Evaluación de las propiedades anticorrosivas y microestructurales de recubrimientos nano estructurados de (Ti, Cr, Al, Si) N depositados mediante la técnica de co-sputtering

dc.contributor.advisorOlaya Florez, Jhon Jairo
dc.contributor.advisorPiamba Tulcán, Oscar Edwin
dc.contributor.authorJimmy René, Junco Castro
dc.contributor.cvlachttps://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001730209spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=7Svyek4AAAAJ&hl=esspa
dc.contributor.orcidJunco Castro, Jimmy René [0000000150331797]spa
dc.contributor.researchgroupGrupo de Investigación en Corrosión, Tribologia y Energíaspa
dc.date.accessioned2024-10-31T19:10:24Z
dc.date.available2024-10-31T19:10:24Z
dc.date.issued2024-09-13
dc.descriptionIlustracionesspa
dc.description.abstractLa corrosión es un fenómeno electroquímico responsable del deterioro prematuro de una gran parte de componentes mecánicos, se conduce gran número de investigaciones en este campo en busca de reducir las pérdidas provocadas por este fenómeno. Una de las áreas en las cuales se investiga con gran interés son los recubrimientos depositados vía PVD. Debido a que estos muestran una excelente resistencia mecánica, además de exponer otras propiedades de interés dependientes de su composición química, pueden existir tantos tipos de recubrimientos como mezclas de elementos se ocurran, pero solo con la selección correcta de elementos y parámetros de deposición es posible obtener un resultado optimo en sus características. Un recubrimiento de tipo nitruro es aquel en el cual está presente el nitrógeno, además, cerca del 50% en su composición es este mismo. Para esta investigación se estudió una composición química conformada por 5 elementos Cr, Ti, Si, Al y N. para el proceso de deposición se utilizó la técnica de magnetrón co-sputtering reactivo alimentado con fuentes HIPIMS. Se seleccionaron herramientas de metal duro con fase cobalto debido a su extendido usa en la industria metalmecánica. El objetivo principal de este estudio fue investigar la resistencia a la corrosión, relacionarla con la microestructura y la composición química. Para la deposición de las películas se varió el contenido de silicio buscando variar la composición atómica de la capa. Se usaron dos blancos uno de TiAL 50-50 y uno de Cr ambos de alta pureza. La composición química fue estudiada por medio de las técnicas XPS (espectroscopía de fotoemisión de rayos X), EDS (espectroscopía de energía dispersada) y XRF (fluorescencia de rayos X), la estructura cristalográfica se estudió por medio de DRX (difracción de rayos X), la microsestructura por SEM (microscopia electrónica de barrido) y AFM (microscopia de fuerza atómica), la resistencia a la corrosión fue evaluada por medio de polarización potenciodinámica y espectroscopia de impedancia electroquímica (EIS). En la investigación se logró depositar los recubrimientos con buena adherencia y resistencia mecánica, luego de ello se procedió a caracterizarlos y correlacionar sus propiedades con la estructura. (Texto tomado de la fuente)spa
dc.description.abstractCorrosion is an electrochemical phenomenon responsible for the premature deterioration of a large number of mechanical components. A great deal of research is being conducted in this field to reduce the losses caused by this phenomenon. One area that is being investigated with great interest is the use of coatings deposited via PVD (Physical Vapor Deposition). Due to their excellent mechanical resistance and other properties dependent on their chemical composition, there can be as many types of coatings as there are combinations of elements. However, only with the correct selection of elements and deposition parameters is it possible to obtain optimal results in their characteristics. A nitride-type coating is one in which approximately 50% of its composition is nitrogen. For this research, a chemical composition consisting of 5 elements, namely Cr, Ti, Si, Al, and N, was studied. The deposition process utilized the reactive co-sputtering magnetron technique with HIPIMS (High Power Impulse Magnetron Sputtering) power supply. Carbide tools with a cobalt phase were selected due to their widespread use in the metalworking industry. The main objective of this study was to investigate corrosion resistance and relate it to the microstructure and chemical composition. The film deposition involved varying the silicon content in order to alter the atomic composition of the layer. Two targets were used, one made of TiAl 50-50 and another made of Cr, both of high purity. The chemical composition was studied using XPS (X-ray Photoelectron Spectroscopy), EDS (Energy-Dispersive X-ray Spectroscopy), and XRF (X-ray Fluorescence) techniques. The crystallographic structure was studied using XRD (X-ray Diffraction), the microstructure using SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy), and the corrosion resistance was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The coatings were successfully deposited with good adhesion and mechanical resistance. Afterwards, they were characterized, and their properties were correlated with the structure.eng
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.methodsSe instalo un sistema HiPIMS en la camara de deposicion semi-industrial de MS del laboratorio de tratamientos termicos de la Universidad Nacional de Colombia, luego se estudiaron los parametros de deposicion de las peliculas para obtener parametros apropiados para el estudio de las propiedades anticorrosivas, se hicieron caracterizaciones quimicas, estructurales y de resistencia a la corrosion de los recubrimientos duros depositados.spa
dc.description.researchareaCorrosíonspa
dc.description.researchareaRecubrimientos Durosspa
dc.description.sponsorshipColcienciasspa
dc.description.sponsorshipUniversidad Nacional de Colombiaspa
dc.description.sponsorshipUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.description.sponsorshipUniversidad ECCIspa
dc.format.extent174 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87133
dc.language.isospaspa
dc.publisherUniversidad Nacional De Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesTed Swanson, “NASA Engineering Network – Lessons Learned; Entry 0913; Space Mechanisms Reliability.”spa
dc.relation.referencesBassett Adele, “Lucha contra la corrosión ‘normas del Comité G01 de Lucha contra Tendencias Destructivas de la Naturaleza,’” Astm journal.spa
dc.relation.referencesD. R. Gabe, Principles of Metal Surface Treatment and Protection. 1978.spa
dc.relation.referencesN. Perez, “Electrochemical Corrosion,” in Electrochemistry and Corrosion Science, Cham: Springer International Publishing, 2016, pp. 1–23. doi: 10.1007/978-3-319-24847-9_1.spa
dc.relation.referencesD. R. GABE, “Theory of Corrosion Protection,” Principles of Metal Surface Treatment and Protection, pp. 179–198, Jan. 1978, doi: 10.1016/B978-0-08-022703-0.50013-6.spa
dc.relation.referencesS. Hochstrasser-Kurz et al., “ICP-MS, SKPFM, XPS, and Microcapillary Investigation of the Local Corrosion Mechanisms of WC–Co Hardmetal,” J Electrochem Soc, vol. 155, no. 8, p. C415, 2008, doi: 10.1149/1.2929822.spa
dc.relation.referencesA. M. Human and H. E. Exner, “The relationship between electrochemical behaviour and in-service corrosion of WC based cemented carbides,” Int J Refract Metals Hard Mater, vol. 15, no. 1–3, pp. 65–71, Jan. 1997, doi: 10.1016/S0263-4368(96)00014-5.spa
dc.relation.referencesA. M. F. Rocha et al., “Corrosion behaviour of WC hardmetals with nickel-based binders,” Corros Sci, vol. 147, pp. 384–393, Feb. 2019, doi: 10.1016/j.corsci.2018.11.015.spa
dc.relation.referencesS. Hochstrasser(-Kurz), Y. Mueller, C. Latkoczy, S. Virtanen, and P. Schmutz, “Analytical characterization of the corrosion mechanisms of WC-Co by electrochemical methods and inductively coupled plasma mass spectroscopy,” Corros Sci, vol. 49, no. 4, pp. 2002–2020, Apr. 2007, doi: 10.1016/j.corsci.2006.08.022.spa
dc.relation.referencesW. J. Tomlinson and I. D. Molyneux, “Corrosion, erosion-corrosion, and the flexural strength of WC-Co hardmetals,” J Mater Sci, vol. 26, no. 6, pp. 1605–1608, Mar. 1991, doi: 10.1007/BF00544670.spa
dc.relation.referencesA. M. F. Rocha et al., “Corrosion behaviour of WC hardmetals with nickel-based binders,” Corros Sci, vol. 147, pp. 384–393, Feb. 2019, doi: 10.1016/J.CORSCI.2018.11.015.spa
dc.relation.referencesA. Musbah, W. Eljaafari, E. Fessatwi, Y. Elsahli, and W. Com, “Comparison Between Chemical Vapor Deposition CVD and Physical Vapor Deposition PVD Coating Techniques: A Review Paper,” 2021. [Online]. Available: https://www.researchgate.net/publication/358818945spa
dc.relation.referencesL.-C. Ardila-Tellez, G. Orozco-Hernandez, F. Estupiñan-Mongui, C.-M. Moreno-Téllez, and J.-J. Olaya-Florez, “Review of Nitride-Based Multifunctional PVD-Deposited Coatings,” Revista Científica, vol. 46, no. 1, pp. 162–176, Jan. 2023, doi: 10.14483/23448350.20093.spa
dc.relation.referencesR. D. Arnell and P. J. Kelly, “Recent advances in magnetron sputtering,” Surf Coat Technol, vol. 112, no. 1–3, pp. 170–176, Feb. 1999, doi: 10.1016/S0257-8972(98)00749-X.spa
dc.relation.referencesP. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum, vol. 56, no. 3, pp. 159–172, Mar. 2000, doi: 10.1016/S0042-207X(99)00189-X.spa
dc.relation.referencesJ. Musil and J. Vlček, “Magnetron sputtering of films with controlled texture and grain size,” Mater Chem Phys, vol. 54, no. 1–3, pp. 116–122, Jul. 1998, doi: 10.1016/S0254-0584(98)00020-0.spa
dc.relation.referencesU. P. Morales, Á. M. Camargo, and O. F. Jhon Jairo, “magnetrón desbalanceado: configuración del campo magnético y su correlación con el campo de 2 espiras concéntricas,” 2012.spa
dc.relation.referencesStephan Bolz, “One system, many advantages. One system, many users.,” https://www.cemecon.com/us-en/coating-plants/cc-800-hipims.spa
dc.relation.referencesJ. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, “High power impulse magnetron sputtering discharge,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 30, no. 3, May 2012, doi: 10.1116/1.3691832.spa
dc.relation.referencesA. Anders, “Discharge physics of high power impulse magnetron sputtering,” Surf Coat Technol, vol. 205, no. SUPPL. 2, Jul. 2011, doi: 10.1016/j.surfcoat.2011.03.081.spa
dc.relation.referencesAsim. Aijaz, HiPIMS-Based Novel Deposition Processes for Thin Films. Linkopings Universitet, 2012.spa
dc.relation.referencesH. O. Pierson, “The Refractory Nitrides,” Handbook of Refractory Carbides and Nitrides, pp. 156–162, Jan. 1996, doi: 10.1016/B978-081551392-6.50010-6.spa
dc.relation.referencesG. K. Inwati et al., “2D Personality of Multifunctional Carbon Nitrides towards Enhanced Catalytic Performance in Energy Storage and Remediation,” Applied Sciences, vol. 12, no. 8, p. 3753, Apr. 2022, doi: 10.3390/app12083753.spa
dc.relation.referencesY.-Y. Chang, C.-M. Cheng, Y.-Y. Liou, W. Tillmann, F. Hoffmann, and T. Sprute, “High temperature wettability of multicomponent CrAlSiN and TiAlSiN coatings by molten glass,” Surf Coat Technol, vol. 231, pp. 24–28, Sep. 2013, doi: 10.1016/j.surfcoat.2012.04.050.spa
dc.relation.referencesL. A. Cañon Tafur, J. B. Luis Camilo, and O. F. Jhon Jairo, “Producción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivo.”spa
dc.relation.referencesB.-S. Lou, Y.-C. Yang, Y.-X. Qiu, W. Diyatmika, and J.-W. Lee, “Hybrid high power impulse and radio frequency magnetron sputtering system for TiCrSiN thin film depositions: Plasma characteristics and film properties,” Surf Coat Technol, vol. 350, pp. 762–772, Sep. 2018, doi: 10.1016/j.surfcoat.2018.04.072.spa
dc.relation.referencesY.-C. Kuo, C.-J. Wang, and J.-W. Lee, “The microstructure and mechanical properties evaluation of CrTiAlSiN coatings: Effects of silicon content,” Thin Solid Films, vol. 638, pp. 220–229, Sep. 2017, doi: 10.1016/j.tsf.2017.07.058.spa
dc.relation.referencesF. A. Estupiñan, C. M. Moreno, J. J. Olaya, and L. C. Ardila, “Wear Resistance of TiAlCrSiN Coatings Deposited by Means of the Co-Sputtering Technique,” Lubricants, vol. 9, no. 6, p. 64, Jun. 2021, doi: 10.3390/lubricants9060064.spa
dc.relation.referencesK. Ichijo, H. Hasegawa, and T. Suzuki, “Microstructures of (Ti,Cr,Al,Si)N films synthesized by cathodic arc method,” Surf Coat Technol, vol. 201, no. 9–11, pp. 5477–5480, Feb. 2007, doi: 10.1016/J.SURFCOAT.2006.07.016.spa
dc.relation.referencesK. Bobzin, T. Brögelmann, N. C. Kruppe, and M. Carlet, “Nanocomposite (Ti,Al,Cr,Si)N HPPMS coatings for high performance cutting tools,” Surf Coat Technol, vol. 378, p. 124857, Nov. 2019, doi: 10.1016/J.SURFCOAT.2019.07.073.spa
dc.relation.referencesL. Ni, T. Yang, J. Xiong, and Y. Fei, “Structure and mechanical properties of TiAlCrSiN coatings deposited on Ti(C,N)-NbC-Ni cermets with varied Mo2C contents,” Int J Refract Metals Hard Mater, vol. 86, p. 105083, Jan. 2020, doi: 10.1016/J.IJRMHM.2019.105083.spa
dc.relation.referencesH. Ezura, K. Ichijo, H. Hasegawa, K. Yamamoto, A. Hotta, and T. Suzuki, “Micro-hardness, microstructures and thermal stability of (Ti,Cr,Al,Si)N films deposited by cathodic arc method,” Vacuum, vol. 82, no. 5, pp. 476–481, Jan. 2008, doi: 10.1016/J.VACUUM.2007.07.048.spa
dc.relation.referencesP. Steiner, H. H�chst, and S. H�fner, “XPS investigation of simple metals,” Zeitschrift f�r Physik B Condensed Matter and Quanta, vol. 30, no. 2, pp. 129–143, Jun. 1978, doi: 10.1007/BF01320978.spa
dc.relation.referencesJohn F. Moulder, William F. Stickle, Peter E. Sobol, and Kenneth D. Bomben, Handbook of X ray Photoelectron Spectros. Eden Prairie, Minnesota 55344 United States of America: Perkin-Elmer Corporation, , 1992.spa
dc.relation.referencesCommittee on Corrosion Loss in Japan, “Report on Corrosion Loss in Japan,” Boshoku- Gijutsu (Corros.Eng), vol. 401, Jul. 1977.spa
dc.relation.references“Survey Cost of Corrosion in Japan,” Zairyo-to-Kankyo, vol. 50, no. 11, pp. 490–512, 2001, doi: 10.3323/jcorr1991.50.490.spa
dc.relation.referencesG. H. Koch, M. P. H. Brongers, N. G. Thompson, Y. P. Virmani, and J. H. Payer, “Corrosion Cost and Preventive Strategies in the United States [Final report],” NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE, Mar. 2002, Accessed: Nov. 07, 2022. [Online]. Available: https://rosap.ntl.bts.gov/view/dot/40697spa
dc.relation.referencesT. P. Hoar, “A Survey of Corrosion and Protection in the United Kingdom,” London, 1971.spa
dc.relation.referencesJong Jip Kim, “Survey of National Corrosion Cost,” Corros. Sci. Tech. , vol. 5, no. 5, p. . 173-176, Oct. 2006, Accessed: Nov. 08, 2022. [Online]. Available: https://www.j-cst.org/main/abstract_view.htm?scode=C&code=C00050500173&vol=5&no=5&type=aissuespa
dc.relation.referencesB. Hou et al., “The cost of corrosion in China,” Npj Mater Degrad, vol. 1, no. 1, p. 4, Dec. 2017, doi: 10.1038/s41529-017-0005-2.spa
dc.relation.referencesJ. Cuervo Tafur, J. Delgado Lastra, F. J. Herrera, and C. E. Arroyave, “INDICADORES DE LOS COSTOS DE LA CORROSIÓN EN COLOMBIA,” Contaduría Universidad de Antioquia, vol. 0, no. 33, pp. 95–132, Jan. 2016, [Online]. Available: https://revistas.udea.edu.co/index.php/cont/article/view/25545spa
dc.relation.references“Más de 26 mil millones de pesos pierde la industria colombiana debido a la corrosión de materiales.”spa
dc.relation.referencesW. Aperador, C. Ramirez, and J. Bautista-Ruiz, “Sinergia entre la corrosión erosión del acero 1045 recubierto por multicapas de TiN/TiAlN.” [Online]. Available: https://www.researchgate.net/publication/256137131spa
dc.relation.referencesM. Torres, H. Ascolani, and J. Olaya, “RESISTENCIA A LA CORROSIÓN DE RECUBRIMIENTOS DE CrN SOBRE SUSTRATOS DE ACERO MEDIANTE EIE,” Revista Latinoamericana de Metalurgia y Materiales, vol. 34, no. 1, pp. 107–117, 2014, Accessed: Jan. 04, 2024. [Online]. Available: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0255-69522014000100012&lng=es&nrm=iso&tlng=esspa
dc.relation.referencesF. Y. Velasco Velasco, L. C. Jiménez Borrego, and J. J. Olaya Flórez, “Recubrimiento TiSiN sobre acero inoxidable AISI 316 L: comportamiento mecánico, resistencia al desgaste y resistencia a la corrosión,” Universidad Nacional de Colombia, Bogotá D.C, 2020.spa
dc.relation.referencesD. Garcia and A. Mariño, “RECUBRIMIENTOS DE (Ti,Al)N SOBRE ACERO AISI 4140 POR SPUTTERING REACTIVO (Ti,Al)N COATINGS ON AISI 4140 BY R.F. SPUTTERING,” Año, vol. 74, pp. 181–185, 2007.spa
dc.relation.referencesJ. E. Sanchéz et al., “Mechanical, tribological, and electrochemical behavior of Cr1−xAlxN coatings deposited by r.f. reactive magnetron co-sputtering method,” Appl Surf Sci, vol. 256, no. 8, pp. 2380–2387, Feb. 2010, doi: 10.1016/j.apsusc.2009.10.071.spa
dc.relation.referencesG. Milena and P. Novoa, “Estudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por ‘co-sputtering’ reactivo.”spa
dc.relation.referencesF. A. Orjuela, F. F. Vallejo, H. Hahn, J. J. Olaya, J. E. Alfonso, and L. Velasco, “Nitrogen flux effect on the mechanical properties of AlCrTiN Nanostructured coatings obtained by R. F. magnetron sputtering,” Ceram Int, vol. 49, no. 11, pp. 17867–17875, Jun. 2023, doi: 10.1016/j.ceramint.2023.02.153.spa
dc.relation.referencesG. Prieto-Novoa, F. Vallejo, O. Piamba, J. Olaya, and Y. Pineda, “Effects of Cr Concentration on the Structure and the Electrical and Optical Properties of Ti-Al-Cr-N Thin Films Prepared by Means of Reactive Co-Sputtering,” Crystals (Basel), vol. 12, no. 12, p. 1831, Dec. 2022, doi: 10.3390/cryst12121831.spa
dc.relation.referencesA. M. G. Palacios, J. J. Olaya, and J. E. Alfonso, “Influence of Si on the Structural, Electrical, and Optical Properties of (Al, Ti, Si)N Films Deposited Via Reactive DC Sputtering,” Materials Research, vol. 23, no. 6, 2020, doi: 10.1590/1980-5373-mr-2019-0687.spa
dc.relation.referencesH. A. Macías, L. Yate, E. Coy, W. Aperador, and J. J. Olaya, “Insights and optimization of the structural and mechanical properties of TiWSiN coatings using the Taguchi method,” Appl Surf Sci, vol. 558, p. 149877, Aug. 2021, doi: 10.1016/j.apsusc.2021.149877.spa
dc.relation.referencesH. A. Macías, L. Yate, L. E. Coy, W. Aperador, and J. J. Olaya, “Influence of Si-addition on wear and oxidation resistance of TiWSixN thin films,” Ceram Int, vol. 45, no. 14, pp. 17363–17375, Oct. 2019, doi: 10.1016/j.ceramint.2019.05.295.spa
dc.relation.referencesH. A. Macías, L. Yate, L. E. Coy, J. J. Olaya, and W. Aperador, “Effect of nitrogen flow ratio on microstructure, mechanical and tribological properties of TiWSiNx thin film deposited by magnetron co-sputtering,” Appl Surf Sci, vol. 456, pp. 445–456, Oct. 2018, doi: 10.1016/j.apsusc.2018.06.129.spa
dc.relation.referencesL. Prakash, “Fundamentals and General Applications of Hardmetals,” in Comprehensive Hard Materials, Elsevier, 2014, pp. 29–90. doi: 10.1016/B978-0-08-096527-7.00002-7.spa
dc.relation.referencesH. M. Ortner, P. Ettmayer, H. Kolaska, and I. Smid, “The history of the technological progress of hardmetals,” Int J Refract Metals Hard Mater, vol. 49, pp. 3–8, Mar. 2015, doi: 10.1016/j.ijrmhm.2014.04.016.spa
dc.relation.referencesH.-O. Andrén, “Microstructures of cemented carbides,” Mater Des, vol. 22, no. 6, pp. 491–498, Sep. 2001, doi: 10.1016/S0261-3069(01)00006-1.spa
dc.relation.referencesP. Yi et al., “Effect of plasma electrolytic nitriding on the corrosion behavior and interfacial contact resistance of titanium in the cathode environment of proton-exchange membrane fuel cells,” J Power Sources, vol. 418, pp. 42–49, Apr. 2019, doi: 10.1016/J.JPOWSOUR.2019.02.043.spa
dc.relation.referencesJ. Jin, Z. He, and X. Zhao, “Formation of a protective TiN layer by liquid phase plasma electrolytic nitridation on Ti–6Al–4V bipolar plates for PEMFC,” Int J Hydrogen Energy, vol. 45, no. 22, pp. 12489–12500, Apr. 2020, doi: 10.1016/J.IJHYDENE.2020.02.152.spa
dc.relation.referencesT. Li, Z. Yan, Z. Liu, Y. Yan, and Y. Chen, “Surface microstructure and performance of TiN monolayer film on titanium bipolar plate for PEMFC,” Int J Hydrogen Energy, vol. 46, no. 61, pp. 31382–31390, Sep. 2021, doi: 10.1016/J.IJHYDENE.2021.07.021.spa
dc.relation.referencesJ. Lin, X. Zhang, Y. Ou, and R. Wei, “The structure, oxidation resistance, mechanical and tribological properties of CrTiAlN coatings,” Surf Coat Technol, vol. 277, pp. 58–66, Sep. 2015, doi: 10.1016/J.SURFCOAT.2015.07.013.spa
dc.relation.referencesD. Zhou, L. Huang, J. Yuan, and C. Li, “Influences of different sputtering current on the microstructure and electrical properties of silicon nitride thin films deposited on cemented carbide tools,” Ceram Int, vol. 47, no. 22, pp. 32160–32167, Nov. 2021, doi: 10.1016/J.CERAMINT.2021.08.108.spa
dc.relation.referencesD. You, Y. Jiang, Y. Zhao, W. Guo, and M. Tan, “Widely tunable refractive index silicon nitride films deposited by ion-assisted pulsed DC reactive magnetron sputtering,” Opt Mater (Amst), vol. 136, p. 113354, Feb. 2023, doi: 10.1016/J.OPTMAT.2022.113354.spa
dc.relation.referencesD. Zhou, L. Huang, J. Yuan, and C. Li, “Influences of different sputtering current on the microstructure and electrical properties of silicon nitride thin films deposited on cemented carbide tools,” Ceram Int, vol. 47, no. 22, pp. 32160–32167, Nov. 2021, doi: 10.1016/j.ceramint.2021.08.108.spa
dc.relation.referencesH. P. Löbl and M. Huppertz, “Thermal stability of nonstoichiometric silicon nitride films made by reactive dc magnetron sputter deposition,” Thin Solid Films, vol. 317, no. 1–2, pp. 153–156, Apr. 1998, doi: 10.1016/S0040-6090(97)00512-9.spa
dc.relation.referencesM. Vila, D. Cáceres, and C. Prieto, “Mechanical properties of sputtered silicon nitride thin films,” J Appl Phys, vol. 94, no. 12, p. 7868, 2003, doi: 10.1063/1.1626799.spa
dc.relation.referencesA. and N. H. Macmillan. Kelly, Strong Solids., 3rd ed. Oxford, 1986.spa
dc.relation.referencesH. Hasegawa and T. Suzuki, “Effects of second metal contents on microstructure and micro-hardness of ternary nitride films synthesized by cathodic arc method,” Surf Coat Technol, vol. 188–189, no. 1-3 SPEC.ISS., pp. 234–240, Nov. 2004, doi: 10.1016/J.SURFCOAT.2004.08.033.spa
dc.relation.referencesT. Li, Z. Yan, Z. Liu, M. He, Y. Yan, and Y. Chen, “High corrosion resistance and surface conductivity of (Ti1-Cr )N coating for titanium bipolar plate,” Corros Sci, vol. 200, p. 110256, May 2022, doi: 10.1016/j.corsci.2022.110256.spa
dc.relation.referencesJ. Lin, B. Mishra, J. J. Moore, and W. D. Sproul, “Microstructure, mechanical and tribological properties of Cr1−xAlxN films deposited by pulsed-closed field unbalanced magnetron sputtering (P-CFUBMS),” Surf Coat Technol, vol. 201, no. 7, pp. 4329–4334, Dec. 2006, doi: 10.1016/j.surfcoat.2006.08.090.spa
dc.relation.referencesJ. E. Sanchéz et al., “Mechanical, tribological, and electrochemical behavior of Cr1−xAlxN coatings deposited by r.f. reactive magnetron co-sputtering method,” Appl Surf Sci, vol. 256, no. 8, pp. 2380–2387, Feb. 2010, doi: 10.1016/J.APSUSC.2009.10.071.spa
dc.relation.referencesZ. Li, S. Miyake, M. Kumagai, H. Saito, and Y. Muramatsu, “Structure and Properties of Ti–Si–N Films Deposited by dc Magnetron Cosputtering on Positively Biased Substrates,” Jpn J Appl Phys, vol. 42, no. Part 1, No. 12, pp. 7510–7515, Dec. 2003, doi: 10.1143/JJAP.42.7510.spa
dc.relation.referencesS. Vepřek, “The search for novel, superhard materials,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 17, no. 5, pp. 2401–2420, Sep. 1999, doi: 10.1116/1.581977.spa
dc.relation.referencesE. Martinez, R. Sanjinés, O. Banakh, and F. Lévy, “Electrical, optical and mechanical properties of sputtered CrNy and Cr1−xSixN1.02 thin films,” Thin Solid Films, vol. 447–448, pp. 332–336, Jan. 2004, doi: 10.1016/S0040-6090(03)01113-1.spa
dc.relation.referencesH. Liu, X. Wang, C. Pei, and D. Sun, “Tribological properties and corrosion resistance of CrSiN coatings prepared via hybrid HiPIMS and DCMS,” Mater Res Express, vol. 6, no. 8, p. 086432, May 2019, doi: 10.1088/2053-1591/ab2001.spa
dc.relation.referencesT. Polcar and A. Cavaleiro, “High temperature behavior of nanolayered CrAlTiN coating: Thermal stability, oxidation, and tribological properties,” Surf Coat Technol, vol. 257, pp. 70–77, Oct. 2014, doi: 10.1016/J.SURFCOAT.2014.07.053.spa
dc.relation.referencesKenneth Holmberg and Allan Matthews, “Properties, Mechanisms, Techniques and Applications in Surface Engineering.”spa
dc.relation.referencesY. Deng, W. Chen, B. Li, C. Wang, T. Kuang, and Y. Li, “Physical vapor deposition technology for coated cutting tools: A review,” Ceram Int, vol. 46, no. 11, pp. 18373–18390, Aug. 2020, doi: 10.1016/j.ceramint.2020.04.168.spa
dc.relation.referencesN. A. S. M. Idris, S. Abubakar, A. L. Khalaf, M. H. Yaacob, S. Sagadevan, and S. Paiman, “Optical and optoelectronic metal oxide-based sensors; (optical sensors, principle, computational modeling, and application-based development),” Metal Oxides for Optoelectronics and Optics-Based Medical Applications, pp. 151–164, Jan. 2022, doi: 10.1016/B978-0-323-85824-3.00008-7.spa
dc.relation.referencesInc. Magna-Power Electronics, “SL Series Documentation,” release 1, Jan. 2022.spa
dc.relation.referencesIonautics AB, “HiPSTER 6, User Manual,” Linköping, SWEDEN, May 2020.spa
dc.relation.referencesIonautics AB, “HiPSTER Sync Unit, User Manual,” Linköping, SWEDEN, Sep. 2018.spa
dc.relation.referencesMDQ. Ing. MYRIAM MORENO AMADO, “Resistencia a la corrosión y al desgaste de recubrimientos nanoestructurados de Zirconia (ZrO2) –Plata (Ag) y/o Alúmina (Al2O3) obtenidos con técnica de ‘Sputtering’reactivo con magnetrón desbalanceado”.spa
dc.relation.referencesJ. F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES. Wiley, 2019. doi: 10.1002/9781119417651.spa
dc.relation.referencesB. (Burkhard) Beckhoff, Handbook of practical X-ray fluorescence analysis. Springer, 2006.spa
dc.relation.referencesC. Ni, “Scanning Electron Microscopy (SEM),” in Encyclopedia of Tribology, Boston, MA: Springer US, 2013, pp. 2977–2982. doi: 10.1007/978-0-387-92897-5_1217.spa
dc.relation.referencesM. Raza, “Oxygen vacancy stabilized zirconia (OVSZ); synthesis and properties”, doi: 10.13140/RG.2.2.30274.58566.spa
dc.relation.referencesD. D. Le Pevelen, “Small Molecule X-Ray Crystallography, Theory and Workflow,” Encyclopedia of Spectroscopy and Spectrometry, Second Edition, pp. 2559–2576, Jan. 2010, doi: 10.1016/B978-0-12-374413-5.00359-6.spa
dc.relation.referencesR. Shahbazian-Yassar, “Atomic Force Microscopy (AFM),” in Encyclopedia of Tribology, Boston, MA: Springer US, 2013, pp. 129–133. doi: 10.1007/978-0-387-92897-5_1213.spa
dc.relation.referencesF. Mansfeld, “The Polarization Resistance Technique for Measuring Corrosion Currents,” in Advances in Corrosion Science and Technology, Boston, MA: Springer US, 1976, pp. 163–262. doi: 10.1007/978-1-4684-8986-6_3.spa
dc.relation.referencesM. Stern and A. L. Geaby, “Electrochemical Polarization,” J Electrochem Soc, vol. 104, no. 1, p. 56, 1957, doi: 10.1149/1.2428496.spa
dc.relation.references“Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements.” Accessed: Mar. 21, 2022. [Online]. Available: https://www.astm.org/g0059-97r20.htmlspa
dc.relation.references“ASTM G5-14(2021).” Accessed: Mar. 21, 2022. [Online]. Available: https://www.techstreet.com/standards/astm-g5-14-2021?product_id=2232537spa
dc.relation.referencesS. Grassini, “Electrochemical impedance spectroscopy (EIS) for the in-situ analysis of metallic heritage artefacts,” Corrosion and Conservation of Cultural Heritage Metallic Artefacts, pp. 347–367, Jan. 2013, doi: 10.1533/9781782421573.4.347.spa
dc.relation.referencesC. Liu, Q. Bi, A. Leyland, and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behavior of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. EIS interpretation of corrossion behaviour,” Corros Sci, vol. 45, no. 6, pp. 1257–1273, Jun. 2003, doi: 10.1016/S0010-938X(02)00214-7.spa
dc.relation.referencesM. C. Biesinger, C. Brown, J. R. Mycroft, R. D. Davidson, and N. S. McIntyre, “X‐ray photoelectron spectroscopy studies of chromium compounds,” Surface and Interface Analysis, vol. 36, no. 12, pp. 1550–1563, Dec. 2004, doi: 10.1002/sia.1983.spa
dc.relation.referencesM. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,” Appl Surf Sci, vol. 257, no. 7, pp. 2717–2730, Jan. 2011, doi: 10.1016/j.apsusc.2010.10.051.spa
dc.relation.referencesT. Do and N. S. McIntyre, “Application of parallel factor analysis and X-ray photoelectron spectroscopy to the initial stages in oxidation of aluminium,” Surf Sci, vol. 433–435, pp. 136–141, Aug. 1999, doi: 10.1016/S0039-6028(99)00064-3.spa
dc.relation.referencesA. Kubala-Kukuś et al., “X-ray photoelectron spectroscopy analysis of chemically modified halloysite,” Radiation Physics and Chemistry, vol. 175, p. 108149, Oct. 2020, doi: 10.1016/j.radphyschem.2019.02.008.spa
dc.relation.referencesthermofisher, “Aluminum X-ray photoelectron spectra, aluminum electron configuration, and other elemental information.”spa
dc.relation.referencesXPS International LLC, “BE Lookup Table.”spa
dc.relation.referencesA. Lippitz and Th. Hübert, “XPS investigations of chromium nitride thin films,” Surf Coat Technol, vol. 200, no. 1–4, pp. 250–253, Oct. 2005, doi: 10.1016/j.surfcoat.2005.02.091.spa
dc.relation.referencesI. Milošev, H. H. Strehblow, and B. Navinšek, “Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation,” Thin Solid Films, vol. 303, no. 1–2, pp. 246–254, Jul. 1997, doi: 10.1016/S0040-6090(97)00069-2.spa
dc.relation.referencesVincent Crist, “Surface Contamination.”spa
dc.relation.referencesD. Jaeger and J. Patscheider, “A complete and self-consistent evaluation of XPS spectra of TiN,” J Electron Spectros Relat Phenomena, vol. 185, no. 11, pp. 523–534, Nov. 2012, doi: 10.1016/J.ELSPEC.2012.10.011.spa
dc.relation.referencesS. Veprek et al., “Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa,” Surf Coat Technol, vol. 133–134, pp. 152–159, Nov. 2000, doi: 10.1016/S0257-8972(00)00957-9.spa
dc.relation.referencesA. A. Galuska, J. C. Uht, and N. Marquez, “Reactive and nonreactive ion mixing of Ti films on carbon substrates,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 6, no. 1, pp. 110–122, Jan. 1988, doi: 10.1116/1.574992.spa
dc.relation.referencesA. K.-V. S. W. G. and C. J. P. Alexander V. Naumkin, “NIST X-ray Photoelectron Spectroscopy Database ,” NIST Standard Reference Database Number 20, National Institute of Standards and Technology.spa
dc.relation.referencesA. Seeber, A. N. Klein, C. V. Speller, P. Egert, F. A. Weber, and A. Lago, “Sintering unalloyed titanium in DC electrical abnormal glow discharge,” Materials Research, vol. 13, no. 1, pp. 99–106, Mar. 2010, doi: 10.1590/S1516-14392010000100020.spa
dc.relation.referencesA. Lippitz and Th. Hübert, “XPS investigations of chromium nitride thin films,” Surf Coat Technol, vol. 200, no. 1–4, pp. 250–253, Oct. 2005, doi: 10.1016/j.surfcoat.2005.02.091.spa
dc.relation.referencesN. C. Saha and H. G. Tompkins, “Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study,” J Appl Phys, vol. 72, no. 7, pp. 3072–3079, Oct. 1992, doi: 10.1063/1.351465.spa
dc.relation.referencesT. Hagio, A. Takase, and S. Umebayashi, “X-ray photoelectron spectroscopic studies of ?-sialons,” J Mater Sci Lett, vol. 11, no. 12, pp. 878–880, 1992, doi: 10.1007/BF00730493.spa
dc.relation.referencesI. Bertóti, “Characterization of nitride coatings by XPS,” Surf Coat Technol, vol. 151–152, pp. 194–203, Mar. 2002, doi: 10.1016/S0257-8972(01)01619-X.spa
dc.relation.referencesF. Werfel and O. Brümmer, “Corundum Structure Oxides Studied by XPS,” Phys Scr, vol. 28, no. 1, pp. 92–96, Jul. 1983, doi: 10.1088/0031-8949/28/1/013.spa
dc.relation.referencesX.-F. Zhang, P.-G. Wen, and Y. Yan, “Silicon nitride thin films deposited by DC pulse reactive magnetron sputtering,” J. Chu and Z. Wang, Eds., Oct. 2010, p. 79951M. doi: 10.1117/12.888164.spa
dc.relation.referencesM. C. Biesinger, “Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review,” Appl Surf Sci, vol. 597, p. 153681, Sep. 2022, doi: 10.1016/j.apsusc.2022.153681.spa
dc.relation.referencesK. Ichijo, H. Hasegawa, and T. Suzuki, “Microstructures of (Ti,Cr,Al,Si)N films synthesized by cathodic arc method,” Surf Coat Technol, vol. 201, no. 9–11, pp. 5477–5480, Feb. 2007, doi: 10.1016/j.surfcoat.2006.07.016.spa
dc.relation.referencesH. Ezura, K. Ichijo, H. Hasegawa, K. Yamamoto, A. Hotta, and T. Suzuki, “Micro-hardness, microstructures and thermal stability of (Ti,Cr,Al,Si)N films deposited by cathodic arc method,” Vacuum, vol. 82, no. 5, pp. 476–481, Jan. 2008, doi: 10.1016/J.VACUUM.2007.07.048.spa
dc.relation.referencesL. ZHU, C. SONG, W. NI, and Y. LIU, “Effect of 10% Si addition on cathodic arc evaporated TiAlSiN coatings,” Transactions of Nonferrous Metals Society of China, vol. 26, no. 6, pp. 1638–1646, Jun. 2016, doi: 10.1016/S1003-6326(16)64273-5.spa
dc.relation.referencesY. Tanaka, N. Ichimiya, Y. Onishi, and Y. Yamada, “Structure and properties of Al–Ti–Si–N coatings prepared by the cathodic arc ion plating method for high speed cutting applications,” Surf Coat Technol, vol. 146–147, pp. 215–221, Sep. 2001, doi: 10.1016/S0257-8972(01)01391-3.spa
dc.relation.referencesJ. J. Pittari, J. J. Swab, J. Wright, and K. Atwater, “Mechanical evaluation of WC-Co materials with varying microstructures,” Int J Refract Metals Hard Mater, vol. 104, p. 105809, Apr. 2022, doi: 10.1016/J.IJRMHM.2022.105809.spa
dc.relation.referencesJ. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” Journal of Vacuum Science and Technology, vol. 11, no. 4, pp. 666–670, Jul. 1974, doi: 10.1116/1.1312732.spa
dc.relation.referencesJ. A. Thornton, “Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings,” Journal of Vacuum Science and Technology, vol. 12, no. 4, pp. 830–835, Jul. 1975, doi: 10.1116/1.568682.spa
dc.relation.referencesE. Kusano, “Structure-Zone Modeling of Sputter-Deposited Thin Films: A Brief Review,” Applied Science and Convergence Technology, vol. 28, no. 6, pp. 179–185, Nov. 2019, doi: 10.5757/ASCT.2019.28.6.179.spa
dc.relation.referencesR. Messier, A. P. Giri, and R. A. Roy, “Revised structure zone model for thin film physical structure,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 2, no. 2, pp. 500–503, Apr. 1984, doi: 10.1116/1.572604.spa
dc.relation.referencesH. Alejandro and M. Ramírez, “Recubrimientos nanoestructurados de Ti-W-Si-N depositados mediante la técnica de co-sputtering magnetrón reactivo.”spa
dc.relation.referencesI. Mónica and L. Rojas Flórez, “Caracterización de la resistencia a la corrosión de aleaciones multicomponentes de CrNbMoTaW de alta entropía depositados con la técnica de sputtering,” 2023.spa
dc.relation.referencesH. Liu, X. Wang, C. Pei, and D. Sun, “Tribological properties and corrosion resistance of CrSiN coatings prepared via hybrid HiPIMS and DCMS,” Mater Res Express, vol. 6, no. 8, p. 086432, May 2019, doi: 10.1088/2053-1591/ab2001.spa
dc.relation.referencesL.-C. Chang, Y.-H. Liu, and Y.-I. Chen, “Mechanical Properties and Oxidation Behavior of Cr-Si-N Coatings,” 2019, doi: 10.3390/coatings9080528.spa
dc.relation.referencesM. Fenker et al., “Improvement of the corrosion resistance of hard wear resistant coatings by intermediate plasma etching or multilayered structure,” Surf Coat Technol, vol. 150, no. 1, pp. 101–106, Feb. 2002, doi: 10.1016/S0257-8972(01)01506-7.spa
dc.relation.referencesJ. C. Caicedo, G. Cabrera, H. H. Caicedo, C. Amaya, and W. Aperador, “Nature in corrosion–erosion surface for [TiN/TiAlN]n nanometric multilayers growth on AISI 1045 steel,” Thin Solid Films, vol. 520, no. 13, pp. 4350–4361, Apr. 2012, doi: 10.1016/J.TSF.2012.02.061.spa
dc.relation.referencesP. V. Nazarenko, A. G. Molyar, I. E. Polishchuk, O. G. Yachinskaya, and A. A. Il’in, “Structural defects and the electrochemical properties of nitride coatings,” Metal Science and Heat Treatment, vol. 32, no. 4, pp. 305–308, Apr. 1990, doi: 10.1007/BF00729879.spa
dc.relation.referencesA. Trentin, A. Pakseresht, A. Duran, Y. Castro, and D. Galusek, “Electrochemical Characterization of Polymeric Coatings for Corrosion Protection: A Review of Advances and Perspectives,” Polymers (Basel), vol. 14, no. 12, p. 2306, Jun. 2022, doi: 10.3390/polym14122306.spa
dc.relation.referencesC. Liliana and E. Peña, “Resistencia a la corrosión y al desgaste de películas delgadas de aceros inoxidables con y sin plata para aplicaciones biomédicas.”spa
dc.relation.referencesF. Leonardo and A. Vega, “Sintetizar y caracterizar de la resistencia a la corrosión de recubrimientos cerámicos de (SiO2-TiO2-ZrO2-Bi2O3) producidos mediante la técnica sol-gel y depositados sobre las aleaciones de acero inoxidable AISI 316L y de titanio Ti6Al4V,” 2017.spa
dc.relation.referencesR. Lakra, R. Kumar, D. Nath Thatoi, P. Kumar Sahoo, and A. Soam, “Synthesis and characterization of cobalt oxide (Co3O4) nanoparticles,” Mater Today Proc, vol. 41, pp. 269–271, 2021, doi: 10.1016/j.matpr.2020.09.099.spa
dc.relation.referencesR. N. Bhowmik and N. Naresh, “Structure, ac conductivity and complex impedance study of Co 3 O 4 and Fe 3 O 4 mixed spinel ferrites,” 2010. [Online]. Available: www.ijest-ng.comspa
dc.relation.referencesT. Ingsel, F. M. de Souza, and R. K. Gupta, “Introduction to Electrocatalysts,” 2022, pp. 1–29. doi: 10.1021/bk-2022-1431.ch001.spa
dc.relation.referencesB. Tlili, C. Nouveau, G. Guillemot, A. Besnard, and A. Barkaoui, “Investigation of the Effect of Residual Stress Gradient on the Wear Behavior of PVD Thin Films,” J Mater Eng Perform, vol. 27, no. 2, pp. 457–470, Feb. 2018, doi: 10.1007/s11665-018-3132-1.spa
dc.relation.referencesY. X. Wang, S. Zhang, J.-W. Lee, W. S. Lew, and B. Li, “Influence of bias voltage on the hardness and toughness of CrAlN coatings via magnetron sputtering,” Surf Coat Technol, vol. 206, no. 24, pp. 5103–5107, Aug. 2012, doi: 10.1016/j.surfcoat.2012.06.041.spa
dc.relation.referencesF. F. Klimashin et al., “High-power-density sputtering of industrial-scale targets: Case study of (Al,Cr)N,” Mater Des, vol. 237, p. 112553, Jan. 2024, doi: 10.1016/j.matdes.2023.112553.spa
dc.relation.referencesY. Lin et al., “Effect of titanium addition on structure, corrosion resistance and mechanical properties of aluminum coatings on NdFeB by ion-beam-assisted magnetron sputtering,” Vacuum, vol. 181, p. 109642, Nov. 2020, doi: 10.1016/j.vacuum.2020.109642.spa
dc.relation.referencesP. M. Perillo, “Corrosion Behavior of Coatings of Titanium Nitride and Titanium-Titanium Nitride on Steel Substrates,” CORROSION, vol. 62, no. 2, pp. 182–185, Feb. 2006, doi: 10.5006/1.3278263.spa
dc.relation.referencesA. M. Oje and A. A. Ogwu, “Chromium oxide coatings with the potential for eliminating the risk of chromium ion release in orthopaedic implants,” R Soc Open Sci, vol. 4, no. 7, p. 170218, Jul. 2017, doi: 10.1098/rsos.170218.spa
dc.relation.referencesM. Habibi et al., “Microstructure, fractal geometry and corrosion properties of CrN thin films: The effect of shot number and angular position,” Mater Today Commun, vol. 32, p. 104072, Aug. 2022, doi: 10.1016/j.mtcomm.2022.104072.spa
dc.relation.referencesA. Ferreira et al., “Nanostructured Cr(N,O) based thin films for relative humidity sensing,” Vacuum, vol. 191, p. 110333, Sep. 2021, doi: 10.1016/j.vacuum.2021.110333.spa
dc.relation.referencesT. Wierzchoń, I. Ulbin-Pokorska, and K. Sikorski, “Corrosion resistance of chromium nitride and oxynitride layers produced under glow discharge conditions,” Surf Coat Technol, vol. 130, no. 2–3, pp. 274–279, Aug. 2000, doi: 10.1016/S0257-8972(00)00696-4.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.armarcMicroscopía de rayos X
dc.subject.armarc:Difracción de rayos X
dc.subject.armarcEspectroscopia de rayos X
dc.subject.ddc670 - Manufacturaspa
dc.subject.ddc679 -Otros productos de materiales específicosspa
dc.subject.lembMateriales resistentes a la corrosión
dc.subject.proposalNitrurosspa
dc.subject.proposalPVDeng
dc.subject.proposalCorrosiónspa
dc.subject.proposalSputteringeng
dc.subject.proposalMagnetronspa
dc.subject.proposalHiPIMSeng
dc.subject.proposalPulverización catódicaspa
dc.subject.proposalHiPIMSspa
dc.subject.proposalMagnetroneng
dc.subject.proposalCorrosioneng
dc.titleEvaluación de las propiedades anticorrosivas y microestructurales de recubrimientos nano estructurados de (Ti, Cr, Al, Si) N depositados mediante la técnica de co-sputteringspa
dc.title.translatedEvaluation of the anticorrosive and microstructural properties of nanostructured (Ti, Cr, Al, Si) N coatings deposited by co-sputtering techniqueeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleFabricación y reutilización de herramientas de metal duro a través de decapado y depósito de recubrimientos nanoestructurados obtenidos mediante cosputteringspa
oaire.fundernameColcienciasspa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameUniversidad Pedagógica y Tecnológica de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030581111.2024.pdf
Tamaño:
8.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: