Estudio y caracterización de un biocompuesto elaborado a partir de polietileno (LLDPE) y fibra natural producido por moldeo rotacional

dc.contributor.advisorPineda Gomez, Posidia
dc.contributor.authorSolano Aguirre, Maria Victoria
dc.contributor.cvlacSolano Aguirre, Maria Victoria [0001889512]spa
dc.contributor.orcidSolano Aguirre, Maria Victoria [0009000063207306]spa
dc.contributor.researchgroupMagnetismo y Materiales Avanzadosspa
dc.date.accessioned2025-04-22T03:31:20Z
dc.date.available2025-04-22T03:31:20Z
dc.date.issued2024
dc.descriptiongraficas, ilustraciones, tablasspa
dc.description.abstractLa creciente preocupación por el impacto ambiental de los plásticos convencionales ha impulsado la búsqueda de alternativas sostenibles en la industria de materiales. Este trabajo de tesis se centra en la producción y caracterización de un biocompuesto elaborado a partir de polietileno lineal de baja densidad (LLDPE) y la cascarilla de cacao, con el objetivo de evaluar su viabilidad para la fabricación de tanques de almacenamiento mediante el proceso de rotomoldeo. El estudio se llevó a cabo en diversas etapas experimentales. Se diseñaron mezclas de LLDPE con diferentes porcentajes de cascarilla de cacao (6%, 12%, 18% y 24%), tratadas con silano y ácido acético, y se compararon con el material sin tratar. Se realizaron ensayos de caracterización que incluyeron análisis químico, SEM, FTIR, TGA, DSC, y pruebas mecánicas de tracción, flexión y penetración. Los resultados de los análisis químicos mostraron que los tratamientos aplicados modificaron significativamente las propiedades del biocompuesto. El tratamiento con silano mejoró la adherencia y la estabilidad térmica, mostrando un aumento del 20% en la resistencia a la flexión en comparación con el LLDPE sin refuerzo. La cascarilla tratada con ácido acético mostró un incremento del 15% en el contenido de fibra, favoreciendo su desempeño como refuerzo. Además, los ensayos de rotomoldeo indicaron que la incorporación de cascarilla de cacao incrementó la densidad y el espesor de los tanques fabricados, mejorando la distribución del material, especialmente con tratamientos que optimizan la adhesión. El tratamiento con silano destacó por proporcionar la mayor rigidez y menor deformación elástica. De este modo, el biocompuesto LLDPE-cascarilla de cacao presenta un potencial significativo para aplicaciones en la fabricación de tanques de almacenamiento, destacándose por sus propiedades mecánicas mejoradas y su contribución a la sostenibilidad (Texto tomado de la fuente).spa
dc.description.abstractThe growing concern about the environmental impact of conventional plastics has driven the search for sustainable alternatives in the materials industry. This thesis focuses on the production and characterization of a biocomposite made from low-density linear polyethylene (LLDPE) and cocoa husk, with the goal of evaluating its feasibility for the manufacture of storage tanks using the rotational molding process. The study was carried out in several experimental stages. Mixtures of LLDPE with different percentages of cocoa husk (6%, 12%, 18%, and 24%) treated with silane and acetic acid were designed and compared to the untreated material. Characterization tests were performed, including chemical analysis, SEM, FTIR, TGA, DSC, and mechanical tests of tension, bending, and penetration. The results of the chemical analyses showed that the applied treatments significantly modified the properties of the biocomposite. The silane treatment improved adhesion and thermal stability, showing a 20% increase in bending strength compared to the unreinforced LLDPE. The husk treated with acetic acid showed a 15% increase in fiber content, enhancing its performance as reinforcement. Additionally, the rotational molding tests indicated that the incorporation of cocoa husk increased the density and thickness of the manufactured tanks, improving material distribution, especially with treatments that optimize adhesion. The silane treatment stood out for providing the highest rigidity and lowest elastic deformation. Thus, the LLDPE-cocoa husk biocomposite presents significant potential for applications in the manufacture of storage tanks, highlighting its improved mechanical properties and its contribution to sustainability. This work provides valuable information for future research on the use of composite materials in construction and other industrial sectors.eng
dc.description.curricularareaCiencias Naturales.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias – Físicaspa
dc.description.degreenameMagíster en Cienciasspa
dc.description.researchareaMateriales Avanzadosspa
dc.description.sponsorshipToptec S.Aspa
dc.format.extent124 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88028
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesStatista. (s.f.). La industria del plástico en el mundo - Datos estadísticos. Recuperado de https://es.statista.com/temas/12619/la-industria-del-plastico-en-el- mundo/spa
dc.relation.referencesExpert Market Research. (s.f.). Mercado de plástico en Colombia, cuota, informe 2024-2032.spa
dc.relation.referencesPetro Urrego, G., & Superintendencia de Servicios Públicos Domiciliarios. (2023). Informe Nacional de Disposición Final de Residuos Sólidos 2022 (Edición No. 15). República de Colombia.spa
dc.relation.referencesGreenpeace Colombia. (2024). Unidos contra el plástico: Protegiendo nuestros océanos en el Día Mundial del Medio Ambiente. Recuperado de https://www.greenpeace.org/colombia/noticia/issues/oceanos/unidos-contra-el- plastico-protegiendo-nuestros-oceanos-en-el-dia-mundial-del-medio-ambiente/spa
dc.relation.referencesDuque Márquez, I., & Ministerio de Ambiente y Desarrollo Sostenible. (2021). Plan Nacional para la Gestión Sostenible de los Plásticos de un Solo Uso. Ministerio de Ambiente y Desarrollo Sostenible. Recuperado de https://www.minambiente.gov.co/wp-content/uploads/2022/02/plan-nacional-para- la-gestion-sostenible-de-plasticos-un-solo-uso-minambiente.pdfspa
dc.relation.referencesFederación Nacional de Cacaoteros - Fedecacao. (2023). Informe anual de producción de cacao. Recuperado de https://www.fedecacao.com.co/spa
dc.relation.referencesValencia, J., et al. (2019). Characterization of cocoa bean shell waste for sustainable recycling potential. Waste Management & Research, 37(6), 537-544.spa
dc.relation.referencesChico, M. (2022). Valorization of cocoa by-products: Applications and perspectives in the food industry. Alimentos Ciencia e Ingeniería, 29.spa
dc.relation.referencesEl-Shekeil, Y. A., Sapuan, S., & Algrafi, M. (2014). Effect of fiber loading on tensile properties of cocoa pod husk fibers reinforced thermoplastic polyurethane composites. Materials & Design, 64, 330–333.spa
dc.relation.referencesPosso, A. M. H., Silva, J. C. M., Niño, J. P. C., Hernandez, J. H. M., & Fajardo Cabrera De Lima, L. P. (2024). Characterization and implementation of cocoa pod husk as a reinforcing agent to obtain thermoplastic starches and bio-based composite materials. Polymers, 16(11), 1608.spa
dc.relation.referencesIslam, M. R., Islam, M. A., & Hasan, M. Z. (2017). Effect of processing parameters on mechanical properties of short jute fiber reinforced polyethylene composites. Journal of Thermoplastic Composite Materials, 30(10), 1337–1354.spa
dc.relation.referencesJoseph, K., et al. (1996). Natural fiber reinforced polymer composites in industrial applications: Feasibility of coconut fibers for technical textile industry. Journal of Industrial Hemp, 3(1), 15–24.spa
dc.relation.referencesMohanty, A. K., et al. (2005). Studies on lignocellulosic fibers of roselle hybrid and palmyra palm fruits: Morphology, chemical composition, and their composites. Journal of Applied Polymer Science, 96(1), 1–11spa
dc.relation.referencesLiukko, T., Salila, T., Platt, S., & Kärki, T. (2007). Wood plastic composites in Europe: An introduction to wood plastic composite markets and products. Baltic Forestry, 13(1), 131–136.spa
dc.relation.referencesVilaseca, F., Vázquez, A., Llop, M., Gironès, J., & Turon, X. (2010). Biocomposites from green macrophytes: Properties and characterization. Industrial Crops and Products, 32(1), 175–182.spa
dc.relation.referencesFaruk, O., Bledzki, A. K., Fink, H.-P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552–1596.spa
dc.relation.referencesAji, I., Zainudin, E., Abdan, K., Sapuan, S., & Khairul, M. (2013). Mechanical properties and water absorption behavior of hybridized kenaf/pineapple leaf fibre- reinforced high-density polyethylene composite. Journal of Composite Materials.spa
dc.relation.referencesHamad, K. (2015). Material properties of polyethylene/wood composites: A review of recent works. Polymer Science Series A, 57.spa
dc.relation.referencesChen, R. S., Chai, Y. H., Olugu, E. U., Salleh, M. N., & Ahmad, S. (2021). Evaluation of mechanical performance and water absorption properties of modified sugarcane bagasse high-density polyethylene plastic bag green composites. Polymers and Polymer Composites.spa
dc.relation.referencesHanana, F. E., & Rodrigue, D. (2015). Rotational molding of polymer composites reinforced with natural fibers. Plastics Engineering, 71.spa
dc.relation.referencesJúnior, C. H. M., et al. (2018). Biocomposites based on cassava starch and cocoa bean shell particles. Industrial Crops and Products, 112, 50-57spa
dc.relation.referencesWang, C., Cai, L., Shi, S. Q., Wang, G., Cheng, H., & Zhang, S. (2019). Thermal and flammable properties of bamboo pulp fiber/high-density polyethylene composites: Influence of preparation technology, nano calcium carbonate and fiber content. Renewable Energy, 134, 436-445.spa
dc.relation.referencesAzmin, M., et al. (2020). Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. Journal of Bioresources and Bioproductsspa
dc.relation.referencesHao, X., Xu, et al. (2021). Interfacial adhesion mechanisms of ultra-highly filled wood fiber/polyethylene composites using maleic anhydride grafted polyethylene as a compatibilizer. Materials & Design, 212spa
dc.relation.referencesArya, M., Skrifvars, M., & Khalili, P. (2024). Performance and life cycle assessment of composites reinforced with natural fibers and end-of-life textiles. Journal of Composites Science, 8(6), 196.spa
dc.relation.referencesMüller, K., Schröder, S., & Schmidt, P. (2024). Mechanical and thermal characterization of coconut fiber-reinforced polyethylene composites for rotational molding. Materials Science and Engineering: A, 832, 142735spa
dc.relation.referencesSaheb, D. N., & Jog, J. P. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18(4), 351–363spa
dc.relation.referencesAntich, P., de Juana, A., Miravete, A., Crespo, D., & García-Rejón, A. (2006). Bio-composites from natural fibers and biodegradable resins. Journal of Reinforced Plastics and Composites, 25(3), 191-197.spa
dc.relation.referencesKhalil, H. P. S. A., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979spa
dc.relation.referencesBledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose- based fibres. Progress in Polymer Science, 24(2), 221-274spa
dc.relation.referencesKoronis, G., Silva, A., & Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering, 44(1), 120-127spa
dc.relation.referencesMohammed, et al. (2022). Surface treatment to improve water repellence and compatibility of natural fiber with polymer matrix: Recent advancement. Polymer Testing, 115, 107707spa
dc.relation.referencesCarraher, C. E. (2017). Introduction to Polymer Chemistry (4th ed.). CRC Press.spa
dc.relation.referencesPolímeros, T. E. (2016, October 26). Las muchas caras del polietileno. Todo en Polímeros. https://todoenpolimeros.com/2017/06/05/un-polimero-con-muchas- caras/spa
dc.relation.referencesSperling, L. H. (2005). Introduction to Physical Polymer Science (4th ed.). John Wiley & Sons.spa
dc.relation.referencesMeyer, K. L. (2011). Polymer Science and Technology. Springerspa
dc.relation.referencesMoeller, M., & Matyjaszewski, K. (Eds.). (2012). Polymer science: A comprehensive reference (1st ed.). Elsevier.spa
dc.relation.referencesLoos, J., Katzenberg, F., & Petermann, J. (1997). Epitaxial crystallization of linear low-density polyethylene on high-density polyethylene. Journal of Materials Science, 32, 1551-1554.spa
dc.relation.referencesLi, D., Zhou, L., Wang, X., He, L., & Yang, X. (2019). Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property. Materials (Basel), 12(11), 1746spa
dc.relation.referencesWang, Y., Zou, Y., Araki, T., Lüning, J., Kilcoyne, D., Sokolov, J., Ade, H., & Rafailovich, M. (2010). Probing the chain and crystal lattice orientation in polyethylene thin films by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Macromolecules, 43(1), 10spa
dc.relation.referencesDrobny, J. G. (2014). Handbook of thermoplastic elastomers (2nd ed.). Elsevier.spa
dc.relation.referencesAfoakwa, E. O. (2014). Chocolate Science and Technology. Wiley-Blackwellspa
dc.relation.referencesBeckett, S. T. (2017). Industrial Chocolate Manufacture and Use (4th ed.). Wiley-Blackwell.spa
dc.relation.referencesSchwan, R. F., & Fleet, G. H. (2014). Cocoa and Coffee Fermentations. Springer Science & Business Mediaspa
dc.relation.referencesDe Brito, E. S., Garcia, N. H. P., & Amancio, A. C. (2001). Chemical composition of cocoa (Theobroma cacao L.) pod husk. Ciência e Tecnologia de Alimentos, 21(3), 291-295spa
dc.relation.referencesGuevara, R. (2018). The chocolate fruit: Looking inside a cacao pod. Chocolate Research Institute Pressspa
dc.relation.referencesWood, G. A. R., & Lass, R. A. (2001). Cocoa (4th ed.). Wiley-Blackwell.spa
dc.relation.referencesOkiyama, D. C. G., Navarro, S. L. B., & Rodrigues, C. E. C. (2017). Cocoa shell and its compounds: Applications in the food industry. Trends in Food Science & Technology, 63, 103-112.spa
dc.relation.referencesInternational Cocoa Organization (ICCO). (2020). The world cocoa economy: Current status, challenges and prospects. ICCO Quarterly Bulletin of Cocoa Statistics.spa
dc.relation.referencesFigueira, A. F., & Coimbra, M. A. (2011). Characterization of cocoa (Theobroma cacao) shell: A review. Food Research International, 44(8), 2439-2447.spa
dc.relation.referencesPetinakis, E., Yu, L., Simon, G., Dai, X., Chen, Z., & Dean, K. (2014). Interfacial adhesion in natural fiber-reinforced polymer composites. In L. Yu & K. Dean (Eds.), Biodegradable Polymer Blends and Composites from Renewable Resources (pp. 35-59). John Wiley & Sons.spa
dc.relation.referencesAshori, A. (2008). Wood-plastic composites as promising green-composites for automotive industries. Bioresource Technology, 99(11), 4661-4667spa
dc.relation.referencesPuglia, D., Biagiotti, J., & Kenny, J. M. (2005). A review on natural fibre- based composites—Part II: Application of natural reinforcements in composite materials for automotive industry. Journal of Natural Fibers, 1(3), 23-65spa
dc.relation.referencesXie, Y., Hill, C. A., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806-819.spa
dc.relation.referencesMohanty, A. K., Misra, M., & Drzal, L. T. (2005). Natural fibers, biopolymers, and biocomposites. CRC Press.spa
dc.relation.referencesJohn, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343-364.spa
dc.relation.referencesLi, Y., Mai, Y. W., & Ye, L. (2000). Sisal fiber and its composites: A review of recent developments. Composites Science and Technology, 60(11), 2037-2055spa
dc.relation.referencesCzél, G., Eblagon, K. M., & Thomsen, A. B. (2011). The effect of plasma treatment of hemp fibers on the mechanical properties of hemp fiber-reinforced polypropylene composites. Journal of Applied Polymer Science, 119(4), 2449-2456.spa
dc.relation.referencesMorra, M. (2000). Contact angle measurements and adhesion. In K. L. Mittal (Ed.), Surface properties and adhesion of polymers (pp. 231-251). CRC Press.spa
dc.relation.referencesBismarck, A., Wuertz, C., & Springer, J. (2002). Surface characterization of natural fibers: Surface properties and the water uptake behavior of modified sisal and coir fibers. Green Chemistry, 4(6), 889-896.spa
dc.relation.referencesKalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polymer Engineering & Science, 49(7), 1253-1272.spa
dc.relation.referencesLu, J. Z., Wu, Q., & McNabb, H. S. (2000). Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments. Wood and Fiber Science, 32(1), 88-104spa
dc.relation.referencesHenriksson, G., Gatenholm, P., Johansson, M., Persson, P. V., & Lindström, M. (2007). Enzyme-based modification of the surface of natural fibers for composite materials. Composites Part A: Applied Science and Manufacturing, 38(5), 1475- 1480spa
dc.relation.referencesBeaumont, J. (2002). Rotational molding technology. Society of Plastics Engineers.spa
dc.relation.referencesPrograma de las Naciones Unidas para el Desarrollo. (n.d.). Objetivos de Desarrollo Sostenible. UNDP. https://www.undp.org/es/sustainable-development- goalsspa
dc.relation.referencesGhisellini, P., Cialani, C., & Ulgiati, S. (2016). An analysis of the circular economy in Italy: A model for the European Union. Journal of Cleaner Production, 114, 209-219.spa
dc.relation.referencesVilela, C., Vieira, M., & Nunes, M. (2018). Cocoa shell waste: An overview of its application and potential benefits in sustainable product design. Journal of Sustainable Development, 11(4), 89-105spa
dc.relation.referencesAzevedo, D. C., Alves, S., & Carvalho, R. (2017). The use of cocoa shell fibers as reinforcement in polymeric matrices: A review. Journal of Cleaner Production, 164, 122-135spa
dc.relation.referencesBocken, N. M. P., de Pauw, I., Bakker, C., & van der Grinten, B. (2016). Product design and business model strategies for a circular economy. Journal of Industrial and Production Engineering, 33(5), 305-316.spa
dc.relation.referencesKumar, S., Choi, S., & Adams, K. (2018). Life cycle assessment of natural fiber-reinforced composites: A review. Journal of Cleaner Production, 184, 471-485spa
dc.relation.referencesSantos, R. A., Almeida, M., & Silva, T. F. (2020). Environmental impact of cocoa production and the potential of cocoa shell as a resource. Resources, Conservation and Recycling, 154, 104629.spa
dc.relation.referencesFAOSTAT. (2023). Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/spa
dc.relation.referencesPlastics Europe. (2023). Plastics - The Facts 2023. Association of Plastics Manufacturers. https://plasticseurope.org/spa
dc.relation.referencesFedecacao. (2023). Informe anual de producción de cacao en Colombia. Federación Nacional de Cacaoteros. https://www.fedecacao.com.co/spa
dc.relation.referencesAOAC. (2000). Official Methods of Analysis (17th ed.). The Association of Official Analytical Chemistsspa
dc.relation.referencesASTM International. (2021). ASTM D3418-21: Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM Internationalspa
dc.relation.referencesASTM International. (2022). ASTM D638-22: Standard test method for tensile properties of plastics. ASTM International.spa
dc.relation.referencesCristianGar. (2023, abril 7). Ensayos de tensión manufacturas. Ingeniería mecánica blog. https://ingenieriamecanicacol.blogspot.com/2023/04/ensayos-de- tension-manufacturas.htmlspa
dc.relation.referencesASTM International. (2017). ASTM D790-17: Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM Internationalspa
dc.relation.referencesCristianGar. (2023a, abril 7). Ensayos de flexión manufactura. Ingeniería mecánica blog. https://ingenieriamecanicacol.blogspot.com/2023/04/ensayos-de- flexion-manufactura.htmlspa
dc.relation.referencesASTM International. (2018). ASTM D3045-18: Standard practice for heat aging of plastics without load. ASTM International.spa
dc.relation.referencesICONTEC. (2006). NTC 4384:2006. Productos de plásticos. Tanques de polietileno para almacenamiento fabricados por el proceso de rotomoldeo. Instituto Colombiano de Normas Técnicas y Certificación.spa
dc.relation.referencesASTM International. (2021). ASTM D1998-21: Standard specification for polyethylene upright storage tanks. ASTM International.spa
dc.relation.referencesAbdul Khalil, H. P. S., Saurabh, C. K., Tye, Y. Y., Lai, T. K., Easa, A. M., Rosamah, E., Fazita, M. R. N., Syakir, M. I., & Adnan, A. S. (2017). A review on chitosan and lignocellulosic biomass: A comprehensive study of their blend and composites. Carbohydrate Polymers, 157, 1287-1295.spa
dc.relation.referencesSathishkumar, T. P., Navaneethakrishnan, P., Subramaniam, S., Rajasekar, R., & Rajini, N. (2013). Characterization of natural fiber and composites - A review. Journal of Reinforced Plastics and Composites, 32(20), 1457-1476.spa
dc.relation.referencesCallister, W. D., & Rethwisch, D. G. (2018). Materials science and engineering: An introduction (10th ed.). Wiley.spa
dc.relation.referencesRavi, P., & Karthikeyan, R. (2018). Polymer matrix composites: Materials, process, and properties. Elsevier.spa
dc.relation.referencesASTM International. (2019). ASTM D4442-19: Standard test methods for direct moisture content measurement of wood and wood-based materials. ASTM International.spa
dc.relation.referencesBledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose- based fibers. Progress in Polymer Science, 24(2), 221-274.spa
dc.relation.referencesZhao, X., et al. (2013). Surface modification of natural fibers with silane coupling agents and their effects on the interfacial properties of fiber/polymer composites. Composites Science and Technology, 74, 82-90. https://doi.org/10.1016/j.compscitech.2012.10.002spa
dc.relation.referencesSreekala, M. S., et al. (2000). Oil palm fiber reinforced phenol formaldehyde composites: Influence of fiber surface modifications on mechanical properties. Composites Science and Technology, 60(3), 385-397.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc670 - Manufactura::679 -Otros productos de materiales específicosspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.proposalPolietilenospa
dc.subject.proposalCascarilla de cacaospa
dc.subject.proposalBiocompuestospa
dc.subject.proposalRotomoldeospa
dc.subject.proposalSostenibilidadspa
dc.subject.proposalPolyethyleneeng
dc.subject.proposalCocoa huskeng
dc.subject.proposalBiocompositeeng
dc.subject.proposalRotomoldingeng
dc.subject.proposalSustainabilityeng
dc.subject.unescoIngeniería de la producciónspa
dc.subject.unescoProduction engineeringeng
dc.subject.unescoGestión industrialspa
dc.subject.unescoIndustrial managementeng
dc.subject.unescoQuímicaspa
dc.subject.unescoChemistryeng
dc.titleEstudio y caracterización de un biocompuesto elaborado a partir de polietileno (LLDPE) y fibra natural producido por moldeo rotacionalspa
dc.title.translatedStudy and characterization of a biocomposite made from polyethylene (LLDPE)and natural fiber produced by rotational moldingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameToptec S.Aspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1060655300.2025.pdf
Tamaño:
3.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: