Evaluación de la disponibilidad del recurso eólico en la Región Caribe de Colombia en Escenarios de cambio climático

dc.contributor.advisorRuiz Murcia, Jose Franklynspa
dc.contributor.authorGarzón Casas, Davidspa
dc.contributor.orcidGarzón Casas, David [0009000211122401]spa
dc.contributor.researchgroupGrupo de Investigación en Ciencias Atmosféricasspa
dc.coverage.countryColombiaspa
dc.coverage.regionCaribespa
dc.date.accessioned2025-06-25T16:04:48Z
dc.date.available2025-06-25T16:04:48Z
dc.date.issued2025-04
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractLa intensidad y variabilidad estacional del viento en algunas zonas de la Región Caribe de Colombia (RCC) hacen que su recurso eólico sea atractivo para el sector energético. Sin embargo, su disponibilidad depende del estado y evolución del sistema climático, que ha presentado cambios paulatinos, pero constantes, en algunos de sus elementos en el último siglo. En esta investigación se buscó entender el estado actual del recurso eólico en la RCC y sus posibles evoluciones en los escenarios de cambio climático propuestos en la sexta fase del CMIP. Para ello, se utilizaron mediciones in situ en la RCC e información del reanálisis ERA5, donde se evidenció que la Península de La Guajira, zonas marítimas aledañas a esta y al departamento Magdalena tienen valores de densidad de potencia eólica en 80 metros sobre la superficie (AGL, por sus siglas en inglés), altura promedio del eje de turbinas eólicas, superiores a 600 W/m^2. No obstante, la tendencia de esta variable en las últimas décadas (posterior a 1981) ha sido de descenso. Se corroboró este resultado, por medio del análisis del comportamiento de sistemas de mayor escala que influyen en la RCC a partir de fuentes observacionales (radiosondeos y boyas marinas) y de proyectos de asimilación. Por otro lado, los modelos del CMIP6 tuvieron diferencias en las tendencias del viento para el mismo periodo histórico, aunque en el periodo de proyecciones de cambio climático (2015 a 2099) tuvieron un alto grado de congruencia entre sí, especialmente en los escenarios de mayores emisiones de gases de efecto invernadero (GEI) donde señalan que habrá una intensificación de este. Para tener estimaciones locales en la RCC del recurso eólico en escenarios de cambio climático, se recurrió a aplicar una técnica de reducción de escala estadística a los modelos del CMIP6 basado en dos módulos, el primero fue un método de corrección de sesgo con preservación de la tendencia climática y el segundo fue una desagregación espacial realizada por medio de una función multilineal. Los resultados obtenidos de la reducción de escala estadística muestran una mejora significativa en la habilidad de simulación con respecto a las salidas crudas de los modelos del CMIP6, e indican que para el escenario de menores emisiones analizado, SSP1-2.6, no hay una tendencia significativa de cambio en el periodo de proyecciones de cambio climático de la densidad de potencia eólica sector de la RCC, pero a medida que se aumenta el escenario de emisiones, aumenta la intensidad y la significancia de las tendencias, siendo la zona con mayores vientos en el periodo histórico reciente, la que tiene tendencias más intensas de aumento (Texto tomado de la fuente).spa
dc.description.abstractThe intensity and seasonal variability of wind in some areas of the Caribbean Region of Colombia (RCC, by its initials in Spanish) make its wind resource attractive to the energy sector. However, its availability depends on the state and evolution of the climate system, which has shown gradual but consistent changes in some of its elements over the past century. This research aimed to understand the current state of the wind resource in the RCC and its possible evolutions under the climate change scenarios proposed in the sixth phase of the CMIP. For this purpose, in situ measurements in the RCC and information from the ERA5 reanalysis were used, showing that the La Guajira Peninsula, maritime areas adjacent to it, and to the Magdalena department have wind power density values at 80 meters above ground level (AGL), the average height of wind turbine hubs, exceeding 600 W/m^2. However, the trend of this variable in recent decades (after 1981) has been downward. This result was corroborated through the analysis of the behavior of large-scale systems that influence the RCC, using observational sources (radiosondes and marine buoys) and assimilation projects. On the other hand, the CMIP6 models showed differences in wind trends for the same historical period, although during the climate change projection period (2015 to 2099) they exhibited a high degree of consistency, especially in scenarios with higher greenhouse gas emissions, where they indicate that there will be an intensification of wind. To obtain local estimates of the wind resource in the RCC under climate change scenarios, a statistical downscaling was applied to the CMIP6 models based on two modules. The first was a bias correction method with trend preservation, and the second was a spatial disaggregation performed using a multilinear function. The results obtained from the statistical downscaling show a significant improvement in the simulation skill compared to the raw outputs of the CMIP6 models. They indicate that, for the lowest emission scenario analyzed, SSP1-2.6, there is no significant trend of change in the wind power density in the RCC sector during the climate change projection period. However, as the emission scenario increases, both the intensity and significance of the trends rise, with the area that had the strongest winds in the recent historical period showing the most intense increasing trends.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Meteorologíaspa
dc.format.extent157 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88249
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Meteorologíaspa
dc.relation.referencesAjayi, Oluseyi O., Ojo, Olorunfemi, & Vasel, Ahmed. 2019. On the need for the development of low wind speed turbine generator system. IOP Conference Series: Earth and Environmental Science, 331(9), 012062.spa
dc.relation.referencesAmador, Jorge A. 2008. The Intra-Americas Sea Low-level Jet. Annals of the New York Academy of Sciences, 1146(12), 153–188.spa
dc.relation.referencesAngeles, M. E., González, J. E., Erickson, D. J., & Hernández, J. L. 2010. The Impacts of Climate Changes on the Renewable Energy Resources in the Caribbean Region. Journal of Solar Energy Engineering, 132(8).spa
dc.relation.referencesAtlas, Robert, Hoffman, Ross N., Ardizzone, Joseph, Leidner, S. Mark, Jusem, Juan Carlos, Smith, Deborah K., & Gombos, Daniel. 2011. A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications. Bulletin of the American Meteorological Society, 92(2), 157–174.spa
dc.relation.referencesBastidas-Salamanca, Martha, & Rueda-Bayona, Juan Gabriel. 2021. Effect of Climate Variability Events over the Colombian Caribbean Offshore Wind Resource. Water, 13(11), 3150.spa
dc.relation.referencesBeck, Hylke E., Zimmermann, Niklaus E., McVicar, Tim R., Vergopolan, Noemi, Berg, Alexis, & Wood, Eric F. 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(10), 180214.spa
dc.relation.referencesBenestad, Rasmus E, Hanssen-Bauer, Inger, & Chen, Deliang. 2008. Empirical-Statistical Downscaling. WORLD SCIENTIFIC.spa
dc.relation.referencesCannon, Alex J., Sobie, Stephen R., & Murdock, Trevor Q. 2015. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? Journal of Climate, 28(9), 6938–6959.spa
dc.relation.referencesCerón, Wilmar L., Andreoli, Rita Valeria, Kayano, Mary Toshie, de Souza, Rodrigo Augusto Ferreira, Jones, Charles, & Carvalho, Leila M. V. 2020. The Influence of the Atlantic Multidecadal Oscillation on the Choco Low-Level Jet and Precipitation in Colombia. Atmosphere, 11(2), 174.spa
dc.relation.referencesCerón, Wilmar L., Kayano, Mary T., Andreoli, Rita V., Avila-Diaz, Alvaro, de Souza, Itamara Parente, & Souza, Rodrigo A. F. 2021. Pacific and Atlantic Multidecadal Variability Relations with the Choco and Caribbean Low-Level Jets during the 1900–2015 Period. Atmosphere, 12(8), 1120.spa
dc.relation.referencesChen, D., Rojas, M., Samset, B.H., Cobb, K., Diongue Niang, A., Edwards, P., Emori, S., Faria, S.H., Hawkins, E., Hope, P., Huybrechts, P., Meinshausen, M., Mustafa, S.K., Plattner, G.-K., & Tréguier, A.-M. 2021. Framing, Context, and Methods In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. Pages 147–286.spa
dc.relation.referencesCollins, Matthew, Knutti, Reto, Dufresne, Jean-Louis, Fichefet, Thierry, Friedlingstein, Pierre, Gao, Xuejie, Gutowski, William, Johns, Tim, Krinner, Gerhard, Shongwe, Mxolisi, Tebaldi, Claudia, Weaver, Andrew, & Wehner, Michael. 2014. Climate Change 2013 – The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.spa
dc.relation.referencesCopernicus Climate Change Service. 2021. CMIP6 climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip6 [Accedido el 15 de febrero de 2024].spa
dc.relation.referencesCopernicus Climate Change Service. 2023. CMIP6: Global climate projections. https://confluence.ecmwf.int/display/CKB/CMIP6%3A+Global+climate+projections [Accedido el 2 de mayo de 2024].spa
dc.relation.referencesCopernicus Climate Change Service. 2024. ERA5: data documentation. https://confluence.ecmwf.int/ display/CKB/ERA5%3A+data+documentation [Accedido el 20 de abril de 2024].spa
dc.relation.referencesCorrea, Isabel C., Arias, Paola A., Vieira, Sara C., & Martínez, J. Alejandro. 2024. A drier Orinoco basin during the twenty-first century: the role of the Orinoco low-level jet. Climate Dynamics, 62(3), 2369–2398.spa
dc.relation.referencesCostoya, X., deCastro, M., Santos, F., Sousa, M.C., & Gómez-Gesteira, M. 2019. Projections of wind energy resources in the Caribbean for the 21st century. Energy, 178(7), 356–367.spa
dc.relation.referencesCraig, Michael T., Cohen, Stuart, Macknick, Jordan, Draxl, Caroline, Guerra, Omar J., Sengupta, Manajit, Haupt, Sue Ellen, Hodge, Bri-Mathias, & Brancucci, Carlo. 2018. A review of the potential impacts of climate change on bulk power system planning and operations in the United States. Renewable and Sustainable Energy Reviews, 98(12), 255–267.spa
dc.relation.referencesCurry, Charles L., van der Kamp, Derek, & Monahan, Adam H. 2011. Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. I. Predicting wind speed. Climate Dynamics, 38(4), 1281–1299.spa
dc.relation.referencesDevis, Annemarie, Lipzig, Nicole P M Van, & Demuzere, Matthias. 2018. Should future wind speed changes be taken into account in wind farm development? Environmental Research Letters, 13(6), 064012.spa
dc.relation.referencesEhret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., & Liebert, J. 2012. HESS Opinions "Should we apply bias correction to global and regional climate model data?". Hydrology and Earth System Sciences, 16(9), 3391–3404.spa
dc.relation.referencesFoley, A.M. 2010. Uncertainty in regional climate modelling: A review. Progress in Physical Geography: Earth and Environment, 34(10), 647–670.spa
dc.relation.referencesGandin, Lev S. 1988. Complex Quality Control of Meteorological Observations. Monthly Weather Review, 116(5), 1137–1156.spa
dc.relation.referencesGelaro, Ronald, McCarty, Will, Suárez, Max J., Todling, Ricardo, Molod, Andrea, Takacs, Lawrence, Randles, Cynthia A., Darmenov, Anton, Bosilovich, Michael G., Reichle, Rolf, Wargan, Krzysztof, Coy, Lawrence, Cullather, Richard, Draper, Clara, Akella, Santha, Buchard, Virginie, Conaty, Austin, da Silva, Arlindo M., Gu, Wei, Kim, Gi-Kong, Koster, Randal, Lucchesi, Robert, Merkova, Dagmar, Nielsen, Jon Eric, Partyka, Gary, Pawson, Steven, Putman, William, Rienecker, Michele, Schubert, Siegfried D., Sienkiewicz, Meta, & Zhao, Bin. 2017. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(7), 5419–5454.spa
dc.relation.referencesGiambelluca, T. W. 2005. Trade Winds and the Trade Wind Inversion. Springer Netherlands. Pages 731–732.spa
dc.relation.referencesGiannini, A, Kushnir, Y, & Cane, M.A. 2001. Seasonality in the impact of ENSO and the north atlantic high on caribbean rainfall. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(1), 143–147.spa
dc.relation.referencesGoubanova, K., Echevin, V., Dewitte, B., Codron, F., Takahashi, K., Terray, P., & Vrac, M. 2010. Statistical downscaling of sea-surface wind over the Peru–Chile upwelling region: diagnosing the impact of climate change from the IPSL-CM4 model. Climate Dynamics, 36(4), 1365–1378.spa
dc.relation.referencesGranger, Orman E. 1985. Caribbean climates. Progress in Physical Geography: Earth and Environment, 9(3), 16–43.spa
dc.relation.referencesGrimit, Eric P., & Mass, Clifford F. 2007. Measuring the Ensemble Spread-Error Relationship with a Probabilistic Approach: Stochastic Ensemble Results. Monthly Weather Review, 135(1), 203–221.spa
dc.relation.referencesGross, Markus, & Magar, Vanesa. 2016. Offshore Wind Energy Climate Projection Using UPSCALE Climate Data under the RCP8.5 Emission Scenario. PLOS ONE, 11(10), e0165423.spa
dc.relation.referencesGu, Guojun, Adler, Robert F., Huffman, George J., & Curtis, Scott. 2004. African easterly waves and their association with precipitation. Journal of Geophysical Research: Atmospheres, 109(2).spa
dc.relation.referencesGulev, S.K., Thorne, P.W., Ahn, J., Dentener, F.J., Domingues, C.M., Gerland, S., Gong, D., Kaufman, D.S., Nnamchi, H.C., Quaas, J., Rivera, J.A., Sathyendranath, S., Smith, S.L., Trewin, B., von Schuckmann, K., & Vose, R.S. 2021. Changing State of the Climate System in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. Pages 287–422.spa
dc.relation.referencesGuzman, Diana. 2020. Simulación Meteorológica en Zona de Alta Montana para estimar el potencial eólico.spa
dc.relation.referencesHawkins, Ed, & Sutton, Rowan. 2009. The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society, 90(8), 1095–1108.spa
dc.relation.referencesHenry, James. 2005. Tropical And Equatorial Climates. Springer Netherlands. Pages 742–750.spa
dc.relation.referencesHeo, Jun-Haeng, Ahn, Hyunjun, Shin, Ju-Young, Kjeldsen, Thomas Rodding, & Jeong, Changsam. 2019. Probability Distributions for a Quantile Mapping Technique for a Bias Correction of Precipitation Data: A Case Study to Precipitation Data Under Climate Change. Water, 11(7), 1475.spa
dc.relation.referencesHersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Munoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.-N. 2023. ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Accedido el 1 de febrero de 2023.spa
dc.relation.referencesHewitson, B. C., Daron, J., Crane, R. G., Zermoglio, M. F., & Jack, C. 2014. Interrogating empirical-statistical downscaling. Climatic Change, 122(2), 539–554.spa
dc.relation.referencesHolton, James R. 2004. An Introduction to Dynamic Meteorology. Fourth edn. Elsevier Academic Press.spa
dc.relation.referencesIDEAM, UPME. 2017. Atlas del viento en Colombia.spa
dc.relation.referencesImbach, Pablo, Chou, Sin Chan, Lyra, André, Rodrigues, Daniela, Rodriguez, Daniel, Latinovic, Dragan, Siqueira, Gracielle, Silva, Adan, Garofolo, Lucas, & Georgiou, Selena. 2018. Future climate change scenarios in Central America at high spatial resolution. PLOS ONE, 13(4), e0193570.spa
dc.relation.referencesIPCC. 2021. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. Pages 3–32.spa
dc.relation.referencesJolliff, Jason K., Kindle, John C., Shulman, Igor, Penta, Bradley, Friedrichs, Marjorie A.M., Helber, Robert, & Arnone, Robert A. 2009. Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. Journal of Marine Systems, 76(2), 64–82.spa
dc.relation.referencesJury, Mark, Malmgren, Björn A., & Winter, Amos. 2007. Subregional precipitation climate of the Caribbean and relationships with ENSO and NAO. Journal of Geophysical Research: Atmospheres, 112(8).spa
dc.relation.referencesKalmikov, Alexander. 2017. Wind Power Fundamentals. Elsevier. Pages 17–24.spa
dc.relation.referencesKarnauskas, Kristopher B., Lundquist, Julie K., & Zhang, Lei. 2018. Southward shift of the global wind energy resource under high carbon dioxide emissions. Nature Geoscience, 11(1), 38–43.spa
dc.relation.referencesKrishnamurti, T. N., Kishtawal, C. M., Zhang, Zhan, LaRow, Timothy, Bachiochi, David, Williford, Eric, Gadgil, Sulochana, & Surendran, Sajani. 2000. Multimodel Ensemble Forecasts for Weather and Seasonal Climate. Journal of Climate, 13(12), 4196–4216.spa
dc.relation.referencesLee, J.-Y., Marotzke J., Bala G., Cao L., Corti S., Dunne J.P., Engelbrecht F., Fischer E., Fyfe J.C., Jones C., Maycock A., Mutemi J., Ndiaye O., & Panickal S., Zhou T. 2021. Future Global Climate: Scenario-based Projections and Near-term Information In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. Pages 553–672.spa
dc.relation.referencesLee, June-Yi, Marotzke, Jochem, Bala, Govindasamy, Cao, Long, Corti, Susanna, Dunne, John P., Engelbrecht, Francois, Fischer, Erich, Fyfe, John C., Jones, Christopher, Maycock, Amanda, Mutemi, Joseph, Ndiaye, Ousmane, Panickal, Swapna, & Zhou, Tianjun. 2023. Future Global Climate: Scenario-based Projections and Near-term Information. Cambridge University Press. Pages 553–672.spa
dc.relation.referencesLeon, Gloria. 2009. Ciclones tropicales en Colombia y tendencia de la frecuencia durante el óltimo siglo. Investigación, Biodiversidad y Desarrollo, 28, 93–100.spa
dc.relation.referencesLeon, Gloria, Zea, Jorge, & Eslava, Jesós. 2001. Ondas del este en Colombia y algunos aspectos relevantes de los ciclones tropicales. Meteorología Colombiana, 3(3), 137–141.spa
dc.relation.referencesLi, Delei, Feng, Jianlong, Dosio, Alessandro, Qi, Jifeng, Xu, Zhenhua, & Yin, Baoshu. 2020. Historical Evaluation and Future Projections of 100-m Wind Energy Potentials Over CORDEX-East Asia. Journal of Geophysical Research: Atmospheres, 125(8).spa
dc.relation.referencesMaraun, Douglas. 2016. Bias Correcting Climate Change Simulations - a Critical Review. Current Climate Change Reports, 2(12), 211–220.spa
dc.relation.referencesMaraun, Douglas, & Widmann, Martin. 2018. Statistical Downscaling and Bias Correction for Climate Research. Cambridge University Press.spa
dc.relation.referencesMartinez, A., & Iglesias, G. 2024. Global wind energy resources decline under climate change. Energy, 288(2), 129765.spa
dc.relation.referencesMcKnight, Tom, & Hess, Darrel. 2000. Climate Zones and Types. Prentice Hall.spa
dc.relation.referencesMesa, Oscar, Urrea, Viviana, & Ochoa, Andrés. 2021. Trends of Hydroclimatic Intensity in Colombia. Climate, 9(7), 120.spa
dc.relation.referencesMudelsee, Manfred. 2014. Climate Time Series Analysis. Vol. 51. Springer International Publishing.spa
dc.relation.referencesMudelsee, Manfred. 2019. Trend analysis of climate time series: A review of methods. Earth-Science Reviews, 190(3), 310–322.spa
dc.relation.referencesMunoz, Ernesto, Busalacchi, Antonio J., Nigam, Sumant, & Ruiz-Barradas, Alfredo. 2008. Winter and Summer Structure of the Caribbean Low-Level Jet. Journal of Climate, 21(3), 1260–1276.spa
dc.relation.referencesNCEP, NWS, & NOAA. 2000. NCEP/DOE Reanalysis 2 (R2). https://rda.ucar.edu/datasets/dsd091000/.spa
dc.relation.referencesNewey, Whitney K., & West, Kenneth D. 1987. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica, 55(5), 703.spa
dc.relation.referencesNOAA. 2021. NOAA/CIRES/DOE Twentieth Century Reanalysis Project version 3. https://psl.noaa.gov.spa
dc.relation.referencesNOAA, NASA, & USAF. 1976. U.S. Standard Atmosphere, 1976. NOAA.spa
dc.relation.referencesO’Neill, B C, Tebaldi, C, van Vuuren, D P, Eyring, V, Friedlingstein, P, Hurtt, G, Knutti, R, Kriegler, E, Lamarque, J.-F., Lowe, J, Meehl, G A, Moss, R, Riahi, K, & Sanderson, B M. 2016. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461–3482.spa
dc.relation.referencesOrtega, Geusep, Arias, Paola A., Villegas, Juan Camilo, Marquet, Pablo A., & Nobre, Paulo. 2021. Present-day and future climate over central and South America according to CMIP5/CMIP6 models. International Journal of Climatology, 41(12), 6713–6735.spa
dc.relation.referencesParker, Wendy S. 2010. Predicting weather and climate: Uncertainty, ensembles and probability. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 41(9), 263–272.spa
dc.relation.referencesPoveda, Germán, & Mesa, Oscar. 1999. La Corriente de Chorro Superficial del Oeste ("del CHOCÓ") y otras dos corrrientes de chorro atmosféricas sobre Colombia: Climatología y Variabilidad durante las fases del ENSO. Revista de la Academia Colombiana de Ciencias Exactas Fisicas y Naturales, 23(11), 517–528.spa
dc.relation.referencesPryor, S. C., & Schoof, J. T. 2005. Empirical downscaling of wind speed probability distributions. Journal of Geophysical Research, 110, D19109.spa
dc.relation.referencesPryor, S. C., Schoof, J. T., & Barthelmie, R. J. 2006. Winds of change?: Projections of near-surface winds under climate change scenarios. Geophysical Research Letters, 33(6), 2006GL026000.spa
dc.relation.referencesPryor, S.C., & Barthelmie, R.J. 2010. Climate change impacts on wind energy: A review. Renewable and Sustainable Energy Reviews, 14(1), 430–437.spa
dc.relation.referencesRueda-Bayona, Juan Gabriel, Guzmán, Andres, Eras, Juan José Cabello, Silva-Casarín, Rodolfo, Bastidas-Arteaga, Emilio, & Horrillo-Caraballo, José. 2019. Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220(5), 529–543.spa
dc.relation.referencesRuiz, Samuel Andrés Gil, Barriga, Julio Eduardo Canón, & Martínez, J. Alejandro. 2022. Assessment and validation of wind power potential at convection-permitting resolution for the Caribbean region of Colombia. Energy, 244(4), 123127.spa
dc.relation.referencesRuiz-Ochoa, Mauricio, Beier, Emilio, Bernal, Gladys, & Barton, Eric Desmond. 2012. Sea surface temperature variability in the Colombian Basin, Caribbean Sea. Deep Sea Research Part I: Oceanographic Research Papers, 64(6), 43–53.spa
dc.relation.referencesSadorsky, Perry. 2021. Wind energy for sustainable development: Driving factors and future outlook. Journal of Cleaner Production, 289(3), 125779.spa
dc.relation.referencesSchaeffer, Roberto, Szklo, Alexandre Salem, de Lucena, André Frossard Pereira, Borba, Bruno Soares Moreira Cesar, Nogueira, Larissa Pinheiro Pupo, Fleming, Fernanda Pereira, Troccoli, Alberto, Harrison, Mike, & Boulahya, Mohammed Sadeck. 2012. Energy sector vulnerability to climate change: A review. Energy, 38(2), 1–12.spa
dc.relation.referencesSchoof, Justin T. 2013. Statistical Downscaling in Climatology. Geography Compass, 7(4), 249–265. Semenov, MA, & Stratonovitch, P. 2010. Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate Research, 41(1), 1–14.spa
dc.relation.referencesStensrud, David J. 2007. Parameterization Schemes. Cambridge University Press.spa
dc.relation.referencesStockdale, T. N., Anderson, D. L. T., Alves, J. O. S., & Balmaseda, M. A. 1998. Global seasonal rainfall forecasts using a coupled ocean-atmosphere model. 392(3), 370–373.spa
dc.relation.referencesStorch, Hans Von, Hewitson, Bruce, & Mearns, Linda. 2000. Review of empirical downscaling techniques. Regional climate development under global warming. General Technical Report, 4(8).spa
dc.relation.referencesTannert, Christof, Elvers, Horst-Dietrich, & Jandrig, Burkhard. 2007. The ethics of uncertainty. EMBO reports, 8(10), 892–896.spa
dc.relation.referencesTartaglione, Carissa A., Smith, Shawn R., & O’Brien, James J. 2003. ENSO Impact on Hurricane Landfall Probabilities for the Caribbean. Journal of Climate, 16(9), 2925–2931.spa
dc.relation.referencesTaylor, Michael A., Whyte, Felicia S., Stephenson, Tannecia S., & Campbell, Jayaka D. 2013. Why dry? Investigating the future evolution of the Caribbean Low Level Jet to explain projected Caribbean drying. International Journal of Climatology, 33(3), 784–792.spa
dc.relation.referencesTebaldi, Claudia, & Knutti, Reto. 2007. The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(8), 2053–2075.spa
dc.relation.referencesTobin, Isabelle, Jerez, Sonia, Vautard, Robert, Thais, Françoise, van Meijgaard, Erik, Prein, Andreas, Déqué, Michel, Kotlarski, Sven, Maule, Cathrine Fox, Nikulin, Grigory, Noël, Thomas, & Teichmann, Claas. 2016. Climate change impacts on the power generation potential of a European mid-century wind farms scenario. Environmental Research Letters, 11(3), 034013.spa
dc.relation.referencesTsonis, Anastasios. 2007. An Introduction to Atmospheric Thermodynamics. Cambridge University Press.spa
dc.relation.referencesUCAR. 2013. Forecasters Overview of the Gulf of Mexico and Caribbean Sea. https://www.meted.ucar.edu/oceans/gulfmexico_carib/print_9.php [Accedido el 20 de noviembre de 2023].spa
dc.relation.referencesUsta, David Francisco Bustos, & Parra, Rafael Ricardo Torres. 2023. Projected wind changes in the Caribbean Sea based on CMIP6 models. Climate Dynamics, 60(6), 3713–3727.spa
dc.relation.referencesVichot-Llano, Alejandro, Martinez-Castro, Daniel, Bezanilla-Morlot, Arnoldo, Centella-Artola, Abel, Gil-Reyes, Laura, Torres-Alavez, José Abraham, Corrales-Suastegui, Arturo, & Giorgi, Filippo. 2022. Caribbean Low-Level Jet future projections using a multiparameter ensemble of RegCM4 configurations. International Journal of Climatology, 42(3), 1544–1559.spa
dc.relation.referencesWadoux, Alexandre M.J-C., Walvoort, Dennis J.J., & Brus, Dick J. 2022. An integrated approach for the evaluation of quantitative soil maps through Taylor and solar diagrams. Geoderma, 405(1), 115332.spa
dc.relation.referencesWalker, Chad. 2020. Using the United States Wind Turbine Database to Identify Increasing Turbine Size, Capacity and Other Development Trends. Energy and Power Engineering, 12, 407–431.spa
dc.relation.referencesWallace, John M., & Hobbs, Peter V. 2006. Atmospheric Science. Elsevier.spa
dc.relation.referencesWalters, Kenneth R., Korik, Andrew G., & Vojtesak, Michael. 1989. The Caribbean Basin: A climatological study.spa
dc.relation.referencesWang, Chunzai. 2007. Variability of the Caribbean Low-Level Jet and its relations to climate. Climate Dynamics, 29(6), 411–422.spa
dc.relation.referencesWhyte, Felicia S., Taylor, Michael A., Stephenson, Tannecia S., & Campbell, Jayaka D. 2008. Features of the Caribbean low level jet. International Journal of Climatology, 28(1), 119–128.spa
dc.relation.referencesWilby, R.L., & Wigley, T.M.L. 2000. Precipitation predictors for downscaling: observed and general circulation model relationships. International Journal of Climatology, 20(5), 641–661.spa
dc.relation.referencesWilby, Robert, & Fowler, Hayley. 2010. Modelling the Impact of Climate Change on Water Resources. Wiley-Blackwell.spa
dc.relation.referencesWilby, Robert, Charles, Stephen, Zorita, Eduardo, Timbal, Bertrand, Whetton, Penny, & Mearns, Linda. 2004. Guidelines For Use of Climate Scenarios Developed From Statistical Downscaling Methods. Supporting material of the Intergovernmental Penel on Climate Change, 8.spa
dc.relation.referencesWilks, Daniel. 2005. Statistical Methods in the Atmospheric Sciences. 2 edn.spa
dc.relation.referencesWMO. 2012. Guidelines on Ensemble Prediction Systems and Forecasting. Vol. 1091.spa
dc.relation.referencesWMO. 2018. Guide to Climatological Practices. Vol. 100. Chair, Publications Board.spa
dc.relation.referencesWood, A. W., Leung, L. R., Sridhar, V., & Lettenmaier, D. P. 2004. Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. Climatic Change, 62(1), 189–216.spa
dc.relation.referencesWood, Andrew W., Maurer, Edwin P., Kumar, Arun, & Lettenmaier, Dennis P. 2002. Long-range experimental hydrologic forecasting for the eastern United States. Journal of Geophysical Research: Atmospheres, 107(10).spa
dc.relation.referencesXian, Tao, Xia, Jingwen, Wei, Wei, Zhang, Zehua, Wang, Rui, Wang, Lian-Ping, & Ma, Yong-Feng. 2021. Is Hadley Cell Expanding? Atmosphere, 12(12), 1699.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.lembENERGIA EOLICAspa
dc.subject.lembWind powereng
dc.subject.lembTURBINAS DE AIREspa
dc.subject.lembAir-turbineseng
dc.subject.lembRECURSOS ENERGETICOS RENOVABLESspa
dc.subject.lembRenewable energy sourceseng
dc.subject.lembMETEOROLOGIA DINAMICAspa
dc.subject.lembDynamic meteorologyeng
dc.subject.lembVIENTOSspa
dc.subject.lembWindseng
dc.subject.lembVIENTOS-MEDICIONESspa
dc.subject.lembWinds - Measurementeng
dc.subject.lembCAMBIOS CLIMATICOSspa
dc.subject.lembClimatic changeseng
dc.subject.proposalEnergía Eólicaspa
dc.subject.proposalRegión Caribe Colombianaspa
dc.subject.proposalEscenarios de Cambio Climáticospa
dc.subject.proposalChorro de Bajo Nivel del Caribespa
dc.subject.proposalReducción de Escala Estadísticaspa
dc.subject.proposalWind Energyeng
dc.subject.proposalColombian Caribbean Regioneng
dc.subject.proposalClimate Change Scenarioseng
dc.subject.proposalStatistical Downscalingeng
dc.subject.proposalCaribbean Low Level Jeteng
dc.titleEvaluación de la disponibilidad del recurso eólico en la Región Caribe de Colombia en Escenarios de cambio climáticospa
dc.title.translatedAssessment of wind resource availability in the Caribbean Region of Colombia under climate change scenarioseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013631207.2025.pdf
Tamaño:
69.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Meteorología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: