Del bosque seco tropical a las ciudades : respuestas del ensamblaje de aves a los ambientes urbanos
dc.contributor.advisor | Zamora Abrego, Joan Gastón | |
dc.contributor.advisor | Acevedo Quintero, Juan Fernando | |
dc.contributor.author | Restrepo Zuluaga, David Esteban | |
dc.contributor.orcid | Restrepo Zuluaga, David Esteban [0009-0004-1669-5860] | spa |
dc.contributor.researchgroup | Ecología y Conservación de Fauna Silvestre | spa |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2024-07-16T16:17:55Z | |
dc.date.available | 2024-07-16T16:17:55Z | |
dc.date.issued | 2023 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | El rápido crecimiento urbano ha venido transformando drásticamente los ecosistemas, reemplazando coberturas naturales por artificiales, causando homogenización en las comunidades biológicas. Gran parte de la creciente literatura sobre las respuestas de las aves a los ambientes urbanos se restringe a regiones templadas, y pocos estudios se desarrollan en el neotrópico. Particularmente, el bosque seco tropical colombiano es el ecosistema en estado más crítico, sufriendo una fuerte presión por la urbanización, afectando negativamente a la biodiversidad. Se determinaron las respuestas de las aves a los ambientes urbanos a través de identificar y cuantificar los cambios en: 1) la diversidad taxonómica y funcional; y 2) las propiedades estructurales de las redes de frugivoría de los ensamblajes de aves, dados por la variación en el grado de urbanización, estructura y diversidad de la vegetación. Los principales hallazgos muestran que 1) la diversidad de Shannon, la riqueza, equitatividad y dispersión funcional de los ensamblajes de aves se ven afectados negativamente por la urbanización y diferentes aspectos de la estructura y diversidad de las plantas; 2) las propiedades estructurales de las redes de frugivoría no mostraron asociación con la urbanización ni con ninguna variable de la estructura y diversidad de la vegetación. Estos resultados revelan aspectos cruciales para el mantenimiento de la diversidad taxonómica y funcional de las aves. Además, muestra la necesidad de continuar con investigaciones que revelen patrones más claros acerca del efecto de la urbanización sobre las diferentes propiedades de las redes de interacción. Todo esto, en pro de mantener la funcionalidad ecosistémica. (Tomado de la fuente) | spa |
dc.description.abstract | Rapid urban growth has been drastically transforming ecosystems, replacing natural covers with artificial ones, causing homogenization in biological communities. Much of the growing literature on bird responses to urban environments is restricted to temperate regions, with few studies taking place in the Neotropics. In particular, the Colombian tropical dry forest is the ecosystem in the most critical state, suffering strong pressure from urbanization, negatively affecting biodiversity. Bird responses to urban environments were determined by identifying and quantifying changes in: 1) taxonomic and functional diversity; and 2) the structural properties of the frugivory networks of bird assemblages, given by the variation in the degree of urbanization, structure and diversity of the vegetation. The main findings show that 1) Shannon diversity, richness, evenness, and functional dispersal of bird assemblages are negatively affected by urbanization and different aspects of plant structure and diversity; 2) the structural properties of the frugivory networks showed no association with urbanization or with any variable of the structure and diversity of the vegetation. These results reveal crucial aspects for the maintenance of the taxonomic and functional diversity of birds. In addition, it shows the need to continue with research that reveals clearer patterns about the effect of urbanization on the different properties of interaction networks. All this, in favor of maintaining ecosystem functionality. | eng |
dc.description.curriculararea | Bosques Y Conservación Ambiental.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Bosques y Conservación Ambiental | spa |
dc.description.researcharea | Ecología urbana | spa |
dc.format.extent | 95 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86458 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Acevedo-Quintero, J. F., Zamora-Abrego, J. G., & García, D. (2020). From structure to function in mutualistic interaction networks: Topologically important frugivores have greater potential as seed dispersers. Journal of Animal Ecology, 89(9), 2181–2191. https://doi.org/10.1111/1365-2656.13273 | spa |
dc.relation.references | Agudelo-Rendón, D., Rendón-Gutiérrez, N., Cadavid-Ramírez, A. C., Choperena-Palencia, M. C., Arias-Monsalve, C. S., & Gómez-R, D. A. (2021). Composición del ensamblaje de aves en una zona periurbana de Medellín, Colombia. Revista Colombiana de Ciencia Animal - RECIA, 13(1). https://doi.org/10.24188/recia | spa |
dc.relation.references | Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705 | spa |
dc.relation.references | Andren, H. (1999). Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. NCASI Technical Bulletin, 781 I, 12–13. https://doi.org/10.2307/3545823 | spa |
dc.relation.references | Aronson, M., La Sorte, F., Nilon, C., Katti, M., Goddard, M., Lepczyk, C., Warren, P., Williams, N., Cilliers, S., Clarkson, B., Dobbs, C., Dolan, R., Hedblom, M., Klotz, S., Kooijmans, J., Kühn, I., MacGregor-Fors, I., McDonnell, M., Mörtberg, U., … Winter, M. (2014). A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences, 281(1780), 20133330. https://doi.org/10.1098/rspb.2013.3330 | spa |
dc.relation.references | Avendaño, J. E., Tejeiro-M., N., Díaz-Cárdenas, J., Amaya-Burgos, J. J., Aponte, A. F., Gamboa, N., José Salcedo-Sarmiento, Y. E., Velásquez-Suárez, Á. J., & Morales-Rozo, A. (2018). Birds of universidad de los Llanos (Villavicencio, Colombia): A rich community at the andean foothills-savanna transition. Boletin Cientifico Del Centro de Museos, 22(2), 51–75. https://doi.org/10.17151/bccm.2018.22.2.5 | spa |
dc.relation.references | Ayerbe-Quiñones, F. (2022). Guía Ilustrada de la Avifauna Colombiana (Tercera Edición). | spa |
dc.relation.references | Beckett, S. J. (2016). Improved community detection in weighted bipartite networks. Royal Society Open Science, 3(1), 140536. https://doi.org/10.1098/rsos.140536 | spa |
dc.relation.references | Benitez, J., Pizarro, J. C., Blazina, A. P., & Lencinas, M. V. (2021). Response of bird communities to native forest urbanization in one of the southernmost city of the world. Urban Forestry and Urban Greening, 58. https://doi.org/10.1016/J.UFUG.2020.126887 | spa |
dc.relation.references | Bibby, C., Burgess, N., Hill, D., & Mustoe, S. (2000). Bird census techniques. Academic Press. | spa |
dc.relation.references | Blüthgen, N. (2010). Why network analysis is often disconnected from community ecology: A critique and an ecologist’s guide. Basic and Applied Ecology, 11(3), 185–195. https://doi.org/https://doi.org/10.1016/j.baae.2010.01.001 | spa |
dc.relation.references | Box, G. E. P., & Cox, D. R. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–243. https://doi.org/https://doi.org/10.1111/j.2517-6161.1964.tb00553.x | spa |
dc.relation.references | Bravo-López, P. E. (2021). Autocorrelación espacial - Índices para determinar su presencia en datos geográficos: Breve revisión de la literatura. Universidad-Verdad, 1(78), 48–61. https://doi.org/10.33324/uv.v1i78.351 | spa |
dc.relation.references | Brudvig, L. A., Damschen, E. I., Haddad, N. M., Levey, D. J., & Tewksbury, J. J. (2015). The influence of habitat fragmentation on multiple plant-animal interactions and plant reproduction. Ecology, 96(10), 2669–2678. https://doi.org/10.1890/14-2275.1 | spa |
dc.relation.references | Buitrón-Jurado, G., & Sanz, V. (2021). Specialization increases in a frugivorous bird–plant network from an isolated montane forest remnant. Community Ecology, 22(3), 261–274. https://doi.org/10.1007/s42974-020-00010-x | spa |
dc.relation.references | Burnham, K. P., & Anderson, D. (2002). Model Selection and Multimodel Inference: A Practical Information-theoretic Approach (Second). Springer. | spa |
dc.relation.references | Campos-Silva, L. A., & Piratelli, A. J. (2021a). Vegetation structure drives taxonomic diversity and functional traits of birds in urban private native forest fragments. Urban Ecosystems, 24(2), 375–390. https://doi.org/10.1007/s11252-020-01045-8 | spa |
dc.relation.references | Campos-Silva, L. A., & Piratelli, A. J. (2021b). Vegetation structure drives taxonomic diversity and functional traits of birds in urban private native forest fragments. Urban Ecosystems, 24(2), 375–390. https://doi.org/10.1007/s11252-020-01045-8 | spa |
dc.relation.references | Chávez-Zichinelli, C. A., Macgregor-Fors, I., Quesada, J., Talamás, P., Romano, M. C., Valdéz, R., & Schondube, J. E. (2013). How Stressed are Birds in an Urbanizing Landscape? Relationships Between the Physiology of Birds and Three Levels of Habitat Alteration. The Condor, 115(1), 84–92. https://academic.oup.com/condor/article-abstract/115/1/84/5152771 | spa |
dc.relation.references | Claramunt, S. (2021). Flight efficiency explains differences in natal dispersal distances in birds. Ecology, 102(9), e03442. https://doi.org/https://doi.org/10.1002/ecy.3442 | spa |
dc.relation.references | Claramunt, S., Derryberry, E. P., Remsen, J. V, & Brumfield, R. T. (2011). High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proceedings of the Royal Society B: Biological Sciences, 279(1733), 1567–1574. https://doi.org/10.1098/rspb.2011.1922 | spa |
dc.relation.references | Clergeau, P., Croci, S., Jokimäki, J., Kaisanlahti-Jokimäki, M. L., & Dinetti, M. (2006). Avifauna homogenisation by urbanisation: Analysis at different European latitudes. Biological Conservation, 127(3), 336–344. https://doi.org/10.1016/j.biocon.2005.06.035 | spa |
dc.relation.references | Conole, L. E., & Kirkpatrick, J. B. (2011). Functional and spatial differentiation of urban bird assemblages at the landscape scale. Landscape and Urban Planning, 100(1–2), 11–23. https://www.sciencedirect.com/science/article/pii/S0169204610002872 | spa |
dc.relation.references | Cooke, R. S. C., Bates, A. E., & Eigenbrod, F. (2019). Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Global Ecology and Biogeography, 28(4), 484–495. https://doi.org/https://doi.org/10.1111/geb.12869 | spa |
dc.relation.references | Córdova-Tapia, F., & Zambrano, L. (2015). Functional diversity in community ecology. Ecosistemas, 24(3), 78–87. https://doi.org/10.7818/ecos.2015.24-3.10 | spa |
dc.relation.references | Corporación Autónoma del Cesar. (2020, July 20). corpocesar.gov.co. https://www.corpocesar.gov.co/364_especies_de_aves_reporto_el__departamento_del_Cesar_en_la_jornada_mundial_de_observacion_de_aves.html | spa |
dc.relation.references | Correa-Ayram, C. A., Etter, A., Díaz-Timoté, J., Rodríguez Buriticá, S., Ramírez, W., & Corzo, G. (2020). Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117, 106630. https://doi.org/10.1016/J.ECOLIND.2020.106630 | spa |
dc.relation.references | Cristaldi, M. A., Giraudo, A. R., Arzamendia, V., Bellini, G. P., & Claus, J. (2017). Urbanization impacts on the trophic guild composition of bird communities. Journal of Natural History, 51(39–40), 2385–2404. https://doi.org/10.1080/00222933.2017.1371803 | spa |
dc.relation.references | Curzel, F. E., Bellocq, M. I., & Leveau, L. M. (2021). Local and landscape features of wooded streets influenced bird taxonomic and functional diversity. Urban Forestry & Urban Greening, 66, 127369. https://doi.org/https://doi.org/10.1016/j.ufug.2021.127369 | spa |
dc.relation.references | Dalsgaard, B., Martín González, A. M., Olesen, J. M., Ollerton, J., Timmermann, A., Andersen, L. H., & Tossas, A. G. (2009). Plant-hummingbird interactions in the West Indies: Floral specialisation gradients associated with environment and hummingbird size. Oecologia, 159(4), 757–766. https://doi.org/10.1007/s00442-008-1255-z | spa |
dc.relation.references | David, P., Thébault, E., Anneville, O., Duyck, P.-F., Chapuis, E., & Loeuille, N. (2017). Impacts of Invasive Species on Food Webs: A Review of Empirical Data. In D. A. Bohan, A. J. Dumbrell, & F. Massol (Eds.), Advances in Ecological Research (Vol. 56, pp. 1–60). Academic Press. https://doi.org/https://doi.org/10.1016/bs.aecr.2016.10.001 | spa |
dc.relation.references | Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/https://doi.org/10.1111/j.1600-0587.2012.07348.x | spa |
dc.relation.references | Dormann, C. F., Fründ, J., Blüthgen, N., & Gruber, B. (2009). Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks. | spa |
dc.relation.references | Dormann, C. F., Gruber, B., & Fründ, J. (2008). Introducing the bipartite Package: Analysing Ecological Networks. Interacción, 8(2). http://erzuli.ss.uci.edu/R.stuff. | spa |
dc.relation.references | Elmqvist, T., Fragkias, M., Goodness, J., & Güneralp, B. (2013). Urbanization, biodiversity and ecosystem services: challenges and opportunities: a global assessment. https://library.oapen.org/bitstream/handle/20.500.12657/28058/2013_Book_UrbanizationBiodiversityAndEco.pdf?sequence=1 | spa |
dc.relation.references | Etter, A., McAlpine, C., & Possingham, H. (2008). Historical patterns and drivers of landscape change in Colombia since 1500: a regionalized spatial approach. Ann. Assoc. Am. Geogr., 98, 2–23. https://doi.org/10.1080/00045600701733911 | spa |
dc.relation.references | Evans, K. L., Newson, S. E., & Gaston, K. J. (2009). Habitat influences on urban avian assemblages. Ibis, 151(1), 19–39. https://doi.org/https://doi.org/10.1111/j.1474-919X.2008.00898.x | spa |
dc.relation.references | Ferenc, M., Sedláček, O., Fuchs, R., Dinetti, M., Fraissinet, M., & Storch, D. (2014). Are cities different? Patterns of species richness and beta diversity of urban bird communities and regional species assemblages in Europe. Global Ecology and Biogeography, 23(4), 479–489. https://doi.org/10.1111/GEB.12130 | spa |
dc.relation.references | Fricke, E. C., & Svenning, J. C. (2020). Accelerating homogenization of the global plant–frugivore meta-network. Nature, 585(7823), 74–78. https://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/articles/s41586-020-2640-y&casa_token=zZ_VGN12vyIAAAAA:UwMfAmFfeMJXHhdobustnUvdXDzP9fgXcpWTkkIvwvzrAQ86L-HwIGowMfRF7I9xJnRx8nsd0yN7FWzj | spa |
dc.relation.references | García, D., & Chacoff, N. P. (2007). Scale-dependent effects of habitat fragmentation on hawthorn pollination, frugivory, and seed predation. Conservation Biology, 21(2), 400–411. https://doi.org/10.1111/J.1523-1739.2006.00593.X | spa |
dc.relation.references | García, H., Corzo, G., Isaacs, P., & Etter, A. (2014). Distribución y estado actual de los remanentes del bioma de bosque seco tropical en Colombia: insumos para su gestión. In El Bosque Seco Tropical en Colombia (pp. 228–251). | spa |
dc.relation.references | Garizábal-Carmona, J., Gutierrez-Vasquez, C., & David, S. (2014). Diversidad de aves en cuatro localidades con bosques fragmentados en el municipio de Medellin (pp. 163–199). | spa |
dc.relation.references | González-M, R., García, H., Isaacs, P., Cuadros, H., López-Camacho, R., Rodríguez, N., Pérez, K., Mijares, F., Castaño-Naranjo, A., Jurado, R., Idárraga-Piedrahíta, Á., Rojas, A., Vergara, H., & Pizano, C. (2018). Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia. Environmental Research Letters, 13(4), 045007. https://doi.org/10.1088/1748-9326/aaad74 | spa |
dc.relation.references | Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379–391. https://doi.org/https://doi.org/10.1046/j.1461-0248.2001.00230.x | spa |
dc.relation.references | Grass, I., Loos, J., Baensch, S., Batáry, P., Librán-Embid, F., Ficiciyan, A., Klaus, F., Riechers, M., Rosa, J., Tiede, J., Udy, K., Westphal, C., & Wurz, A. (2019). Land‐sharing/‐sparing connectivity landscapes for ecosystem services and biodiversity conservation. People and Nature, 1(2), 262–272. https://doi.org/10.1002/pan3.21 | spa |
dc.relation.references | Guimarães, P. R. (2020). The Structure of Ecological Networks across Levels of Organization. In Annual Review of Ecology, Evolution, and Systematics (Vol. 51, pp. 433–460). Annual Reviews Inc. https://doi.org/10.1146/annurev-ecolsys-012220-120819 | spa |
dc.relation.references | Hadley, A. S., Frey, S. J. K., Robinson, W. D., & Betts, M. G. (2018a). Forest fragmentation and loss reduce richness, availability, and specialization in tropical hummingbird communities. Biotropica, 50(1), 74–83. https://doi.org/10.1111/btp.12487 | spa |
dc.relation.references | Hadley, A. S., Frey, S. J. K., Robinson, W. D., & Betts, M. G. (2018b). Forest fragmentation and loss reduce richness, availability, and specialization in tropical hummingbird communities. Biotropica, 50(1), 74–83. https://doi.org/10.1111/btp.12487 | spa |
dc.relation.references | Hagen, O. E., Hagen, O., Ibáñez-Álamo, J. D., Petchey, O. L., & Evans, K. L. (2017). Impacts of Urban Areas and Their Characteristics on Avian Functional Diversity. Frontiers in Ecology and Evolution, 5. https://www.frontiersin.org/articles/10.3389/fevo.2017.00084 | spa |
dc.relation.references | Hilty, S. L., & Brown, W. L. (1986). A Guide to the Birds of Colombia. (P. U. Press, Ed.). http://press.princeton.edu/titles/672.html | spa |
dc.relation.references | Hutto, R. L., Pletschet, S. M., & Hendricks, P. (1986). A Fixed-radius Point Count Method for Nonbreeding and Breeding Season Use. The Auk, 103(3), 593–602. https://doi.org/10.1093/auk/103.3.593 | spa |
dc.relation.references | Imai, H., & Nakashizuka, T. (2010). Environmental factors affecting the composition and diversity of avian community in mid- to late breeding season in urban parks and green spaces. Landscape and Urban Planning, 96(3), 183–194. https://doi.org/https://doi.org/10.1016/j.landurbplan.2010.03.006 | spa |
dc.relation.references | Jordano, P. (2016). Sampling networks of ecological interactions. Functional Ecology, 30(12), 1883–1893. https://doi.org/10.1111/1365-2435.12763 | spa |
dc.relation.references | Jordano, P., Vazquez, D., & Bascompte, J. (2009). Redes complejas de interacciones mutualistas planta-animal. Ecología y Evolucion de Interacciones Planta-Animal, June, 399. | spa |
dc.relation.references | Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363–375. https://doi.org/https://doi.org/10.1111/j.2006.0030-1299.14714.x | spa |
dc.relation.references | Kindt, R., & Coe, R. (2005). Tree Diversity Analysis. A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies. In Nairobi: World Agroforestry Centre (ICRAF). | spa |
dc.relation.references | Knop, E. (2016). Biotic homogenization of three insect groups due to urbanization. Global Change Biology, 22(1), 228–236. https://doi.org/https://doi.org/10.1111/gcb.13091 | spa |
dc.relation.references | La Sorte, F. A., Lepczyk, C. A., Aronson, M. F. J., Goddard, M. A., Hedblom, M., Katti, M., MacGregor-Fors, I., Mörtberg, U., Nilon, C. H., Warren, P. S., Williams, N. S. G., & Yang, J. (2018). The phylogenetic and functional diversity of regional breeding bird assemblages is reduced and constricted through urbanization. Diversity and Distributions, 24(7), 928–938. https://doi.org/10.1111/DDI.12738 | spa |
dc.relation.references | Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(1), 299–305. https://doi.org/https://doi.org/10.1890/08-2244.1 | spa |
dc.relation.references | Laliberté, E., Legendre, P., & Shipley, B. (2014). FD: measuring functional diversity from multiple traits, and other tools for functional ecology (R package version 1.0-12.1). | spa |
dc.relation.references | Leveau, L. M., Isla, F. I., & Bellocq, M. I. (2015). Urbanization and the temporal homogenization of bird communities: a case study in central Argentina. Urban Ecosystems, 18(4), 1461–1476. https://doi.org/10.1007/s11252-015-0469-1 | spa |
dc.relation.references | Leveau, L. M., & Leveau, C. M. (2016). Does urbanization affect the seasonal dynamics of bird communities in urban parks? Urban Ecosystems, 19(2), 631–647. https://doi.org/10.1007/s11252-016-0525-5 | spa |
dc.relation.references | Leveau, L. M., Ruggiero, A., Matthews, T. J., & Isabel Bellocq, M. (2019). A global consistent positive effect of urban green area size on bird richness. Avian Research, 10(1), 30. https://doi.org/10.1186/s40657-019-0168-3 | spa |
dc.relation.references | Librán‐Embid, F., Grass, I., Emer, C., Ganuza, C., & Tscharntke, T. (2021). A plant–pollinator metanetwork along a habitat fragmentation gradient. Ecology Letters, 24(12), 2700–2712. https://doi.org/10.1111/ele.13892 | spa |
dc.relation.references | Luck, G. W., Carter, A., & Smallbone, L. (2013). Changes in Bird Functional Diversity across Multiple Land Uses: Interpretations of Functional Redundancy Depend on Functional Group Identity. PLoS ONE, 8(5). https://doi.org/10.1371/journal.pone.0063671 | spa |
dc.relation.references | MacArthur, R. H., & MacArthur, J. W. (1961). On Bird Species Diversity. Ecology, 42(3), 594–598. https://doi.org/https://doi.org/10.2307/1932254 | spa |
dc.relation.references | MacGregor-Fors, I. (2008). Relation between habitat attributes and bird richness in a western Mexico suburb. Landscape and Urban Planning, 84(1), 92–98. https://www.sciencedirect.com/science/article/pii/S0169204607001636 | spa |
dc.relation.references | MacGregor-Fors, I., & García-Arroyo, M. (2017). Who Is Who in the City? Bird Species Richness and Composition in Urban Latin America. In I. MacGregor-Fors & J. F. Escobar-Ibáñez (Eds.), Avian Ecology in Latin American Cityscapes (pp. 33–55). Springer International Publishing. https://doi.org/10.1007/978-3-319-63475-3_3 | spa |
dc.relation.references | MacGregor-Fors, I., Morales-Pérez, L., & Schondube, J. E. (2012). From forests to cities: effects of urbanization on tropical birds. Urban Bird Ecology and Conservation, 45, 33–48. https://doi.org/10.1525/9780520953895-005/HTML | spa |
dc.relation.references | Machado-de-Souza, T., Campos, R. P., Devoto, M., & Varassin, I. G. (2019). Local drivers of the structure of a tropical bird-seed dispersal network. Oecologia, 189(2), 421–433. https://doi.org/10.1007/s00442-018-4322-0 | spa |
dc.relation.references | Magurran, A. E. (1988). Diversity indices and species abundance models. In A. E. Magurran (Ed.), Ecological Diversity and Its Measurement (pp. 7–45). Springer Netherlands. https://doi.org/10.1007/978-94-015-7358-0_2 | spa |
dc.relation.references | Marcacci, G., Westphal, C., Wenzel, A., Raj, V., Nölke, N., Tscharntke, T., & Grass, I. (2021). Taxonomic and functional homogenization of farmland birds along an urbanization gradient in a tropical megacity. Global Change Biology, 27(20), 4980–4994. https://doi.org/https://doi.org/10.1111/gcb.15755 | spa |
dc.relation.references | Marjakangas, E.-L., Abrego, N., Grøtan, V., de Lima, R. A. F., Bello, C., Bovendorp, R. S., Culot, L., Hasui, É., Lima, F., Muylaert, R. L., Niebuhr, B. B., Oliveira, A. A., Pereira, L. A., Prado, P. I., Stevens, R. D., Vancine, M. H., Ribeiro, M. C., Galetti, M., & Ovaskainen, O. (2020). Fragmented tropical forests lose mutualistic plant–animal interactions. Diversity and Distributions, 26(2), 154–168. https://doi.org/https://doi.org/10.1111/ddi.13010 | spa |
dc.relation.references | Martínez-Falcón, A., Martínez-Adriano, C., & Dáttilo, W. (2019). Redes complejas como herramientas para estudiar la diversidad de las interacciones ecológicas (pp. 265–284). | spa |
dc.relation.references | Martins, L. P., Stouffer, D. B., Blendinger, P. G., Böhning-Gaese, K., Buitrón-Jurado, G., Correia, M., Costa, J. M., Dehling, D. M., Donatti, C. I., Emer, C., Galetti, M., Heleno, R., Jordano, P., Menezes, Í., Morante-Filho, J. C., Muñoz, M. C., Neuschulz, E. L., Pizo, M. A., Quitián, M., … Tylianakis, J. M. (2022). Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions. Nature Communications, 13(1), 6943. https://doi.org/10.1038/s41467-022-34355-w | spa |
dc.relation.references | Marzluff, J. M., & Ewing, K. (2008). Restoration of Fragmented Landscapes for the Conservation of Birds: A General Framework and Specific Recommendations for Urbanizing Landscapes. In J. M. Marzluff, E. Shulenberger, W. Endlicher, M. Alberti, G. Bradley, C. Ryan, U. Simon, & C. ZumBrunnen (Eds.), Urban Ecology: An International Perspective on the Interaction Between Humans and Nature (pp. 739–755). Springer US. https://doi.org/10.1007/978-0-387-73412-5_48 | spa |
dc.relation.references | Mason, N. W. H., de Bello, F., Mouillot, D., Pavoine, S., & Dray, S. (2013). A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science, 24(5), 794–806. https://doi.org/https://doi.org/10.1111/jvs.12013 | spa |
dc.relation.references | Mason, N. W. H., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111(1), 112–118. https://doi.org/https://doi.org/10.1111/j.0030-1299.2005.13886.x | spa |
dc.relation.references | Mayorga, I., Bichier, P., & Philpott, S. M. (2020). Local and landscape drivers of bird abundance, species richness, and trait composition in urban agroecosystems. Urban Ecosystems, 23(3), 495–505. https://doi.org/10.1007/s11252-020-00934-2 | spa |
dc.relation.references | Mbiba, M., Mazhude, C., Fabricius, C., Fritz, H., & Muvengwi, J. (2021). Bird species assemblages differ, while functional richness is maintained across an urban landscape. Landscape and Urban Planning, 212. https://doi.org/10.1016/j.landurbplan.2021.104094 | spa |
dc.relation.references | McKinney, M. L. (2002). Urbanization, Biodiversity, and Conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience, 52(10), 883–890. https://doi.org/10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2 | spa |
dc.relation.references | McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation, 127(3), 247–260. https://doi.org/10.1016/J.BIOCON.2005.09.005 | spa |
dc.relation.references | McMullan, M., Donegan, T., Pantoja-Peña, G., Tuncer-Navarro, T., Bartels, A., & Ellery, T. (2018). Field guide to the birds of Colombia. (R. N. Editores, Ed.). | spa |
dc.relation.references | Meffert, P. J., & Dziock, F. (2013). The influence of urbanisation on diversity and trait composition of birds. Landscape Ecology, 28(5), 943–957. https://doi.org/10.1007/s10980-013-9867-z | spa |
dc.relation.references | Melo, M. A., DA SILVA, M. A. G., & Piratelli, A. J. (2020). Improvement of vegetation structure enhances bird functional traits and habitat resilience in an area of ongoing restoration in the atlantic forest. Anais Da Academia Brasileira de Ciencias, 92, 1–22. https://doi.org/10.1590/0001-3765202020191241 | spa |
dc.relation.references | Melo, M. A., & Piratelli, A. J. (2023). Increase in size and shrub cover improves bird functional diversity in Neotropical urban green spaces. Austral Ecology, 48(2), 440–460. https://doi.org/https://doi.org/10.1111/aec.13279 | spa |
dc.relation.references | Menke, S., Böhning-Gaese, K., & Schleuning, M. (2012). Plant–frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest. Oikos, 121(10), 1553–1566. https://doi.org/https://doi.org/10.1111/j.1600-0706.2011.20210.x | spa |
dc.relation.references | Mora Escobar, F., & Maglianesi, M. A. (2021). Diversidad funcional de murciélagos frugívoros en dos fincas de producción ganadera en Guanacaste, Costa Rica. UNED Research Journal, 13(2), e3465. https://doi.org/10.22458/urj.v13i2.3465 | spa |
dc.relation.references | Morante-Filho, J. C., Arroyo-Rodríguez, V., Pessoa, M. de S., Cazetta, E., & Faria, D. (2018). Direct and cascading effects of landscape structure on tropical forest and non-forest frugivorous birds. Ecological Applications, 28(8), 2024–2032. https://doi.org/https://doi.org/10.1002/eap.1791 | spa |
dc.relation.references | Morelli, F., Benedetti, Y., Su, T., Zhou, B., Moravec, D., Šímová, P., & Liang, W. (2017). Taxonomic diversity, functional diversity and evolutionary uniqueness in bird communities of Beijing’s urban parks: Effects of land use and vegetation structure. Urban Forestry and Urban Greening, 23, 84–92. https://doi.org/10.1016/j.ufug.2017.03.009 | spa |
dc.relation.references | Moreno, C. (2001). Métodos para medir la biodiversidad (Vol. 1). M&T–Manuales y Tesis SEA. http://entomologia.rediris.es/sea | spa |
dc.relation.references | Mouchet, M. A., Villéger, S., Mason, N. W. H., & Mouillot, D. (2010). Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24(4), 867–876. https://doi.org/https://doi.org/10.1111/j.1365-2435.2010.01695.x | spa |
dc.relation.references | Mouillot, D., Mason, W. H. N., Dumay, O., & Wilson, J. B. (2005). Functional regularity: a neglected aspect of functional diversity. Oecologia, 142(3), 353–359. https://doi.org/10.1007/s00442-004-1744-7 | spa |
dc.relation.references | Mubamba, S., Nduna, N., Siachoono, S., Chibesa, M., Phiri, D., & Chama, L. (2022). Plant–frugivore networks are robust to species loss even in highly built-up urban ecosystems. Oecologia, 199(3), 637–648. https://doi.org/10.1007/s00442-022-05213-9 | spa |
dc.relation.references | Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203. https://doi.org/https://doi.org/10.1111/j.1600-0587.2013.00205.x | spa |
dc.relation.references | Nascimento, V. T., Agostini, K., Souza, C. S., & Maruyama, P. K. (2020). Tropical urban areas support highly diverse plant-pollinator interactions: An assessment from Brazil. Landscape and Urban Planning, 198. https://doi.org/10.1016/j.landurbplan.2020.103801 | spa |
dc.relation.references | Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50. https://doi.org/10.1038/nature14324 | spa |
dc.relation.references | Nielsen, A. B., van den Bosch, M., Maruthaveeran, S., & van den Bosch, C. K. (2014). Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosystems, 17(1), 305–327. https://doi.org/10.1007/s11252-013-0316-1 | spa |
dc.relation.references | Ocampo-Peñuela, N., Suárez-Castro, A. F., Díaz-Timoté, J. J., Gómez-Valencia, B., Olaya-Rodríguez, M. H., Sánchez-Clavijo, L. M., & Correa-Ayram, C. A. (2022). Increased exposure of Colombian birds to rapidly expanding human footprint. Environmental Research Letters, 17(11), 114050. https://doi.org/10.1088/1748-9326/ac98da | spa |
dc.relation.references | Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences, 104(50), 19891–19896. https://doi.org/10.1073/pnas.0706375104 | spa |
dc.relation.references | Oliveira Hagen, E., Hagen, O., Ibáñez-Álamo, J. D., Petchey, O. L., & Evans, K. L. (2017). Impacts of Urban Areas and Their Characteristics on Avian Functional Diversity. Frontiers in Ecology and Evolution, 5. https://www.frontiersin.org/articles/10.3389/fevo.2017.00084 | spa |
dc.relation.references | Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326. https://doi.org/https://doi.org/10.1111/j.1600-0706.2010.18644.x | spa |
dc.relation.references | Ortega-Álvarez, R., & MacGregor-Fors, I. (2009). Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition. Landscape and Urban Planning, 90(3–4), 189–195. https://www.sciencedirect.com/science/article/pii/S0169204608002004 | spa |
dc.relation.references | Palacio, F., Ibañez, L. M., Maragliano, R. E., & Maragliano, R. E. (2018). Urbanization as a driver of taxonomic, functional and phylogenetic diversity loss in bird communities. Canadian Journal of Zoology, 96(10), 1114–1121. | spa |
dc.relation.references | Palacio, R. D., Valderrama-Ardila, C., & Kattan, G. H. (2016). Generalist Species Have a Central Role In a Highly Diverse Plant–Frugivore Network. Biotropica, 48(3), 349–355. https://doi.org/https://doi.org/10.1111/btp.12290 | spa |
dc.relation.references | Patefield, W. M. (1981). Algorithm AS 159: An Efficient Method of Generating Random R × C Tables with Given Row and Column Totals. Journal of the Royal Statistical Society. Series C (Applied Statistics), 30(1), 91–97. https://doi.org/10.2307/2346669 | spa |
dc.relation.references | Paton, G. D., Shoffner, A. V, Wilson, A. M., & Gagné, S. A. (2019). The traits that predict the magnitude and spatial scale of forest bird responses to urbanization intensity. PLOS ONE, 14(7), e0220120-. https://doi.org/10.1371/journal.pone.0220120 | spa |
dc.relation.references | Piano, E., Souffreau, C., Merckx, T., Baardsen, L. F., Backeljau, T., Bonte, D., Brans, K. I., Cours, M., Dahirel, M., Debortoli, N., Decaestecker, E., De Wolf, K., Engelen, J. M. T., Fontaneto, D., Gianuca, A. T., Govaert, L., Hanashiro, F. T. T., Higuti, J., Lens, L., … Hendrickx, F. (2020). Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Global Change Biology, 26(3), 1196–1211. https://doi.org/https://doi.org/10.1111/gcb.14934 | spa |
dc.relation.references | R Core Team. (2023). R: A Language and Environment for Statistical Computing (4.3.0). R Foundation for Statistical Computing. | spa |
dc.relation.references | Ramos-Robles, M., Andresen, E., & Díaz-Castelazo, C. (2018). Modularity and robustness of a plant-frugivore interaction network in a disturbed tropical forest. Écoscience, 25(3), 209–222. https://doi.org/10.1080/11956860.2018.1446284 | spa |
dc.relation.references | Rico-Silva, J. F., Cruz-Trujillo, E. J., & Colorado Z., G. J. (2021). Influence of environmental factors on bird diversity in greenspaces in an Amazonian city. Urban Ecosystems, 24(2), 365–374. https://doi.org/10.1007/s11252-020-01042-x | spa |
dc.relation.references | Rivera-Gutiérrez, H. F. (2006). Composición y estructura de una comunidad de aves en un área suburbana en el suroccidente colombiano: Composition and structure of a suburban bird community in southwestern Colombia. Ornitología Colombiana, 4, 28–38. https://asociacioncolombianadeornitologia.org/ojs/index.php/roc/article/view/91 | spa |
dc.relation.references | Rodewald, A. D., Rohr, R. P., Fortuna, M. A., & Bascompte, J. (2014). Community-level demographic consequences of urbanization: an ecological network approach. Journal of Animal Ecology, 83(6), 1409–1417. https://doi.org/https://doi.org/10.1111/1365-2656.12224 | spa |
dc.relation.references | Rodrigues, A. G., Borges-Martins, M., & Zilio, F. (2018). Bird diversity in an urban ecosystem: the role of local habitats in understanding the effects of urbanization. Iheringia. Série Zoologia, 108. | spa |
dc.relation.references | Salazar-Rivera, G. I., Dáttilo, W., Castillo-Campos, G., Flores-Estévez, N., Ramírez García, B., & Ruelas Inzunza, E. (2020). The frugivory network properties of a simplified ecosystem: Birds and plants in a Neotropical periurban park. Ecology and Evolution, 10(16), 8579–8591. https://doi.org/10.1002/ece3.6481 | spa |
dc.relation.references | Salgado, B. (2015). La Ecología Funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. In La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones (Issue February). | spa |
dc.relation.references | Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V, & Woolmer, G. (2002). The Human Footprint and the Last of the Wild: The human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience, 52(10), 891–904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 | spa |
dc.relation.references | Schleuning, M., Fründ, J., & García, D. (2015). Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. Ecography, 38(4), 380–392. https://doi.org/https://doi.org/10.1111/ecog.00983 | spa |
dc.relation.references | Schneiberg, I., Boscolo, D., Devoto, M., Marcilio-Silva, V., Dalmaso, C. A., Ribeiro, J. W., Ribeiro, M. C., de Camargo Guaraldo, A., Niebuhr, B. B., & Varassin, I. G. (2020). Urbanization homogenizes the interactions of plant-frugivore bird networks. Urban Ecosystems, 23(3), 457–470. https://doi.org/10.1007/S11252-020-00927-1 | spa |
dc.relation.references | Schütz, C., & Schulze, C. H. (2015). Functional diversity of urban bird communities: effects of landscape composition, green space area and vegetation cover. Ecology and Evolution, 5(22), 5230–5239. https://doi.org/https://doi.org/10.1002/ece3.1778 | spa |
dc.relation.references | Shahabuddin, G., & Kumar, R. (2006). Influence of anthropogenic disturbance on bird communities in a tropical dry forest: role of vegetation structure. Animal Conservation, 9(4), 404–413. https://doi.org/https://doi.org/10.1111/j.1469-1795.2006.00051.x | spa |
dc.relation.references | Siabato, W., & Guzmán-Manrique, J. (2019). La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuadernos de Geografía: Revista Colombiana de Geografía, 28, 1–22. | spa |
dc.relation.references | Sol, D., González-Lagos, C., Moreira, D., Maspons, J., & Lapiedra, O. (2014). Urbanisation tolerance and the loss of avian diversity. Ecology Letters, 17(8), 942–950. https://doi.org/https://doi.org/10.1111/ele.12297 | spa |
dc.relation.references | Suárez-Castro, A. F., Maron, M., Mitchell, M. G. E., & Rhodes, J. R. (2022). Disentangling direct and indirect effects of landscape structure on urban bird richness and functional diversity. Ecological Applications, 32(8). https://doi.org/10.1002/EAP.2713 | spa |
dc.relation.references | Suri, J., Anderson, P. M., Charles-Dominique, T., Hellard, E., & Cumming, G. S. (2017). More than just a corridor: A suburban river catchment enhances bird functional diversity. Landscape and Urban Planning, 157, 331–342. https://doi.org/10.1016/j.landurbplan.2016.07.013 | spa |
dc.relation.references | Teixido, A. L., Fuzessy, L. F., Souza, C. S., Gomes, I. N., Kaminski, L. A., Oliveira, P. C., & Maruyama, P. K. (2022). Anthropogenic impacts on plant-animal mutualisms: A global synthesis for pollination and seed dispersal. In Biological Conservation (Vol. 266). Elsevier Ltd. https://doi.org/10.1016/j.biocon.2022.109461 | spa |
dc.relation.references | Thaweepworadej, P., & Evans, K. (2022). Avian species richness and tropical urbanization gradients: Effects of woodland retention and human disturbance. Ecological Applications, 32. https://doi.org/10.1002/eap.2586 | spa |
dc.relation.references | Tobias, J. A., Sheard, C., Pigot, A. L., Devenish, A. J. M., Yang, J., Sayol, F., Neate-Clegg, M. H. C., Alioravainen, N., Weeks, T. L., Barber, R. A., Walkden, P. A., MacGregor, H. E. A., Jones, S. E. I., Vincent, C., Phillips, A. G., Marples, N. M., Montaño-Centellas, F. A., Leandro-Silva, V., Claramunt, S., … Schleuning, M. (2022). AVONET: morphological, ecological and geographical data for all birds. Ecology Letters, 25(3), 581–597. https://doi.org/https://doi.org/10.1111/ele.13898 | spa |
dc.relation.references | Trentanovi, G., von der Lippe, M., Sitzia, T., Ziechmann, U., Kowarik, I., & Cierjacks, A. (2013). Biotic homogenization at the community scale: disentangling the roles of urbanization and plant invasion. Diversity and Distributions, 19(7), 738–748. https://doi.org/https://doi.org/10.1111/ddi.12028 | spa |
dc.relation.references | Tylianakis, J. M., Didham, R. K., Bascompte, J., & Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11(12), 1351–1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x | spa |
dc.relation.references | Tylianakis, J. M., Laliberté, E., Nielsen, A., & Bascompte, J. (2010). Conservation of species interaction networks. Biological Conservation, 143(10), 2270–2279. https://doi.org/https://doi.org/10.1016/j.biocon.2009.12.004 | spa |
dc.relation.references | Tylianakis, J. M., & Morris, R. J. (2017). Ecological Networks Across Environmental Gradients. Annual Review of Ecology, Evolution, and Systematics, 48(1), 25–48. https://doi.org/10.1146/annurev-ecolsys-110316-022821 | spa |
dc.relation.references | Vaccaro, A. S., Filloy, J., & Bellocq, M. I. (2022). Bird taxonomic and functional diversity in urban settlements within a forest biome vary with the landscape matrix. Perspectives in Ecology and Conservation, 20(1), 9–17. https://doi.org/10.1016/j.pecon.2021.10.001 | spa |
dc.relation.references | van Rensburg, B. J., Peacock, D. S., & Robertson, M. P. (2009). Biotic homogenization and alien bird species along an urban gradient in South Africa. Landscape and Urban Planning, 92(3–4), 233–241. https://doi.org/10.1016/J.LANDURBPLAN.2009.05.002 | spa |
dc.relation.references | Venables, W. N., & Ripley, B. D. (2002). Exploratory Multivariate Analysis. In W. N. Venables & B. D. Ripley (Eds.), Modern Applied Statistics with S (pp. 301–330). Springer New York. https://doi.org/10.1007/978-0-387-21706-2_11 | spa |
dc.relation.references | Vidal, M. M., Hasui, E., Pizo, M. A., Tamashiro, J. Y., Silva, W. R., & Guimarães Jr., P. R. (2014). Frugivores at higher risk of extinction are the key elements of a mutualistic network. Ecology, 95(12), 3440–3447. https://doi.org/https://doi.org/10.1890/13-1584.1 | spa |
dc.relation.references | Villéger, S., Miranda, J. R., Hernández, D. F., & Mouillot, D. (2010). Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, 20(6), 1512–1522. https://doi.org/https://doi.org/10.1890/09-1310.1 | spa |
dc.relation.references | Vitorino, B. D., da Frota, A. V, & Maruyama, P. K. (2021). Ecological determinants of interactions as key when planning pollinator-friendly urban greening: A plant-hummingbird network example. Urban Forestry & Urban Greening, 64(127298). https://www.sciencedirect.com/science/article/pii/S1618866721003253 | spa |
dc.relation.references | Xu, W., Fu, W., Dong, J., Yu, J., Huang, P., Zheng, D., Chen, Z., Zhu, Z., & Ding, G. (2022). Bird Communities Vary under Different Urbanization Types—A Case Study in Mountain Parks of Fuzhou, China. Diversity, 14(7). | spa |
dc.relation.references | Zhang, M., Lu, C., Han, Q., & Lu, C. (2022). Structure and Characteristics of Plant-Frugivore Network in an Urban Park: A Case Study in Nanjing Botanical Garden Mem. Sun Yat-Sen. Diversity, 14(2). https://doi.org/10.3390/d14020071 | spa |
dc.relation.references | Zitske, B. P., Betts, M. G., & Diamond, A. W. (2011). Negative Effects of Habitat Loss on Survival of Migrant Warblers in a Forest Mosaic. Conservation Biology, 25(5), 993–1001. https://doi.org/10.1111/J.1523-1739.2011.01709.X | spa |
dc.relation.references | Zorzal, R. R., Diniz, P., Oliveira, R. de, & Duca, C. (2021). Drivers of avian diversity in urban greenspaces in the Atlantic Forest. Urban Forestry and Urban Greening, 59. https://doi.org/10.1016/J.UFUG.2020.126908 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 570 - Biología::577 - Ecología | spa |
dc.subject.lemb | Urbanismo - Colombia | |
dc.subject.lemb | Impacto ambiental - Colombia | |
dc.subject.lemb | Desarrollo urbano - Colombia | |
dc.subject.lemb | Ecosistemas urbanos - Colombia | |
dc.subject.lemb | Gestión de ecosistemas - Colombia | |
dc.subject.lemb | Migración de aves - Colombia | |
dc.subject.lemb | Bosques tropicales - Colombia | |
dc.subject.lemb | Diversidad biológica - Colombia | |
dc.subject.proposal | Urbanización | spa |
dc.subject.proposal | Aves | spa |
dc.subject.proposal | Diversidad taxonómica | spa |
dc.subject.proposal | Diversidad funcional | spa |
dc.subject.proposal | Redes de interacción | spa |
dc.subject.proposal | Frugivoría | spa |
dc.subject.proposal | Urbanization | eng |
dc.subject.proposal | Birds | eng |
dc.subject.proposal | Taxonomic diversity | eng |
dc.subject.proposal | Functional diversity | eng |
dc.subject.proposal | Interaction networks | eng |
dc.subject.proposal | Frugivory | eng |
dc.title | Del bosque seco tropical a las ciudades : respuestas del ensamblaje de aves a los ambientes urbanos | spa |
dc.title.translated | From tropical dry forest to cities : responses of bird assembly to urban environments | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Del bosque seco tropical a las ciudades: respuestas del ensamblaje de aves a los ambientes urbanos | spa |
oaire.fundername | Universidad Nacional de Colombia sede De La Paz | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1017162993.2024.pdf
- Tamaño:
- 1.21 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Bosques y Conservación Ambiental
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: