Del bosque seco tropical a las ciudades : respuestas del ensamblaje de aves a los ambientes urbanos

dc.contributor.advisorZamora Abrego, Joan Gastón
dc.contributor.advisorAcevedo Quintero, Juan Fernando
dc.contributor.authorRestrepo Zuluaga, David Esteban
dc.contributor.orcidRestrepo Zuluaga, David Esteban [0009-0004-1669-5860]spa
dc.contributor.researchgroupEcología y Conservación de Fauna Silvestrespa
dc.coverage.countryColombia
dc.date.accessioned2024-07-16T16:17:55Z
dc.date.available2024-07-16T16:17:55Z
dc.date.issued2023
dc.descriptionIlustracionesspa
dc.description.abstractEl rápido crecimiento urbano ha venido transformando drásticamente los ecosistemas, reemplazando coberturas naturales por artificiales, causando homogenización en las comunidades biológicas. Gran parte de la creciente literatura sobre las respuestas de las aves a los ambientes urbanos se restringe a regiones templadas, y pocos estudios se desarrollan en el neotrópico. Particularmente, el bosque seco tropical colombiano es el ecosistema en estado más crítico, sufriendo una fuerte presión por la urbanización, afectando negativamente a la biodiversidad. Se determinaron las respuestas de las aves a los ambientes urbanos a través de identificar y cuantificar los cambios en: 1) la diversidad taxonómica y funcional; y 2) las propiedades estructurales de las redes de frugivoría de los ensamblajes de aves, dados por la variación en el grado de urbanización, estructura y diversidad de la vegetación. Los principales hallazgos muestran que 1) la diversidad de Shannon, la riqueza, equitatividad y dispersión funcional de los ensamblajes de aves se ven afectados negativamente por la urbanización y diferentes aspectos de la estructura y diversidad de las plantas; 2) las propiedades estructurales de las redes de frugivoría no mostraron asociación con la urbanización ni con ninguna variable de la estructura y diversidad de la vegetación. Estos resultados revelan aspectos cruciales para el mantenimiento de la diversidad taxonómica y funcional de las aves. Además, muestra la necesidad de continuar con investigaciones que revelen patrones más claros acerca del efecto de la urbanización sobre las diferentes propiedades de las redes de interacción. Todo esto, en pro de mantener la funcionalidad ecosistémica. (Tomado de la fuente)spa
dc.description.abstractRapid urban growth has been drastically transforming ecosystems, replacing natural covers with artificial ones, causing homogenization in biological communities. Much of the growing literature on bird responses to urban environments is restricted to temperate regions, with few studies taking place in the Neotropics. In particular, the Colombian tropical dry forest is the ecosystem in the most critical state, suffering strong pressure from urbanization, negatively affecting biodiversity. Bird responses to urban environments were determined by identifying and quantifying changes in: 1) taxonomic and functional diversity; and 2) the structural properties of the frugivory networks of bird assemblages, given by the variation in the degree of urbanization, structure and diversity of the vegetation. The main findings show that 1) Shannon diversity, richness, evenness, and functional dispersal of bird assemblages are negatively affected by urbanization and different aspects of plant structure and diversity; 2) the structural properties of the frugivory networks showed no association with urbanization or with any variable of the structure and diversity of the vegetation. These results reveal crucial aspects for the maintenance of the taxonomic and functional diversity of birds. In addition, it shows the need to continue with research that reveals clearer patterns about the effect of urbanization on the different properties of interaction networks. All this, in favor of maintaining ecosystem functionality.eng
dc.description.curricularareaBosques Y Conservación Ambiental.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bosques y Conservación Ambientalspa
dc.description.researchareaEcología urbanaspa
dc.format.extent95 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86458
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambientalspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAcevedo-Quintero, J. F., Zamora-Abrego, J. G., & García, D. (2020). From structure to function in mutualistic interaction networks: Topologically important frugivores have greater potential as seed dispersers. Journal of Animal Ecology, 89(9), 2181–2191. https://doi.org/10.1111/1365-2656.13273spa
dc.relation.referencesAgudelo-Rendón, D., Rendón-Gutiérrez, N., Cadavid-Ramírez, A. C., Choperena-Palencia, M. C., Arias-Monsalve, C. S., & Gómez-R, D. A. (2021). Composición del ensamblaje de aves en una zona periurbana de Medellín, Colombia. Revista Colombiana de Ciencia Animal - RECIA, 13(1). https://doi.org/10.24188/reciaspa
dc.relation.referencesAkaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705spa
dc.relation.referencesAndren, H. (1999). Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. NCASI Technical Bulletin, 781 I, 12–13. https://doi.org/10.2307/3545823spa
dc.relation.referencesAronson, M., La Sorte, F., Nilon, C., Katti, M., Goddard, M., Lepczyk, C., Warren, P., Williams, N., Cilliers, S., Clarkson, B., Dobbs, C., Dolan, R., Hedblom, M., Klotz, S., Kooijmans, J., Kühn, I., MacGregor-Fors, I., McDonnell, M., Mörtberg, U., … Winter, M. (2014). A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences, 281(1780), 20133330. https://doi.org/10.1098/rspb.2013.3330spa
dc.relation.referencesAvendaño, J. E., Tejeiro-M., N., Díaz-Cárdenas, J., Amaya-Burgos, J. J., Aponte, A. F., Gamboa, N., José Salcedo-Sarmiento, Y. E., Velásquez-Suárez, Á. J., & Morales-Rozo, A. (2018). Birds of universidad de los Llanos (Villavicencio, Colombia): A rich community at the andean foothills-savanna transition. Boletin Cientifico Del Centro de Museos, 22(2), 51–75. https://doi.org/10.17151/bccm.2018.22.2.5spa
dc.relation.referencesAyerbe-Quiñones, F. (2022). Guía Ilustrada de la Avifauna Colombiana (Tercera Edición).spa
dc.relation.referencesBeckett, S. J. (2016). Improved community detection in weighted bipartite networks. Royal Society Open Science, 3(1), 140536. https://doi.org/10.1098/rsos.140536spa
dc.relation.referencesBenitez, J., Pizarro, J. C., Blazina, A. P., & Lencinas, M. V. (2021). Response of bird communities to native forest urbanization in one of the southernmost city of the world. Urban Forestry and Urban Greening, 58. https://doi.org/10.1016/J.UFUG.2020.126887spa
dc.relation.referencesBibby, C., Burgess, N., Hill, D., & Mustoe, S. (2000). Bird census techniques. Academic Press.spa
dc.relation.referencesBlüthgen, N. (2010). Why network analysis is often disconnected from community ecology: A critique and an ecologist’s guide. Basic and Applied Ecology, 11(3), 185–195. https://doi.org/https://doi.org/10.1016/j.baae.2010.01.001spa
dc.relation.referencesBox, G. E. P., & Cox, D. R. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–243. https://doi.org/https://doi.org/10.1111/j.2517-6161.1964.tb00553.xspa
dc.relation.referencesBravo-López, P. E. (2021). Autocorrelación espacial - Índices para determinar su presencia en datos geográficos: Breve revisión de la literatura. Universidad-Verdad, 1(78), 48–61. https://doi.org/10.33324/uv.v1i78.351spa
dc.relation.referencesBrudvig, L. A., Damschen, E. I., Haddad, N. M., Levey, D. J., & Tewksbury, J. J. (2015). The influence of habitat fragmentation on multiple plant-animal interactions and plant reproduction. Ecology, 96(10), 2669–2678. https://doi.org/10.1890/14-2275.1spa
dc.relation.referencesBuitrón-Jurado, G., & Sanz, V. (2021). Specialization increases in a frugivorous bird–plant network from an isolated montane forest remnant. Community Ecology, 22(3), 261–274. https://doi.org/10.1007/s42974-020-00010-xspa
dc.relation.referencesBurnham, K. P., & Anderson, D. (2002). Model Selection and Multimodel Inference: A Practical Information-theoretic Approach (Second). Springer.spa
dc.relation.referencesCampos-Silva, L. A., & Piratelli, A. J. (2021a). Vegetation structure drives taxonomic diversity and functional traits of birds in urban private native forest fragments. Urban Ecosystems, 24(2), 375–390. https://doi.org/10.1007/s11252-020-01045-8spa
dc.relation.referencesCampos-Silva, L. A., & Piratelli, A. J. (2021b). Vegetation structure drives taxonomic diversity and functional traits of birds in urban private native forest fragments. Urban Ecosystems, 24(2), 375–390. https://doi.org/10.1007/s11252-020-01045-8spa
dc.relation.referencesChávez-Zichinelli, C. A., Macgregor-Fors, I., Quesada, J., Talamás, P., Romano, M. C., Valdéz, R., & Schondube, J. E. (2013). How Stressed are Birds in an Urbanizing Landscape? Relationships Between the Physiology of Birds and Three Levels of Habitat Alteration. The Condor, 115(1), 84–92. https://academic.oup.com/condor/article-abstract/115/1/84/5152771spa
dc.relation.referencesClaramunt, S. (2021). Flight efficiency explains differences in natal dispersal distances in birds. Ecology, 102(9), e03442. https://doi.org/https://doi.org/10.1002/ecy.3442spa
dc.relation.referencesClaramunt, S., Derryberry, E. P., Remsen, J. V, & Brumfield, R. T. (2011). High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proceedings of the Royal Society B: Biological Sciences, 279(1733), 1567–1574. https://doi.org/10.1098/rspb.2011.1922spa
dc.relation.referencesClergeau, P., Croci, S., Jokimäki, J., Kaisanlahti-Jokimäki, M. L., & Dinetti, M. (2006). Avifauna homogenisation by urbanisation: Analysis at different European latitudes. Biological Conservation, 127(3), 336–344. https://doi.org/10.1016/j.biocon.2005.06.035spa
dc.relation.referencesConole, L. E., & Kirkpatrick, J. B. (2011). Functional and spatial differentiation of urban bird assemblages at the landscape scale. Landscape and Urban Planning, 100(1–2), 11–23. https://www.sciencedirect.com/science/article/pii/S0169204610002872spa
dc.relation.referencesCooke, R. S. C., Bates, A. E., & Eigenbrod, F. (2019). Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Global Ecology and Biogeography, 28(4), 484–495. https://doi.org/https://doi.org/10.1111/geb.12869spa
dc.relation.referencesCórdova-Tapia, F., & Zambrano, L. (2015). Functional diversity in community ecology. Ecosistemas, 24(3), 78–87. https://doi.org/10.7818/ecos.2015.24-3.10spa
dc.relation.referencesCorporación Autónoma del Cesar. (2020, July 20). corpocesar.gov.co. https://www.corpocesar.gov.co/364_especies_de_aves_reporto_el__departamento_del_Cesar_en_la_jornada_mundial_de_observacion_de_aves.htmlspa
dc.relation.referencesCorrea-Ayram, C. A., Etter, A., Díaz-Timoté, J., Rodríguez Buriticá, S., Ramírez, W., & Corzo, G. (2020). Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117, 106630. https://doi.org/10.1016/J.ECOLIND.2020.106630spa
dc.relation.referencesCristaldi, M. A., Giraudo, A. R., Arzamendia, V., Bellini, G. P., & Claus, J. (2017). Urbanization impacts on the trophic guild composition of bird communities. Journal of Natural History, 51(39–40), 2385–2404. https://doi.org/10.1080/00222933.2017.1371803spa
dc.relation.referencesCurzel, F. E., Bellocq, M. I., & Leveau, L. M. (2021). Local and landscape features of wooded streets influenced bird taxonomic and functional diversity. Urban Forestry & Urban Greening, 66, 127369. https://doi.org/https://doi.org/10.1016/j.ufug.2021.127369spa
dc.relation.referencesDalsgaard, B., Martín González, A. M., Olesen, J. M., Ollerton, J., Timmermann, A., Andersen, L. H., & Tossas, A. G. (2009). Plant-hummingbird interactions in the West Indies: Floral specialisation gradients associated with environment and hummingbird size. Oecologia, 159(4), 757–766. https://doi.org/10.1007/s00442-008-1255-zspa
dc.relation.referencesDavid, P., Thébault, E., Anneville, O., Duyck, P.-F., Chapuis, E., & Loeuille, N. (2017). Impacts of Invasive Species on Food Webs: A Review of Empirical Data. In D. A. Bohan, A. J. Dumbrell, & F. Massol (Eds.), Advances in Ecological Research (Vol. 56, pp. 1–60). Academic Press. https://doi.org/https://doi.org/10.1016/bs.aecr.2016.10.001spa
dc.relation.referencesDormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/https://doi.org/10.1111/j.1600-0587.2012.07348.xspa
dc.relation.referencesDormann, C. F., Fründ, J., Blüthgen, N., & Gruber, B. (2009). Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks.spa
dc.relation.referencesDormann, C. F., Gruber, B., & Fründ, J. (2008). Introducing the bipartite Package: Analysing Ecological Networks. Interacción, 8(2). http://erzuli.ss.uci.edu/R.stuff.spa
dc.relation.referencesElmqvist, T., Fragkias, M., Goodness, J., & Güneralp, B. (2013). Urbanization, biodiversity and ecosystem services: challenges and opportunities: a global assessment. https://library.oapen.org/bitstream/handle/20.500.12657/28058/2013_Book_UrbanizationBiodiversityAndEco.pdf?sequence=1spa
dc.relation.referencesEtter, A., McAlpine, C., & Possingham, H. (2008). Historical patterns and drivers of landscape change in Colombia since 1500: a regionalized spatial approach. Ann. Assoc. Am. Geogr., 98, 2–23. https://doi.org/10.1080/00045600701733911spa
dc.relation.referencesEvans, K. L., Newson, S. E., & Gaston, K. J. (2009). Habitat influences on urban avian assemblages. Ibis, 151(1), 19–39. https://doi.org/https://doi.org/10.1111/j.1474-919X.2008.00898.xspa
dc.relation.referencesFerenc, M., Sedláček, O., Fuchs, R., Dinetti, M., Fraissinet, M., & Storch, D. (2014). Are cities different? Patterns of species richness and beta diversity of urban bird communities and regional species assemblages in Europe. Global Ecology and Biogeography, 23(4), 479–489. https://doi.org/10.1111/GEB.12130spa
dc.relation.referencesFricke, E. C., & Svenning, J. C. (2020). Accelerating homogenization of the global plant–frugivore meta-network. Nature, 585(7823), 74–78. https://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/articles/s41586-020-2640-y&casa_token=zZ_VGN12vyIAAAAA:UwMfAmFfeMJXHhdobustnUvdXDzP9fgXcpWTkkIvwvzrAQ86L-HwIGowMfRF7I9xJnRx8nsd0yN7FWzjspa
dc.relation.referencesGarcía, D., & Chacoff, N. P. (2007). Scale-dependent effects of habitat fragmentation on hawthorn pollination, frugivory, and seed predation. Conservation Biology, 21(2), 400–411. https://doi.org/10.1111/J.1523-1739.2006.00593.Xspa
dc.relation.referencesGarcía, H., Corzo, G., Isaacs, P., & Etter, A. (2014). Distribución y estado actual de los remanentes del bioma de bosque seco tropical en Colombia: insumos para su gestión. In El Bosque Seco Tropical en Colombia (pp. 228–251).spa
dc.relation.referencesGarizábal-Carmona, J., Gutierrez-Vasquez, C., & David, S. (2014). Diversidad de aves en cuatro localidades con bosques fragmentados en el municipio de Medellin (pp. 163–199).spa
dc.relation.referencesGonzález-M, R., García, H., Isaacs, P., Cuadros, H., López-Camacho, R., Rodríguez, N., Pérez, K., Mijares, F., Castaño-Naranjo, A., Jurado, R., Idárraga-Piedrahíta, Á., Rojas, A., Vergara, H., & Pizano, C. (2018). Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia. Environmental Research Letters, 13(4), 045007. https://doi.org/10.1088/1748-9326/aaad74spa
dc.relation.referencesGotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379–391. https://doi.org/https://doi.org/10.1046/j.1461-0248.2001.00230.xspa
dc.relation.referencesGrass, I., Loos, J., Baensch, S., Batáry, P., Librán-Embid, F., Ficiciyan, A., Klaus, F., Riechers, M., Rosa, J., Tiede, J., Udy, K., Westphal, C., & Wurz, A. (2019). Land‐sharing/‐sparing connectivity landscapes for ecosystem services and biodiversity conservation. People and Nature, 1(2), 262–272. https://doi.org/10.1002/pan3.21spa
dc.relation.referencesGuimarães, P. R. (2020). The Structure of Ecological Networks across Levels of Organization. In Annual Review of Ecology, Evolution, and Systematics (Vol. 51, pp. 433–460). Annual Reviews Inc. https://doi.org/10.1146/annurev-ecolsys-012220-120819spa
dc.relation.referencesHadley, A. S., Frey, S. J. K., Robinson, W. D., & Betts, M. G. (2018a). Forest fragmentation and loss reduce richness, availability, and specialization in tropical hummingbird communities. Biotropica, 50(1), 74–83. https://doi.org/10.1111/btp.12487spa
dc.relation.referencesHadley, A. S., Frey, S. J. K., Robinson, W. D., & Betts, M. G. (2018b). Forest fragmentation and loss reduce richness, availability, and specialization in tropical hummingbird communities. Biotropica, 50(1), 74–83. https://doi.org/10.1111/btp.12487spa
dc.relation.referencesHagen, O. E., Hagen, O., Ibáñez-Álamo, J. D., Petchey, O. L., & Evans, K. L. (2017). Impacts of Urban Areas and Their Characteristics on Avian Functional Diversity. Frontiers in Ecology and Evolution, 5. https://www.frontiersin.org/articles/10.3389/fevo.2017.00084spa
dc.relation.referencesHilty, S. L., & Brown, W. L. (1986). A Guide to the Birds of Colombia. (P. U. Press, Ed.). http://press.princeton.edu/titles/672.htmlspa
dc.relation.referencesHutto, R. L., Pletschet, S. M., & Hendricks, P. (1986). A Fixed-radius Point Count Method for Nonbreeding and Breeding Season Use. The Auk, 103(3), 593–602. https://doi.org/10.1093/auk/103.3.593spa
dc.relation.referencesImai, H., & Nakashizuka, T. (2010). Environmental factors affecting the composition and diversity of avian community in mid- to late breeding season in urban parks and green spaces. Landscape and Urban Planning, 96(3), 183–194. https://doi.org/https://doi.org/10.1016/j.landurbplan.2010.03.006spa
dc.relation.referencesJordano, P. (2016). Sampling networks of ecological interactions. Functional Ecology, 30(12), 1883–1893. https://doi.org/10.1111/1365-2435.12763spa
dc.relation.referencesJordano, P., Vazquez, D., & Bascompte, J. (2009). Redes complejas de interacciones mutualistas planta-animal. Ecología y Evolucion de Interacciones Planta-Animal, June, 399.spa
dc.relation.referencesJost, L. (2006). Entropy and diversity. Oikos, 113(2), 363–375. https://doi.org/https://doi.org/10.1111/j.2006.0030-1299.14714.xspa
dc.relation.referencesKindt, R., & Coe, R. (2005). Tree Diversity Analysis. A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies. In Nairobi: World Agroforestry Centre (ICRAF).spa
dc.relation.referencesKnop, E. (2016). Biotic homogenization of three insect groups due to urbanization. Global Change Biology, 22(1), 228–236. https://doi.org/https://doi.org/10.1111/gcb.13091spa
dc.relation.referencesLa Sorte, F. A., Lepczyk, C. A., Aronson, M. F. J., Goddard, M. A., Hedblom, M., Katti, M., MacGregor-Fors, I., Mörtberg, U., Nilon, C. H., Warren, P. S., Williams, N. S. G., & Yang, J. (2018). The phylogenetic and functional diversity of regional breeding bird assemblages is reduced and constricted through urbanization. Diversity and Distributions, 24(7), 928–938. https://doi.org/10.1111/DDI.12738spa
dc.relation.referencesLaliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(1), 299–305. https://doi.org/https://doi.org/10.1890/08-2244.1spa
dc.relation.referencesLaliberté, E., Legendre, P., & Shipley, B. (2014). FD: measuring functional diversity from multiple traits, and other tools for functional ecology (R package version 1.0-12.1).spa
dc.relation.referencesLeveau, L. M., Isla, F. I., & Bellocq, M. I. (2015). Urbanization and the temporal homogenization of bird communities: a case study in central Argentina. Urban Ecosystems, 18(4), 1461–1476. https://doi.org/10.1007/s11252-015-0469-1spa
dc.relation.referencesLeveau, L. M., & Leveau, C. M. (2016). Does urbanization affect the seasonal dynamics of bird communities in urban parks? Urban Ecosystems, 19(2), 631–647. https://doi.org/10.1007/s11252-016-0525-5spa
dc.relation.referencesLeveau, L. M., Ruggiero, A., Matthews, T. J., & Isabel Bellocq, M. (2019). A global consistent positive effect of urban green area size on bird richness. Avian Research, 10(1), 30. https://doi.org/10.1186/s40657-019-0168-3spa
dc.relation.referencesLibrán‐Embid, F., Grass, I., Emer, C., Ganuza, C., & Tscharntke, T. (2021). A plant–pollinator metanetwork along a habitat fragmentation gradient. Ecology Letters, 24(12), 2700–2712. https://doi.org/10.1111/ele.13892spa
dc.relation.referencesLuck, G. W., Carter, A., & Smallbone, L. (2013). Changes in Bird Functional Diversity across Multiple Land Uses: Interpretations of Functional Redundancy Depend on Functional Group Identity. PLoS ONE, 8(5). https://doi.org/10.1371/journal.pone.0063671spa
dc.relation.referencesMacArthur, R. H., & MacArthur, J. W. (1961). On Bird Species Diversity. Ecology, 42(3), 594–598. https://doi.org/https://doi.org/10.2307/1932254spa
dc.relation.referencesMacGregor-Fors, I. (2008). Relation between habitat attributes and bird richness in a western Mexico suburb. Landscape and Urban Planning, 84(1), 92–98. https://www.sciencedirect.com/science/article/pii/S0169204607001636spa
dc.relation.referencesMacGregor-Fors, I., & García-Arroyo, M. (2017). Who Is Who in the City? Bird Species Richness and Composition in Urban Latin America. In I. MacGregor-Fors & J. F. Escobar-Ibáñez (Eds.), Avian Ecology in Latin American Cityscapes (pp. 33–55). Springer International Publishing. https://doi.org/10.1007/978-3-319-63475-3_3spa
dc.relation.referencesMacGregor-Fors, I., Morales-Pérez, L., & Schondube, J. E. (2012). From forests to cities: effects of urbanization on tropical birds. Urban Bird Ecology and Conservation, 45, 33–48. https://doi.org/10.1525/9780520953895-005/HTMLspa
dc.relation.referencesMachado-de-Souza, T., Campos, R. P., Devoto, M., & Varassin, I. G. (2019). Local drivers of the structure of a tropical bird-seed dispersal network. Oecologia, 189(2), 421–433. https://doi.org/10.1007/s00442-018-4322-0spa
dc.relation.referencesMagurran, A. E. (1988). Diversity indices and species abundance models. In A. E. Magurran (Ed.), Ecological Diversity and Its Measurement (pp. 7–45). Springer Netherlands. https://doi.org/10.1007/978-94-015-7358-0_2spa
dc.relation.referencesMarcacci, G., Westphal, C., Wenzel, A., Raj, V., Nölke, N., Tscharntke, T., & Grass, I. (2021). Taxonomic and functional homogenization of farmland birds along an urbanization gradient in a tropical megacity. Global Change Biology, 27(20), 4980–4994. https://doi.org/https://doi.org/10.1111/gcb.15755spa
dc.relation.referencesMarjakangas, E.-L., Abrego, N., Grøtan, V., de Lima, R. A. F., Bello, C., Bovendorp, R. S., Culot, L., Hasui, É., Lima, F., Muylaert, R. L., Niebuhr, B. B., Oliveira, A. A., Pereira, L. A., Prado, P. I., Stevens, R. D., Vancine, M. H., Ribeiro, M. C., Galetti, M., & Ovaskainen, O. (2020). Fragmented tropical forests lose mutualistic plant–animal interactions. Diversity and Distributions, 26(2), 154–168. https://doi.org/https://doi.org/10.1111/ddi.13010spa
dc.relation.referencesMartínez-Falcón, A., Martínez-Adriano, C., & Dáttilo, W. (2019). Redes complejas como herramientas para estudiar la diversidad de las interacciones ecológicas (pp. 265–284).spa
dc.relation.referencesMartins, L. P., Stouffer, D. B., Blendinger, P. G., Böhning-Gaese, K., Buitrón-Jurado, G., Correia, M., Costa, J. M., Dehling, D. M., Donatti, C. I., Emer, C., Galetti, M., Heleno, R., Jordano, P., Menezes, Í., Morante-Filho, J. C., Muñoz, M. C., Neuschulz, E. L., Pizo, M. A., Quitián, M., … Tylianakis, J. M. (2022). Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions. Nature Communications, 13(1), 6943. https://doi.org/10.1038/s41467-022-34355-wspa
dc.relation.referencesMarzluff, J. M., & Ewing, K. (2008). Restoration of Fragmented Landscapes for the Conservation of Birds: A General Framework and Specific Recommendations for Urbanizing Landscapes. In J. M. Marzluff, E. Shulenberger, W. Endlicher, M. Alberti, G. Bradley, C. Ryan, U. Simon, & C. ZumBrunnen (Eds.), Urban Ecology: An International Perspective on the Interaction Between Humans and Nature (pp. 739–755). Springer US. https://doi.org/10.1007/978-0-387-73412-5_48spa
dc.relation.referencesMason, N. W. H., de Bello, F., Mouillot, D., Pavoine, S., & Dray, S. (2013). A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science, 24(5), 794–806. https://doi.org/https://doi.org/10.1111/jvs.12013spa
dc.relation.referencesMason, N. W. H., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111(1), 112–118. https://doi.org/https://doi.org/10.1111/j.0030-1299.2005.13886.xspa
dc.relation.referencesMayorga, I., Bichier, P., & Philpott, S. M. (2020). Local and landscape drivers of bird abundance, species richness, and trait composition in urban agroecosystems. Urban Ecosystems, 23(3), 495–505. https://doi.org/10.1007/s11252-020-00934-2spa
dc.relation.referencesMbiba, M., Mazhude, C., Fabricius, C., Fritz, H., & Muvengwi, J. (2021). Bird species assemblages differ, while functional richness is maintained across an urban landscape. Landscape and Urban Planning, 212. https://doi.org/10.1016/j.landurbplan.2021.104094spa
dc.relation.referencesMcKinney, M. L. (2002). Urbanization, Biodiversity, and Conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience, 52(10), 883–890. https://doi.org/10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2spa
dc.relation.referencesMcKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation, 127(3), 247–260. https://doi.org/10.1016/J.BIOCON.2005.09.005spa
dc.relation.referencesMcMullan, M., Donegan, T., Pantoja-Peña, G., Tuncer-Navarro, T., Bartels, A., & Ellery, T. (2018). Field guide to the birds of Colombia. (R. N. Editores, Ed.).spa
dc.relation.referencesMeffert, P. J., & Dziock, F. (2013). The influence of urbanisation on diversity and trait composition of birds. Landscape Ecology, 28(5), 943–957. https://doi.org/10.1007/s10980-013-9867-zspa
dc.relation.referencesMelo, M. A., DA SILVA, M. A. G., & Piratelli, A. J. (2020). Improvement of vegetation structure enhances bird functional traits and habitat resilience in an area of ongoing restoration in the atlantic forest. Anais Da Academia Brasileira de Ciencias, 92, 1–22. https://doi.org/10.1590/0001-3765202020191241spa
dc.relation.referencesMelo, M. A., & Piratelli, A. J. (2023). Increase in size and shrub cover improves bird functional diversity in Neotropical urban green spaces. Austral Ecology, 48(2), 440–460. https://doi.org/https://doi.org/10.1111/aec.13279spa
dc.relation.referencesMenke, S., Böhning-Gaese, K., & Schleuning, M. (2012). Plant–frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest. Oikos, 121(10), 1553–1566. https://doi.org/https://doi.org/10.1111/j.1600-0706.2011.20210.xspa
dc.relation.referencesMora Escobar, F., & Maglianesi, M. A. (2021). Diversidad funcional de murciélagos frugívoros en dos fincas de producción ganadera en Guanacaste, Costa Rica. UNED Research Journal, 13(2), e3465. https://doi.org/10.22458/urj.v13i2.3465spa
dc.relation.referencesMorante-Filho, J. C., Arroyo-Rodríguez, V., Pessoa, M. de S., Cazetta, E., & Faria, D. (2018). Direct and cascading effects of landscape structure on tropical forest and non-forest frugivorous birds. Ecological Applications, 28(8), 2024–2032. https://doi.org/https://doi.org/10.1002/eap.1791spa
dc.relation.referencesMorelli, F., Benedetti, Y., Su, T., Zhou, B., Moravec, D., Šímová, P., & Liang, W. (2017). Taxonomic diversity, functional diversity and evolutionary uniqueness in bird communities of Beijing’s urban parks: Effects of land use and vegetation structure. Urban Forestry and Urban Greening, 23, 84–92. https://doi.org/10.1016/j.ufug.2017.03.009spa
dc.relation.referencesMoreno, C. (2001). Métodos para medir la biodiversidad (Vol. 1). M&T–Manuales y Tesis SEA. http://entomologia.rediris.es/seaspa
dc.relation.referencesMouchet, M. A., Villéger, S., Mason, N. W. H., & Mouillot, D. (2010). Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24(4), 867–876. https://doi.org/https://doi.org/10.1111/j.1365-2435.2010.01695.xspa
dc.relation.referencesMouillot, D., Mason, W. H. N., Dumay, O., & Wilson, J. B. (2005). Functional regularity: a neglected aspect of functional diversity. Oecologia, 142(3), 353–359. https://doi.org/10.1007/s00442-004-1744-7spa
dc.relation.referencesMubamba, S., Nduna, N., Siachoono, S., Chibesa, M., Phiri, D., & Chama, L. (2022). Plant–frugivore networks are robust to species loss even in highly built-up urban ecosystems. Oecologia, 199(3), 637–648. https://doi.org/10.1007/s00442-022-05213-9spa
dc.relation.referencesNaimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203. https://doi.org/https://doi.org/10.1111/j.1600-0587.2013.00205.xspa
dc.relation.referencesNascimento, V. T., Agostini, K., Souza, C. S., & Maruyama, P. K. (2020). Tropical urban areas support highly diverse plant-pollinator interactions: An assessment from Brazil. Landscape and Urban Planning, 198. https://doi.org/10.1016/j.landurbplan.2020.103801spa
dc.relation.referencesNewbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50. https://doi.org/10.1038/nature14324spa
dc.relation.referencesNielsen, A. B., van den Bosch, M., Maruthaveeran, S., & van den Bosch, C. K. (2014). Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosystems, 17(1), 305–327. https://doi.org/10.1007/s11252-013-0316-1spa
dc.relation.referencesOcampo-Peñuela, N., Suárez-Castro, A. F., Díaz-Timoté, J. J., Gómez-Valencia, B., Olaya-Rodríguez, M. H., Sánchez-Clavijo, L. M., & Correa-Ayram, C. A. (2022). Increased exposure of Colombian birds to rapidly expanding human footprint. Environmental Research Letters, 17(11), 114050. https://doi.org/10.1088/1748-9326/ac98daspa
dc.relation.referencesOlesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences, 104(50), 19891–19896. https://doi.org/10.1073/pnas.0706375104spa
dc.relation.referencesOliveira Hagen, E., Hagen, O., Ibáñez-Álamo, J. D., Petchey, O. L., & Evans, K. L. (2017). Impacts of Urban Areas and Their Characteristics on Avian Functional Diversity. Frontiers in Ecology and Evolution, 5. https://www.frontiersin.org/articles/10.3389/fevo.2017.00084spa
dc.relation.referencesOllerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326. https://doi.org/https://doi.org/10.1111/j.1600-0706.2010.18644.xspa
dc.relation.referencesOrtega-Álvarez, R., & MacGregor-Fors, I. (2009). Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition. Landscape and Urban Planning, 90(3–4), 189–195. https://www.sciencedirect.com/science/article/pii/S0169204608002004spa
dc.relation.referencesPalacio, F., Ibañez, L. M., Maragliano, R. E., & Maragliano, R. E. (2018). Urbanization as a driver of taxonomic, functional and phylogenetic diversity loss in bird communities. Canadian Journal of Zoology, 96(10), 1114–1121.spa
dc.relation.referencesPalacio, R. D., Valderrama-Ardila, C., & Kattan, G. H. (2016). Generalist Species Have a Central Role In a Highly Diverse Plant–Frugivore Network. Biotropica, 48(3), 349–355. https://doi.org/https://doi.org/10.1111/btp.12290spa
dc.relation.referencesPatefield, W. M. (1981). Algorithm AS 159: An Efficient Method of Generating Random R × C Tables with Given Row and Column Totals. Journal of the Royal Statistical Society. Series C (Applied Statistics), 30(1), 91–97. https://doi.org/10.2307/2346669spa
dc.relation.referencesPaton, G. D., Shoffner, A. V, Wilson, A. M., & Gagné, S. A. (2019). The traits that predict the magnitude and spatial scale of forest bird responses to urbanization intensity. PLOS ONE, 14(7), e0220120-. https://doi.org/10.1371/journal.pone.0220120spa
dc.relation.referencesPiano, E., Souffreau, C., Merckx, T., Baardsen, L. F., Backeljau, T., Bonte, D., Brans, K. I., Cours, M., Dahirel, M., Debortoli, N., Decaestecker, E., De Wolf, K., Engelen, J. M. T., Fontaneto, D., Gianuca, A. T., Govaert, L., Hanashiro, F. T. T., Higuti, J., Lens, L., … Hendrickx, F. (2020). Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Global Change Biology, 26(3), 1196–1211. https://doi.org/https://doi.org/10.1111/gcb.14934spa
dc.relation.referencesR Core Team. (2023). R: A Language and Environment for Statistical Computing (4.3.0). R Foundation for Statistical Computing.spa
dc.relation.referencesRamos-Robles, M., Andresen, E., & Díaz-Castelazo, C. (2018). Modularity and robustness of a plant-frugivore interaction network in a disturbed tropical forest. Écoscience, 25(3), 209–222. https://doi.org/10.1080/11956860.2018.1446284spa
dc.relation.referencesRico-Silva, J. F., Cruz-Trujillo, E. J., & Colorado Z., G. J. (2021). Influence of environmental factors on bird diversity in greenspaces in an Amazonian city. Urban Ecosystems, 24(2), 365–374. https://doi.org/10.1007/s11252-020-01042-xspa
dc.relation.referencesRivera-Gutiérrez, H. F. (2006). Composición y estructura de una comunidad de aves en un área suburbana en el suroccidente colombiano: Composition and structure of a suburban bird community in southwestern Colombia. Ornitología Colombiana, 4, 28–38. https://asociacioncolombianadeornitologia.org/ojs/index.php/roc/article/view/91spa
dc.relation.referencesRodewald, A. D., Rohr, R. P., Fortuna, M. A., & Bascompte, J. (2014). Community-level demographic consequences of urbanization: an ecological network approach. Journal of Animal Ecology, 83(6), 1409–1417. https://doi.org/https://doi.org/10.1111/1365-2656.12224spa
dc.relation.referencesRodrigues, A. G., Borges-Martins, M., & Zilio, F. (2018). Bird diversity in an urban ecosystem: the role of local habitats in understanding the effects of urbanization. Iheringia. Série Zoologia, 108.spa
dc.relation.referencesSalazar-Rivera, G. I., Dáttilo, W., Castillo-Campos, G., Flores-Estévez, N., Ramírez García, B., & Ruelas Inzunza, E. (2020). The frugivory network properties of a simplified ecosystem: Birds and plants in a Neotropical periurban park. Ecology and Evolution, 10(16), 8579–8591. https://doi.org/10.1002/ece3.6481spa
dc.relation.referencesSalgado, B. (2015). La Ecología Funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. In La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones (Issue February).spa
dc.relation.referencesSanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V, & Woolmer, G. (2002). The Human Footprint and the Last of the Wild: The human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience, 52(10), 891–904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2spa
dc.relation.referencesSchleuning, M., Fründ, J., & García, D. (2015). Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. Ecography, 38(4), 380–392. https://doi.org/https://doi.org/10.1111/ecog.00983spa
dc.relation.referencesSchneiberg, I., Boscolo, D., Devoto, M., Marcilio-Silva, V., Dalmaso, C. A., Ribeiro, J. W., Ribeiro, M. C., de Camargo Guaraldo, A., Niebuhr, B. B., & Varassin, I. G. (2020). Urbanization homogenizes the interactions of plant-frugivore bird networks. Urban Ecosystems, 23(3), 457–470. https://doi.org/10.1007/S11252-020-00927-1spa
dc.relation.referencesSchütz, C., & Schulze, C. H. (2015). Functional diversity of urban bird communities: effects of landscape composition, green space area and vegetation cover. Ecology and Evolution, 5(22), 5230–5239. https://doi.org/https://doi.org/10.1002/ece3.1778spa
dc.relation.referencesShahabuddin, G., & Kumar, R. (2006). Influence of anthropogenic disturbance on bird communities in a tropical dry forest: role of vegetation structure. Animal Conservation, 9(4), 404–413. https://doi.org/https://doi.org/10.1111/j.1469-1795.2006.00051.xspa
dc.relation.referencesSiabato, W., & Guzmán-Manrique, J. (2019). La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuadernos de Geografía: Revista Colombiana de Geografía, 28, 1–22.spa
dc.relation.referencesSol, D., González-Lagos, C., Moreira, D., Maspons, J., & Lapiedra, O. (2014). Urbanisation tolerance and the loss of avian diversity. Ecology Letters, 17(8), 942–950. https://doi.org/https://doi.org/10.1111/ele.12297spa
dc.relation.referencesSuárez-Castro, A. F., Maron, M., Mitchell, M. G. E., & Rhodes, J. R. (2022). Disentangling direct and indirect effects of landscape structure on urban bird richness and functional diversity. Ecological Applications, 32(8). https://doi.org/10.1002/EAP.2713spa
dc.relation.referencesSuri, J., Anderson, P. M., Charles-Dominique, T., Hellard, E., & Cumming, G. S. (2017). More than just a corridor: A suburban river catchment enhances bird functional diversity. Landscape and Urban Planning, 157, 331–342. https://doi.org/10.1016/j.landurbplan.2016.07.013spa
dc.relation.referencesTeixido, A. L., Fuzessy, L. F., Souza, C. S., Gomes, I. N., Kaminski, L. A., Oliveira, P. C., & Maruyama, P. K. (2022). Anthropogenic impacts on plant-animal mutualisms: A global synthesis for pollination and seed dispersal. In Biological Conservation (Vol. 266). Elsevier Ltd. https://doi.org/10.1016/j.biocon.2022.109461spa
dc.relation.referencesThaweepworadej, P., & Evans, K. (2022). Avian species richness and tropical urbanization gradients: Effects of woodland retention and human disturbance. Ecological Applications, 32. https://doi.org/10.1002/eap.2586spa
dc.relation.referencesTobias, J. A., Sheard, C., Pigot, A. L., Devenish, A. J. M., Yang, J., Sayol, F., Neate-Clegg, M. H. C., Alioravainen, N., Weeks, T. L., Barber, R. A., Walkden, P. A., MacGregor, H. E. A., Jones, S. E. I., Vincent, C., Phillips, A. G., Marples, N. M., Montaño-Centellas, F. A., Leandro-Silva, V., Claramunt, S., … Schleuning, M. (2022). AVONET: morphological, ecological and geographical data for all birds. Ecology Letters, 25(3), 581–597. https://doi.org/https://doi.org/10.1111/ele.13898spa
dc.relation.referencesTrentanovi, G., von der Lippe, M., Sitzia, T., Ziechmann, U., Kowarik, I., & Cierjacks, A. (2013). Biotic homogenization at the community scale: disentangling the roles of urbanization and plant invasion. Diversity and Distributions, 19(7), 738–748. https://doi.org/https://doi.org/10.1111/ddi.12028spa
dc.relation.referencesTylianakis, J. M., Didham, R. K., Bascompte, J., & Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11(12), 1351–1363. https://doi.org/10.1111/j.1461-0248.2008.01250.xspa
dc.relation.referencesTylianakis, J. M., Laliberté, E., Nielsen, A., & Bascompte, J. (2010). Conservation of species interaction networks. Biological Conservation, 143(10), 2270–2279. https://doi.org/https://doi.org/10.1016/j.biocon.2009.12.004spa
dc.relation.referencesTylianakis, J. M., & Morris, R. J. (2017). Ecological Networks Across Environmental Gradients. Annual Review of Ecology, Evolution, and Systematics, 48(1), 25–48. https://doi.org/10.1146/annurev-ecolsys-110316-022821spa
dc.relation.referencesVaccaro, A. S., Filloy, J., & Bellocq, M. I. (2022). Bird taxonomic and functional diversity in urban settlements within a forest biome vary with the landscape matrix. Perspectives in Ecology and Conservation, 20(1), 9–17. https://doi.org/10.1016/j.pecon.2021.10.001spa
dc.relation.referencesvan Rensburg, B. J., Peacock, D. S., & Robertson, M. P. (2009). Biotic homogenization and alien bird species along an urban gradient in South Africa. Landscape and Urban Planning, 92(3–4), 233–241. https://doi.org/10.1016/J.LANDURBPLAN.2009.05.002spa
dc.relation.referencesVenables, W. N., & Ripley, B. D. (2002). Exploratory Multivariate Analysis. In W. N. Venables & B. D. Ripley (Eds.), Modern Applied Statistics with S (pp. 301–330). Springer New York. https://doi.org/10.1007/978-0-387-21706-2_11spa
dc.relation.referencesVidal, M. M., Hasui, E., Pizo, M. A., Tamashiro, J. Y., Silva, W. R., & Guimarães Jr., P. R. (2014). Frugivores at higher risk of extinction are the key elements of a mutualistic network. Ecology, 95(12), 3440–3447. https://doi.org/https://doi.org/10.1890/13-1584.1spa
dc.relation.referencesVilléger, S., Miranda, J. R., Hernández, D. F., & Mouillot, D. (2010). Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, 20(6), 1512–1522. https://doi.org/https://doi.org/10.1890/09-1310.1spa
dc.relation.referencesVitorino, B. D., da Frota, A. V, & Maruyama, P. K. (2021). Ecological determinants of interactions as key when planning pollinator-friendly urban greening: A plant-hummingbird network example. Urban Forestry & Urban Greening, 64(127298). https://www.sciencedirect.com/science/article/pii/S1618866721003253spa
dc.relation.referencesXu, W., Fu, W., Dong, J., Yu, J., Huang, P., Zheng, D., Chen, Z., Zhu, Z., & Ding, G. (2022). Bird Communities Vary under Different Urbanization Types—A Case Study in Mountain Parks of Fuzhou, China. Diversity, 14(7).spa
dc.relation.referencesZhang, M., Lu, C., Han, Q., & Lu, C. (2022). Structure and Characteristics of Plant-Frugivore Network in an Urban Park: A Case Study in Nanjing Botanical Garden Mem. Sun Yat-Sen. Diversity, 14(2). https://doi.org/10.3390/d14020071spa
dc.relation.referencesZitske, B. P., Betts, M. G., & Diamond, A. W. (2011). Negative Effects of Habitat Loss on Survival of Migrant Warblers in a Forest Mosaic. Conservation Biology, 25(5), 993–1001. https://doi.org/10.1111/J.1523-1739.2011.01709.Xspa
dc.relation.referencesZorzal, R. R., Diniz, P., Oliveira, R. de, & Duca, C. (2021). Drivers of avian diversity in urban greenspaces in the Atlantic Forest. Urban Forestry and Urban Greening, 59. https://doi.org/10.1016/J.UFUG.2020.126908spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.lembUrbanismo - Colombia
dc.subject.lembImpacto ambiental - Colombia
dc.subject.lembDesarrollo urbano - Colombia
dc.subject.lembEcosistemas urbanos - Colombia
dc.subject.lembGestión de ecosistemas - Colombia
dc.subject.lembMigración de aves - Colombia
dc.subject.lembBosques tropicales - Colombia
dc.subject.lembDiversidad biológica - Colombia
dc.subject.proposalUrbanizaciónspa
dc.subject.proposalAvesspa
dc.subject.proposalDiversidad taxonómicaspa
dc.subject.proposalDiversidad funcionalspa
dc.subject.proposalRedes de interacciónspa
dc.subject.proposalFrugivoríaspa
dc.subject.proposalUrbanizationeng
dc.subject.proposalBirdseng
dc.subject.proposalTaxonomic diversityeng
dc.subject.proposalFunctional diversityeng
dc.subject.proposalInteraction networkseng
dc.subject.proposalFrugivoryeng
dc.titleDel bosque seco tropical a las ciudades : respuestas del ensamblaje de aves a los ambientes urbanosspa
dc.title.translatedFrom tropical dry forest to cities : responses of bird assembly to urban environmentseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDel bosque seco tropical a las ciudades: respuestas del ensamblaje de aves a los ambientes urbanosspa
oaire.fundernameUniversidad Nacional de Colombia sede De La Pazspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017162993.2024.pdf
Tamaño:
1.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bosques y Conservación Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: