Government Printing Office, Washington, D.C, 57. Retrieved from 10.3133/pp252 | spa |
dc.relation.references | Liro, M. (2014). Conceptual model for assessing the channel changes upstream from dam reservoir. Quaestiones Geographicae, 33(1), 61–74. https://doi.org/10.2478/quageo-2014-0007 | spa |
dc.relation.references | LSDTopoTools Developers. (2019). Documentation for LSDTopoTools. Retrieved from https://lsdtopotools.github.io/LSDTT_documentation/ | spa |
dc.relation.references | Mesa, O., Urrea, V., & Ochoa, A. (2021). Trends of hydroclimatic intensity in Colombia. Climate, 9(7). https://doi.org/10.3390/cli9070120 | spa |
dc.relation.references | Mudd, S., Clubb, F. J., Jenkinson, J. A., & Valters, D. A. (2020). The MuddPILE (Parsimonious Integrated Landscape Evolution) Model. Retrieved from https://lsdtopotools.github.io/LSDTT_documentation/LSDTT_MuddPILE.html | spa |
dc.relation.references | Nelson, J. M. (n.d.). FaSTMECH Model Notes. Colorado: U.S. Geological Survey. | spa |
dc.relation.references | Pazzaglia, F. J. (2003). Landscape evolution models. Developments in Quaternary Science, 1(C), 247–274. https://doi.org/10.1016/S1571-0866(03)01012-1 | spa |
dc.relation.references | Phillips, J. D. (2021). Landscape evolution: Landforms, Ecosystems, and Soils. Amsterdam. | spa |
dc.relation.references | Recking, A. (2013). An analysis of nonlinearity effects on bed load transport prediction. Journal of Geophysical Research: Earth Surface, 118(3), 1264–1281. https://doi.org/10.1002/jgrf.20090 | spa |
dc.relation.references | Romey, W. D. (1982). Earth in my Oatmeal. EOS Transactions, 63. | spa |
dc.relation.references | Samuels, P. G. (1989). Backwater lengths in rivers. Proceedings - Institution of Civil Engineers. Part 2. Research and Theory, 87(February), 571–582. https://doi.org/10.1680/iicep.1989.3779 | spa |
dc.relation.references | Schoorl, J. M., & Veldkamp, A. (2001). Linking land use and landscape process modelling: A case study for the Álora region (South Spain). Agriculture, Ecosystems and Environment, 85(1–3), 281–292. https://doi.org/10.1016/S0167-8809(01)00194-3 | spa |
dc.relation.references | Schoorl, J. M., Veldkamp, A., & Bouma, J. (2002). Modeling Water and Soil Redistribution in a Dynamic Landscape Context. Soil Science Society of America Journal, 66(5), 1610–1619. https://doi.org/10.2136/sssaj2002.1610 | spa |
dc.relation.references | Schoorl, J., Temme, A., Gorp, W. Van, Baartmen, J., & Claessens, L. (2015). LAPSUS user Guide (v0.97). Wageningen University. | spa |
dc.relation.references | Schumm, S. A. (1977). The Fluvial System. New York: Wiley. | spa |
dc.relation.references | Schumm, S. A., Harvey, M. D., & Watson, C. C. (1984). Incised Channels: Morphology, Dynamics and control. Littleton, Colorado: Water Resources Publications. | spa |
dc.relation.references | Simon, A. (1989). A model of channel response in disturbed alluvial channels. Earth Surface Processes and Landforms, 14(1), 11–26. https://doi.org/10.1002/esp.3290140103 | spa |
dc.relation.references | Simon, A., & Hupp, C. R. (1987). Channel Evolution in Modified Alluvial Streams. Transportation Research Record, (1151), 16–24. | spa |
dc.relation.references | Sonneveld, M. P. W., Temme, A. J. A. M., Schoorl, J. M., Claessens, L., Viveen, W., Baartman, J. E. M., … Lesschen, J. P. (2010). Landscape - Soilscape Evolution Modelling: LAPSUS. Brisbane, Australia: 19th World Congress of Soil Science, Soil Solutions for a Changing World. | spa |
dc.relation.references | Temme, A. J.A.M., Claessens, L., Veldkamp, A., & Schoorl, J. M. (2011). Evaluating choices in multi-process landscape evolution models. Geomorphology, 125(2), 271–281. https://doi.org/10.1016/j.geomorph.2010.10.007 | spa |
dc.relation.references | Temme, Arnaud J.A.M., Schoorl, J. M., & Veldkamp, A. (2006). Algorithm for dealing with depressions in dynamic landscape evolution models. Computers and Geosciences, 32(4), 452–461. https://doi.org/10.1016/j.cageo.2005.08.001 | spa |
dc.relation.references | Tucker, G. E., Lancaster, S. T., Gasparini, N. M., & Bras, R. L. (2001). The Channel-Hillslope Integrated Landscape Development Model(CHILD). In Landscape Erosion and Evolution Modeling. https://doi.org/10.1007/978-1-4615-0575-4 | spa |
dc.relation.references | Tucker, G. E., & Slingerland, R. (1997). Drainage basin responses to climate change. Water Resources Research, 33(8), 2031–2047. https://doi.org/10.1029/97WR00409 | spa |
dc.relation.references | US Army Corps of Engineers. (2020a). HEC-RAS Sediment Transport User’s Manual. Davis. | spa |
dc.relation.references | US Army Corps of Engineers. (2020b). HEC-RAS Two-Dimensional Sediment Transport User’s Manual. | spa |
dc.relation.references | US Army Corps of Engineers. (2021). HEC-RAS Hydraulic Reference Manual. Valters, D. (2016). Modelling Geomorphic Systems: Landscape Evolution. Geomorphological Techniques, 12(1880), 1–24. https://doi.org/10.13140/RG.2.1.1970.9047 | spa |
dc.relation.references | van Gorp, W., Temme, A. J. A. M., Veldkamp, A., & Schoorl, J. M. (2015). Modelling long-term (300ka) upland catchment response to multiple lava damming events. Earth Surface Processes and Landforms, 40(7), 888–900. https://doi.org/10.1002/esp.3689 | spa |
dc.relation.references | van Gorp, Wouter, Temme, A. J. A. M., Baartman, J. E. M., & Schoorl, J. M. (2014). Landscape evolution modelling of naturally dammed rivers. Earth Surface Processes and Landforms, 39(12), 1587–1600. https://doi.org/10.1002/esp.3547 | spa |
dc.relation.references | Watson, C. C., Biedenharn, D. S., & Bledsoe, B. P. (2002). Use of incised channel evolution models in understanding rehabilitation alternatives. Journal of the American Water Resources Association, 38, 1–10. | spa |
dc.relation.references | Wilcock, P. R., Asce, M., & Crowe, J. C. (2003). Surface-based Transport Model for Mixed-Size Sediment Surface-based Transport Model for Mixed-Size Sediment. 9429(February). https://doi.org/10.1061/(ASCE)0733-9429(2003)129 | spa |
dc.relation.references | Willgoose, G. (2005). User Manual for SIBERIA (version 8.30). Australia: Telluric Research. | spa |
dc.relation.references | Yang, C. T., & Ahn, J. (2011). GSTARS4-User’s Manual. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.armarc | Embalses - Cauce | |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.lemb | Embalses | |
dc.subject.lemb | Reservoirs | |
dc.subject.proposal | Modelos de evolución del paisaje | spa |
dc.subject.proposal | Evolución del cauce | spa |
dc.subject.proposal | Embalse | spa |
dc.subject.proposal | Procesos fluviales | spa |
dc.subject.proposal | Modelos de transporte de sedimentos | spa |
dc.subject.proposal | Landscape evolution models | eng |
dc.subject.proposal | Channel evolution | eng |
dc.subject.proposal | Reservoir | eng |
dc.subject.proposal | Fluvial processes | eng |
dc.subject.proposal | Sediment transport models | eng |
dc.title | Modelos cuantitativos de evolución del paisaje y su aplicabilidad a cambios inducidos en el cauce aguas arriba de un embalse en cuencas de montaña | spa |
dc.title.translated | Quantitative landscape evolution models and their applicability to changes induced in the channel upstream of a reservoir in mountain basins | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1017216059.2023.pdf
- Tamaño:
- 3.5 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Recursos Hidráulicos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: