Modelos cuantitativos de evolución del paisaje y su aplicabilidad a cambios inducidos en el cauce aguas arriba de un embalse en cuencas de montaña

dc.contributor.advisorVélez Upegui, Jaime Ignacio
dc.contributor.advisorCataño Álvarez, Santiago
dc.contributor.authorMartínez Pérez, Katherine
dc.contributor.orcidVélez Upegui, Jaime Ignacio [0000-0002-2042-9459]spa
dc.contributor.orcidCataño Álvarez, Santiago [0000-0003-3844-5761]spa
dc.contributor.researchgroupPosgrado en Aprovechamiento de Recursos Hidráulicosspa
dc.date.accessioned2023-07-19T14:45:35Z
dc.date.available2023-07-19T14:45:35Z
dc.date.issued2023-01-31
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractLos embalses modifican el nivel base de las corrientes y por lo tanto tienen impactos en la evolución del cauce aguas arriba, producto de la erosión y depositación de sedimentos por efectos del flujo del agua. La presente investigación se enfoca en la evolución del cauce aguas arriba de un embalse, evaluando la posibilidad de tener una aproximación cuantitativa adecuada de los cambios en la morfología del cauce a largo plazo humano (50 a 100 años). Para ello se exploró la utilidad de los modelos de evolución de paisaje y la aplicabilidad de modelos hidrodinámicos y de transporte de sedimentos diseñados para corto plazo. Fueron seleccionados los modelos más usados por la comunidad y que podían ser útiles al objeto del estudio y se aplicaron en un sitio de estudio para identificar sus capacidades y limitaciones. La evaluación de estos modelos indica que mientras que la mayoría de los modelos de evolución del paisaje son pensados para estudios de más largo plazo (escala geológica), la mayoría de los modelos hidrodinámicos que simulan transporte de sedimentos presentan limitaciones por estabilidad y largos tiempos de cómputo por lo que su aplicabilidad se restringe a estudios de corto plazo. Producto de la evaluación y comparación de los modelos, se encontró que el modelo HEC-RAS 1D puede configurarse en una herramienta que permite analizar tendencias de evolución del cauce aguas arriba de un embalse, y con información de calidad podría emplearse para predecir cambios morfológicos y tomar decisiones para la planificación de largo plazo de los proyectos. (Texto tomado de la fuente)spa
dc.description.abstractReservoirs modify base level of rivers and because of this have impacts on the upstream channel evolution, as a result of erosion and deposition of the water flow. This investigation focuses on the channel evolution upstream from dam reservoirs, evaluating the possibility of having a quantitative approximation adequate to morphology changes in the channel on a human long term (50 to 100 years). To accomplish this, the utility of landscape evolution models and the applicability of hydrodynamic and sediment transport models designed for short term simulations were explored. The models most used by the community and that could be useful for the purpose of this study were selected and applied to a study site to identify the models’ capacities and limitations. The evaluation of this models suggests that most of the landscape evolution models are designed for a long term in geological scale, while most of hydrodynamics models that simulate sediment transport have limitation for stability and long computational times and for this reason their applicability is restrained to short term studies. As a result of the evaluation and comparison of the models, it was found that the HEC-RAS 1D model can be configured in a tool that allows analyzing trends in the evolution of the channel upstream of a reservoir, and with detailed information it could be used to predict morphological changes and make decisions for long-term planning of projects.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.researchareaHidráulica e Hidrodinámicaspa
dc.format.extentxvii, 128 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84218
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAdams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., & Istanbulluoglu, E. (2017). The Landlab v1.0 OverlandFlow component: A Python tool for computing shallow-water flow across watersheds. Geoscientific Model Development, 10(4), 1645–1663. https://doi.org/10.5194/gmd-10-1645-2017spa
dc.relation.referencesALOS PALSAR. (2011). Dataset: ALPSRP JAXA/METI. Retrieved from https://www.asf.alaska.eduspa
dc.relation.referencesBaker, V. R. (1998). Catastrophism and uniformitarianism: logical roots and current relevance in geology. Geological Society Special Publication, 143, 171–182. https://doi.org/10.1144/GSL.SP.1998.143.01.15spa
dc.relation.referencesBates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1–2), 33–45. https://doi.org/10.1016/j.jhydrol.2010.03.027spa
dc.relation.referencesBenoit Bovy; Jean Braun; Guillaume Cordonnier; Raphael Lange; Xiaoping Yuan. (2020). The FastScape software stack: reusable tools for landscape evolution modelling. EGU General Assembly 2020.spa
dc.relation.referencesBiedenharn, D. S., Watson, C. C., & Thorne, C. R. (2008). Fundamentals of Fluvial Geomorphology. In Fundamentals of Fluvial Geomorphology.spa
dc.relation.referencesBladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez‐Cendón, M. E., … Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 30, 1–10.spa
dc.relation.referencesBraun, J., & Sambridge, M. (1997). Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization. Basin Research, 9(1), 27–52. https://doi.org/10.1046/j.1365-2117.1997.00030.xspa
dc.relation.referencesBraun, J., & Willett, S. D. (2013). A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorphology, 180–181, 170–179. https://doi.org/10.1016/j.geomorph.2012.10.008spa
dc.relation.referencesBraun, J., Zwartz, D., & Tomkin, J. H. (1999). A new surface-processes model combining glacial and fluvial erosion. Annals of Glaciology, 28, 282–290. https://doi.org/10.3189/172756499781821797spa
dc.relation.referencesBureau of Reclamation. (2020). SHR-2D User’s Manual: Sediment Transport and Mobile-Bed Modeling. U.S. Department of Interior.spa
dc.relation.referencesCAESAR-Lisflood. (n.d.). CAESAR-Lisflood wiki. Retrieved from https://sourceforge.net/p/caesar-lisflood/wiki/Instructions/spa
dc.relation.referencesCastro, J. M., & Thorne, C. R. (2019). The stream evolution triangle: Integrating geology, hydrology, and biology. River Research and Applications, 35(4), 315–326. https://doi.org/10.1002/rra.3421spa
dc.relation.referencesCataño-Álvarez, S., & Vélez Upegui, J. I. (2016). Aggregated conceptual model of sediment transport for mountain basins in Antioquia- Colombia. Boletín de Ciencias de La Tierra, (39), 38–48. https://doi.org/10.15446/rbct.n39.52888spa
dc.relation.referencesCataño Álvarez, S. (2015). Modelo conceptual agregado de transporte de sedimentos para cuencas de montaña en Antioquia (Universidad Nacional de Colombia). https://doi.org/10.15446/rbct.n39.52888spa
dc.relation.referencesCataño Álvarez, S. (2021). Critical transition of incising gravel channel to evacuate alluvial lateral supply. Physical Geography. https://doi.org/10.1080/02723646.2021.1923368spa
dc.relation.referencesCataño Álvarez, S. (2022). Coupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basins (Universidad Nacional de Colombia). Retrieved from https://repositorio.unal.edu.co/handle/unal/81480spa
dc.relation.referencesCataño Álvarez, S., Osorio Yepes, S., Montoya Monsalve, J. J., Contreras Trujillo, C. Y., Vargas Martínez, N. O., Zambrano, J., … Vélez Upegui, J. I. (2016). Modelo De Estimación Y Distribución Espacial De Tasas Medias De Producción De Sedimentos En Cuencas Tropicales De Montaña. XXVII CONGRESO LATINOAMERICANO DE HIDRÁULICA, (August 2021). Retrieved from http://ladhi2016.org/spa
dc.relation.referencesCharlton, R. (2008). Fundamentals of fluvial geomorphology. London and New York: Routledge.spa
dc.relation.referencesChen, A., Darbon, J., & Morel, J.-M. (2014). Landscape evolution models: A review of their fundamental equations. Geomorphology, 219, 68–86.spa
dc.relation.referencesClaessens, L., Schoorl, J. M., & Veldkamp, A. (2007). Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: An application for Northern New Zealand. Geomorphology, 87(1–2), 16–27. https://doi.org/10.1016/j.geomorph.2006.06.039spa
dc.relation.referencesCluer, B., & Thorne, C. R. (2014). A stream Evolution model integrating habitat and ecosystem benefits. River Research and Applications, 30(January), 135–154. https://doi.org/10.1002/rraspa
dc.relation.referencesCoulthard, T. (2001). Landscape evolution models: a software review. Hydrological Processes, 15(1), 165–173. https://doi.org/10.1007/BF01890548spa
dc.relation.referencesCoulthard, T. J., Macklin, M. G., & Kirkby, M. J. (2002). A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms, 27(3), 269–288. https://doi.org/10.1002/esp.318spa
dc.relation.referencesCoulthard, Tom J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida, G. A. M., & Hancock, G. R. (2013). Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: Implications for modelling landscape evolution. Earth Surface Processes and Landforms, 38(15), 1897–1906. https://doi.org/10.1002/esp.3478spa
dc.relation.referencesCoulthard, Tom J., & Van De Wiel, M. J. (2006). A cellular model of river meandering. Earth Surface Processes and Landforms, 31(1), 123–132. https://doi.org/10.1002/esp.1315spa
dc.relation.referencesDeltares. (2022). Delft3D Flow - User Manual.spa
dc.relation.referencesDensmore, A. L., Anderson, R. S., Ellis, M. A., & McAdoo, B. . (1997). Hillslope evolution by bedrock landslide. Science, 275, 369–372. https://doi.org/10.1126/science.275.5298.369spa
dc.relation.referencesEinstein, A. H. (1950). The Bed-Load Function for Sediment Transportation in Open Channel Flows UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE. Technical Bulleting, 1026(1026), 7. Retrieved from https://naldc.nal.usda.gov/download/CAT86201017/PDFspa
dc.relation.referencesFarias, H. D., & Domínguez Ruben, L. G. (2014). Análisis conceptual y cuantificación de la relación de Lane para predecir tendencias evolutivas de cauces fluviales. Memorias Del 1er Congreso Iberoamericano Sobre Sedimentos y Ecología, 1–7. Retrieved from https://www.academia.edu/41133167/ANÁLISIS_CONCEPTUAL_Y_CUANTIFICACIÓN_DE_LA_RELACIÓN_DE_LANE_PARA_PREDECIR_TENDENCIAS_EVOLUTIVAS_DE_CAUCES_FLUVIALESspa
dc.relation.referencesFastScape Developers. (2019). Fastscape: a fast, versatile and user-friendly landscape evolution model. https://doi.org/https://zenodo.org/badge/133702738.svgspa
dc.relation.referencesGibson, S. A., & Cai, C. (2017). Flow Dependence of Suspended Sediment Gradations. Water Resources Research, 53(11), 9546–9563. https://doi.org/10.1002/2016WR020135spa
dc.relation.referencesHancock, GR Willgoose, G. (2018). Sustainable mine rehabilitation – 25 years of the SIBERIA landform evolution and long-term erosion model. From Start to Finish: A Life-of-Mine Perspective. Australian Institute of Mining and Metallurgy, Carlton, 1–12.spa
dc.relation.referencesHobley, D. E. J., Adams, J. M., Siddhartha Nudurupati, S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., & Tucker, G. E. (2017). Creative computing with Landlab: An open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics. Earth Surface Dynamics, 5(1), 21–46. https://doi.org/10.5194/esurf-5-21-2017spa
dc.relation.referencesISAGEN-UNAL. (2020). Estudios para modelación y análisis hidrosedimentológico de las cuencas tributarias al embalse Topocoro. Medellin: Universidad Nacional de Colombia, Sede Medellin.spa
dc.relation.referencesISAGEN. (n.d.). Central Hidroelectrica Jaguas. Retrieved from www.isagen.com.cospa
dc.relation.referencesISAGEN. (2014). Manual de llenado del embalse.spa
dc.relation.referencesKeesstra, S. D., Schoorl, J., & Temme, A. J. A. M. (2009). Modelling daily sediment yield from a meso-scale catchment, a case study in SW Poland. International Conference on Desertification, Advances in Studies on Desertification. Murcia, Spain.spa
dc.relation.referencesLane, E. W. (1955). The importance of fluvial morphology in hydraulic Engineering (pp. 1–17). pp. 1–17. Proceedings of American Society of Civil Engineers.spa
dc.relation.referencesLeopold, L. B., & Maddock, T. J. (1953). The Hydraulic Geometry of Stream Channels and Some Physiographic Implications (USGS Numbered Series No. 252). Professional Paper. U. S. Government Printing Office, Washington, D.C, 57. Retrieved from 10.3133/pp252spa
dc.relation.referencesLiro, M. (2014). Conceptual model for assessing the channel changes upstream from dam reservoir. Quaestiones Geographicae, 33(1), 61–74. https://doi.org/10.2478/quageo-2014-0007spa
dc.relation.referencesLSDTopoTools Developers. (2019). Documentation for LSDTopoTools. Retrieved from https://lsdtopotools.github.io/LSDTT_documentation/spa
dc.relation.referencesMesa, O., Urrea, V., & Ochoa, A. (2021). Trends of hydroclimatic intensity in Colombia. Climate, 9(7). https://doi.org/10.3390/cli9070120spa
dc.relation.referencesMudd, S., Clubb, F. J., Jenkinson, J. A., & Valters, D. A. (2020). The MuddPILE (Parsimonious Integrated Landscape Evolution) Model. Retrieved from https://lsdtopotools.github.io/LSDTT_documentation/LSDTT_MuddPILE.htmlspa
dc.relation.referencesNelson, J. M. (n.d.). FaSTMECH Model Notes. Colorado: U.S. Geological Survey.spa
dc.relation.referencesPazzaglia, F. J. (2003). Landscape evolution models. Developments in Quaternary Science, 1(C), 247–274. https://doi.org/10.1016/S1571-0866(03)01012-1spa
dc.relation.referencesPhillips, J. D. (2021). Landscape evolution: Landforms, Ecosystems, and Soils. Amsterdam.spa
dc.relation.referencesRecking, A. (2013). An analysis of nonlinearity effects on bed load transport prediction. Journal of Geophysical Research: Earth Surface, 118(3), 1264–1281. https://doi.org/10.1002/jgrf.20090spa
dc.relation.referencesRomey, W. D. (1982). Earth in my Oatmeal. EOS Transactions, 63.spa
dc.relation.referencesSamuels, P. G. (1989). Backwater lengths in rivers. Proceedings - Institution of Civil Engineers. Part 2. Research and Theory, 87(February), 571–582. https://doi.org/10.1680/iicep.1989.3779spa
dc.relation.referencesSchoorl, J. M., & Veldkamp, A. (2001). Linking land use and landscape process modelling: A case study for the Álora region (South Spain). Agriculture, Ecosystems and Environment, 85(1–3), 281–292. https://doi.org/10.1016/S0167-8809(01)00194-3spa
dc.relation.referencesSchoorl, J. M., Veldkamp, A., & Bouma, J. (2002). Modeling Water and Soil Redistribution in a Dynamic Landscape Context. Soil Science Society of America Journal, 66(5), 1610–1619. https://doi.org/10.2136/sssaj2002.1610spa
dc.relation.referencesSchoorl, J., Temme, A., Gorp, W. Van, Baartmen, J., & Claessens, L. (2015). LAPSUS user Guide (v0.97). Wageningen University.spa
dc.relation.referencesSchumm, S. A. (1977). The Fluvial System. New York: Wiley.spa
dc.relation.referencesSchumm, S. A., Harvey, M. D., & Watson, C. C. (1984). Incised Channels: Morphology, Dynamics and control. Littleton, Colorado: Water Resources Publications.spa
dc.relation.referencesSimon, A. (1989). A model of channel response in disturbed alluvial channels. Earth Surface Processes and Landforms, 14(1), 11–26. https://doi.org/10.1002/esp.3290140103spa
dc.relation.referencesSimon, A., & Hupp, C. R. (1987). Channel Evolution in Modified Alluvial Streams. Transportation Research Record, (1151), 16–24.spa
dc.relation.referencesSonneveld, M. P. W., Temme, A. J. A. M., Schoorl, J. M., Claessens, L., Viveen, W., Baartman, J. E. M., … Lesschen, J. P. (2010). Landscape - Soilscape Evolution Modelling: LAPSUS. Brisbane, Australia: 19th World Congress of Soil Science, Soil Solutions for a Changing World.spa
dc.relation.referencesTemme, A. J.A.M., Claessens, L., Veldkamp, A., & Schoorl, J. M. (2011). Evaluating choices in multi-process landscape evolution models. Geomorphology, 125(2), 271–281. https://doi.org/10.1016/j.geomorph.2010.10.007spa
dc.relation.referencesTemme, Arnaud J.A.M., Schoorl, J. M., & Veldkamp, A. (2006). Algorithm for dealing with depressions in dynamic landscape evolution models. Computers and Geosciences, 32(4), 452–461. https://doi.org/10.1016/j.cageo.2005.08.001spa
dc.relation.referencesTucker, G. E., Lancaster, S. T., Gasparini, N. M., & Bras, R. L. (2001). The Channel-Hillslope Integrated Landscape Development Model(CHILD). In Landscape Erosion and Evolution Modeling. https://doi.org/10.1007/978-1-4615-0575-4spa
dc.relation.referencesTucker, G. E., & Slingerland, R. (1997). Drainage basin responses to climate change. Water Resources Research, 33(8), 2031–2047. https://doi.org/10.1029/97WR00409spa
dc.relation.referencesUS Army Corps of Engineers. (2020a). HEC-RAS Sediment Transport User’s Manual. Davis.spa
dc.relation.referencesUS Army Corps of Engineers. (2020b). HEC-RAS Two-Dimensional Sediment Transport User’s Manual.spa
dc.relation.referencesUS Army Corps of Engineers. (2021). HEC-RAS Hydraulic Reference Manual. Valters, D. (2016). Modelling Geomorphic Systems: Landscape Evolution. Geomorphological Techniques, 12(1880), 1–24. https://doi.org/10.13140/RG.2.1.1970.9047spa
dc.relation.referencesvan Gorp, W., Temme, A. J. A. M., Veldkamp, A., & Schoorl, J. M. (2015). Modelling long-term (300ka) upland catchment response to multiple lava damming events. Earth Surface Processes and Landforms, 40(7), 888–900. https://doi.org/10.1002/esp.3689spa
dc.relation.referencesvan Gorp, Wouter, Temme, A. J. A. M., Baartman, J. E. M., & Schoorl, J. M. (2014). Landscape evolution modelling of naturally dammed rivers. Earth Surface Processes and Landforms, 39(12), 1587–1600. https://doi.org/10.1002/esp.3547spa
dc.relation.referencesWatson, C. C., Biedenharn, D. S., & Bledsoe, B. P. (2002). Use of incised channel evolution models in understanding rehabilitation alternatives. Journal of the American Water Resources Association, 38, 1–10.spa
dc.relation.referencesWilcock, P. R., Asce, M., & Crowe, J. C. (2003). Surface-based Transport Model for Mixed-Size Sediment Surface-based Transport Model for Mixed-Size Sediment. 9429(February). https://doi.org/10.1061/(ASCE)0733-9429(2003)129spa
dc.relation.referencesWillgoose, G. (2005). User Manual for SIBERIA (version 8.30). Australia: Telluric Research.spa
dc.relation.referencesYang, C. T., & Ahn, J. (2011). GSTARS4-User’s Manual.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcEmbalses - Cauce
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembEmbalses
dc.subject.lembReservoirs
dc.subject.proposalModelos de evolución del paisajespa
dc.subject.proposalEvolución del caucespa
dc.subject.proposalEmbalsespa
dc.subject.proposalProcesos fluvialesspa
dc.subject.proposalModelos de transporte de sedimentosspa
dc.subject.proposalLandscape evolution modelseng
dc.subject.proposalChannel evolutioneng
dc.subject.proposalReservoireng
dc.subject.proposalFluvial processeseng
dc.subject.proposalSediment transport modelseng
dc.titleModelos cuantitativos de evolución del paisaje y su aplicabilidad a cambios inducidos en el cauce aguas arriba de un embalse en cuencas de montañaspa
dc.title.translatedQuantitative landscape evolution models and their applicability to changes induced in the channel upstream of a reservoir in mountain basinseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017216059.2023.pdf
Tamaño:
3.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: