Estudio y caracterización de un biocompuesto elaborado a partir de polietileno (LLDPE) y fibra natural producido por moldeo rotacional
dc.contributor.advisor | Pineda Gomez, Posidia | |
dc.contributor.author | Solano Aguirre, Maria Victoria | |
dc.contributor.cvlac | Solano Aguirre, Maria Victoria [0001889512] | spa |
dc.contributor.orcid | Solano Aguirre, Maria Victoria [0009000063207306] | spa |
dc.contributor.researchgroup | Magnetismo y Materiales Avanzados | spa |
dc.date.accessioned | 2025-04-22T03:31:20Z | |
dc.date.available | 2025-04-22T03:31:20Z | |
dc.date.issued | 2024 | |
dc.description | graficas, ilustraciones, tablas | spa |
dc.description.abstract | La creciente preocupación por el impacto ambiental de los plásticos convencionales ha impulsado la búsqueda de alternativas sostenibles en la industria de materiales. Este trabajo de tesis se centra en la producción y caracterización de un biocompuesto elaborado a partir de polietileno lineal de baja densidad (LLDPE) y la cascarilla de cacao, con el objetivo de evaluar su viabilidad para la fabricación de tanques de almacenamiento mediante el proceso de rotomoldeo. El estudio se llevó a cabo en diversas etapas experimentales. Se diseñaron mezclas de LLDPE con diferentes porcentajes de cascarilla de cacao (6%, 12%, 18% y 24%), tratadas con silano y ácido acético, y se compararon con el material sin tratar. Se realizaron ensayos de caracterización que incluyeron análisis químico, SEM, FTIR, TGA, DSC, y pruebas mecánicas de tracción, flexión y penetración. Los resultados de los análisis químicos mostraron que los tratamientos aplicados modificaron significativamente las propiedades del biocompuesto. El tratamiento con silano mejoró la adherencia y la estabilidad térmica, mostrando un aumento del 20% en la resistencia a la flexión en comparación con el LLDPE sin refuerzo. La cascarilla tratada con ácido acético mostró un incremento del 15% en el contenido de fibra, favoreciendo su desempeño como refuerzo. Además, los ensayos de rotomoldeo indicaron que la incorporación de cascarilla de cacao incrementó la densidad y el espesor de los tanques fabricados, mejorando la distribución del material, especialmente con tratamientos que optimizan la adhesión. El tratamiento con silano destacó por proporcionar la mayor rigidez y menor deformación elástica. De este modo, el biocompuesto LLDPE-cascarilla de cacao presenta un potencial significativo para aplicaciones en la fabricación de tanques de almacenamiento, destacándose por sus propiedades mecánicas mejoradas y su contribución a la sostenibilidad (Texto tomado de la fuente). | spa |
dc.description.abstract | The growing concern about the environmental impact of conventional plastics has driven the search for sustainable alternatives in the materials industry. This thesis focuses on the production and characterization of a biocomposite made from low-density linear polyethylene (LLDPE) and cocoa husk, with the goal of evaluating its feasibility for the manufacture of storage tanks using the rotational molding process. The study was carried out in several experimental stages. Mixtures of LLDPE with different percentages of cocoa husk (6%, 12%, 18%, and 24%) treated with silane and acetic acid were designed and compared to the untreated material. Characterization tests were performed, including chemical analysis, SEM, FTIR, TGA, DSC, and mechanical tests of tension, bending, and penetration. The results of the chemical analyses showed that the applied treatments significantly modified the properties of the biocomposite. The silane treatment improved adhesion and thermal stability, showing a 20% increase in bending strength compared to the unreinforced LLDPE. The husk treated with acetic acid showed a 15% increase in fiber content, enhancing its performance as reinforcement. Additionally, the rotational molding tests indicated that the incorporation of cocoa husk increased the density and thickness of the manufactured tanks, improving material distribution, especially with treatments that optimize adhesion. The silane treatment stood out for providing the highest rigidity and lowest elastic deformation. Thus, the LLDPE-cocoa husk biocomposite presents significant potential for applications in the manufacture of storage tanks, highlighting its improved mechanical properties and its contribution to sustainability. This work provides valuable information for future research on the use of composite materials in construction and other industrial sectors. | eng |
dc.description.curriculararea | Ciencias Naturales.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias – Física | spa |
dc.description.degreename | Magíster en Ciencias | spa |
dc.description.researcharea | Materiales Avanzados | spa |
dc.description.sponsorship | Toptec S.A | spa |
dc.format.extent | 124 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88028 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física | spa |
dc.relation.references | Statista. (s.f.). La industria del plástico en el mundo - Datos estadísticos. Recuperado de https://es.statista.com/temas/12619/la-industria-del-plastico-en-el- mundo/ | spa |
dc.relation.references | Expert Market Research. (s.f.). Mercado de plástico en Colombia, cuota, informe 2024-2032. | spa |
dc.relation.references | Petro Urrego, G., & Superintendencia de Servicios Públicos Domiciliarios. (2023). Informe Nacional de Disposición Final de Residuos Sólidos 2022 (Edición No. 15). República de Colombia. | spa |
dc.relation.references | Greenpeace Colombia. (2024). Unidos contra el plástico: Protegiendo nuestros océanos en el Día Mundial del Medio Ambiente. Recuperado de https://www.greenpeace.org/colombia/noticia/issues/oceanos/unidos-contra-el- plastico-protegiendo-nuestros-oceanos-en-el-dia-mundial-del-medio-ambiente/ | spa |
dc.relation.references | Duque Márquez, I., & Ministerio de Ambiente y Desarrollo Sostenible. (2021). Plan Nacional para la Gestión Sostenible de los Plásticos de un Solo Uso. Ministerio de Ambiente y Desarrollo Sostenible. Recuperado de https://www.minambiente.gov.co/wp-content/uploads/2022/02/plan-nacional-para- la-gestion-sostenible-de-plasticos-un-solo-uso-minambiente.pdf | spa |
dc.relation.references | Federación Nacional de Cacaoteros - Fedecacao. (2023). Informe anual de producción de cacao. Recuperado de https://www.fedecacao.com.co/ | spa |
dc.relation.references | Valencia, J., et al. (2019). Characterization of cocoa bean shell waste for sustainable recycling potential. Waste Management & Research, 37(6), 537-544. | spa |
dc.relation.references | Chico, M. (2022). Valorization of cocoa by-products: Applications and perspectives in the food industry. Alimentos Ciencia e Ingeniería, 29. | spa |
dc.relation.references | El-Shekeil, Y. A., Sapuan, S., & Algrafi, M. (2014). Effect of fiber loading on tensile properties of cocoa pod husk fibers reinforced thermoplastic polyurethane composites. Materials & Design, 64, 330–333. | spa |
dc.relation.references | Posso, A. M. H., Silva, J. C. M., Niño, J. P. C., Hernandez, J. H. M., & Fajardo Cabrera De Lima, L. P. (2024). Characterization and implementation of cocoa pod husk as a reinforcing agent to obtain thermoplastic starches and bio-based composite materials. Polymers, 16(11), 1608. | spa |
dc.relation.references | Islam, M. R., Islam, M. A., & Hasan, M. Z. (2017). Effect of processing parameters on mechanical properties of short jute fiber reinforced polyethylene composites. Journal of Thermoplastic Composite Materials, 30(10), 1337–1354. | spa |
dc.relation.references | Joseph, K., et al. (1996). Natural fiber reinforced polymer composites in industrial applications: Feasibility of coconut fibers for technical textile industry. Journal of Industrial Hemp, 3(1), 15–24. | spa |
dc.relation.references | Mohanty, A. K., et al. (2005). Studies on lignocellulosic fibers of roselle hybrid and palmyra palm fruits: Morphology, chemical composition, and their composites. Journal of Applied Polymer Science, 96(1), 1–11 | spa |
dc.relation.references | Liukko, T., Salila, T., Platt, S., & Kärki, T. (2007). Wood plastic composites in Europe: An introduction to wood plastic composite markets and products. Baltic Forestry, 13(1), 131–136. | spa |
dc.relation.references | Vilaseca, F., Vázquez, A., Llop, M., Gironès, J., & Turon, X. (2010). Biocomposites from green macrophytes: Properties and characterization. Industrial Crops and Products, 32(1), 175–182. | spa |
dc.relation.references | Faruk, O., Bledzki, A. K., Fink, H.-P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552–1596. | spa |
dc.relation.references | Aji, I., Zainudin, E., Abdan, K., Sapuan, S., & Khairul, M. (2013). Mechanical properties and water absorption behavior of hybridized kenaf/pineapple leaf fibre- reinforced high-density polyethylene composite. Journal of Composite Materials. | spa |
dc.relation.references | Hamad, K. (2015). Material properties of polyethylene/wood composites: A review of recent works. Polymer Science Series A, 57. | spa |
dc.relation.references | Chen, R. S., Chai, Y. H., Olugu, E. U., Salleh, M. N., & Ahmad, S. (2021). Evaluation of mechanical performance and water absorption properties of modified sugarcane bagasse high-density polyethylene plastic bag green composites. Polymers and Polymer Composites. | spa |
dc.relation.references | Hanana, F. E., & Rodrigue, D. (2015). Rotational molding of polymer composites reinforced with natural fibers. Plastics Engineering, 71. | spa |
dc.relation.references | Júnior, C. H. M., et al. (2018). Biocomposites based on cassava starch and cocoa bean shell particles. Industrial Crops and Products, 112, 50-57 | spa |
dc.relation.references | Wang, C., Cai, L., Shi, S. Q., Wang, G., Cheng, H., & Zhang, S. (2019). Thermal and flammable properties of bamboo pulp fiber/high-density polyethylene composites: Influence of preparation technology, nano calcium carbonate and fiber content. Renewable Energy, 134, 436-445. | spa |
dc.relation.references | Azmin, M., et al. (2020). Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. Journal of Bioresources and Bioproducts | spa |
dc.relation.references | Hao, X., Xu, et al. (2021). Interfacial adhesion mechanisms of ultra-highly filled wood fiber/polyethylene composites using maleic anhydride grafted polyethylene as a compatibilizer. Materials & Design, 212 | spa |
dc.relation.references | Arya, M., Skrifvars, M., & Khalili, P. (2024). Performance and life cycle assessment of composites reinforced with natural fibers and end-of-life textiles. Journal of Composites Science, 8(6), 196. | spa |
dc.relation.references | Müller, K., Schröder, S., & Schmidt, P. (2024). Mechanical and thermal characterization of coconut fiber-reinforced polyethylene composites for rotational molding. Materials Science and Engineering: A, 832, 142735 | spa |
dc.relation.references | Saheb, D. N., & Jog, J. P. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18(4), 351–363 | spa |
dc.relation.references | Antich, P., de Juana, A., Miravete, A., Crespo, D., & García-Rejón, A. (2006). Bio-composites from natural fibers and biodegradable resins. Journal of Reinforced Plastics and Composites, 25(3), 191-197. | spa |
dc.relation.references | Khalil, H. P. S. A., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979 | spa |
dc.relation.references | Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose- based fibres. Progress in Polymer Science, 24(2), 221-274 | spa |
dc.relation.references | Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering, 44(1), 120-127 | spa |
dc.relation.references | Mohammed, et al. (2022). Surface treatment to improve water repellence and compatibility of natural fiber with polymer matrix: Recent advancement. Polymer Testing, 115, 107707 | spa |
dc.relation.references | Carraher, C. E. (2017). Introduction to Polymer Chemistry (4th ed.). CRC Press. | spa |
dc.relation.references | Polímeros, T. E. (2016, October 26). Las muchas caras del polietileno. Todo en Polímeros. https://todoenpolimeros.com/2017/06/05/un-polimero-con-muchas- caras/ | spa |
dc.relation.references | Sperling, L. H. (2005). Introduction to Physical Polymer Science (4th ed.). John Wiley & Sons. | spa |
dc.relation.references | Meyer, K. L. (2011). Polymer Science and Technology. Springer | spa |
dc.relation.references | Moeller, M., & Matyjaszewski, K. (Eds.). (2012). Polymer science: A comprehensive reference (1st ed.). Elsevier. | spa |
dc.relation.references | Loos, J., Katzenberg, F., & Petermann, J. (1997). Epitaxial crystallization of linear low-density polyethylene on high-density polyethylene. Journal of Materials Science, 32, 1551-1554. | spa |
dc.relation.references | Li, D., Zhou, L., Wang, X., He, L., & Yang, X. (2019). Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property. Materials (Basel), 12(11), 1746 | spa |
dc.relation.references | Wang, Y., Zou, Y., Araki, T., Lüning, J., Kilcoyne, D., Sokolov, J., Ade, H., & Rafailovich, M. (2010). Probing the chain and crystal lattice orientation in polyethylene thin films by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Macromolecules, 43(1), 10 | spa |
dc.relation.references | Drobny, J. G. (2014). Handbook of thermoplastic elastomers (2nd ed.). Elsevier. | spa |
dc.relation.references | Afoakwa, E. O. (2014). Chocolate Science and Technology. Wiley-Blackwell | spa |
dc.relation.references | Beckett, S. T. (2017). Industrial Chocolate Manufacture and Use (4th ed.). Wiley-Blackwell. | spa |
dc.relation.references | Schwan, R. F., & Fleet, G. H. (2014). Cocoa and Coffee Fermentations. Springer Science & Business Media | spa |
dc.relation.references | De Brito, E. S., Garcia, N. H. P., & Amancio, A. C. (2001). Chemical composition of cocoa (Theobroma cacao L.) pod husk. Ciência e Tecnologia de Alimentos, 21(3), 291-295 | spa |
dc.relation.references | Guevara, R. (2018). The chocolate fruit: Looking inside a cacao pod. Chocolate Research Institute Press | spa |
dc.relation.references | Wood, G. A. R., & Lass, R. A. (2001). Cocoa (4th ed.). Wiley-Blackwell. | spa |
dc.relation.references | Okiyama, D. C. G., Navarro, S. L. B., & Rodrigues, C. E. C. (2017). Cocoa shell and its compounds: Applications in the food industry. Trends in Food Science & Technology, 63, 103-112. | spa |
dc.relation.references | International Cocoa Organization (ICCO). (2020). The world cocoa economy: Current status, challenges and prospects. ICCO Quarterly Bulletin of Cocoa Statistics. | spa |
dc.relation.references | Figueira, A. F., & Coimbra, M. A. (2011). Characterization of cocoa (Theobroma cacao) shell: A review. Food Research International, 44(8), 2439-2447. | spa |
dc.relation.references | Petinakis, E., Yu, L., Simon, G., Dai, X., Chen, Z., & Dean, K. (2014). Interfacial adhesion in natural fiber-reinforced polymer composites. In L. Yu & K. Dean (Eds.), Biodegradable Polymer Blends and Composites from Renewable Resources (pp. 35-59). John Wiley & Sons. | spa |
dc.relation.references | Ashori, A. (2008). Wood-plastic composites as promising green-composites for automotive industries. Bioresource Technology, 99(11), 4661-4667 | spa |
dc.relation.references | Puglia, D., Biagiotti, J., & Kenny, J. M. (2005). A review on natural fibre- based composites—Part II: Application of natural reinforcements in composite materials for automotive industry. Journal of Natural Fibers, 1(3), 23-65 | spa |
dc.relation.references | Xie, Y., Hill, C. A., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806-819. | spa |
dc.relation.references | Mohanty, A. K., Misra, M., & Drzal, L. T. (2005). Natural fibers, biopolymers, and biocomposites. CRC Press. | spa |
dc.relation.references | John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343-364. | spa |
dc.relation.references | Li, Y., Mai, Y. W., & Ye, L. (2000). Sisal fiber and its composites: A review of recent developments. Composites Science and Technology, 60(11), 2037-2055 | spa |
dc.relation.references | Czél, G., Eblagon, K. M., & Thomsen, A. B. (2011). The effect of plasma treatment of hemp fibers on the mechanical properties of hemp fiber-reinforced polypropylene composites. Journal of Applied Polymer Science, 119(4), 2449-2456. | spa |
dc.relation.references | Morra, M. (2000). Contact angle measurements and adhesion. In K. L. Mittal (Ed.), Surface properties and adhesion of polymers (pp. 231-251). CRC Press. | spa |
dc.relation.references | Bismarck, A., Wuertz, C., & Springer, J. (2002). Surface characterization of natural fibers: Surface properties and the water uptake behavior of modified sisal and coir fibers. Green Chemistry, 4(6), 889-896. | spa |
dc.relation.references | Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polymer Engineering & Science, 49(7), 1253-1272. | spa |
dc.relation.references | Lu, J. Z., Wu, Q., & McNabb, H. S. (2000). Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments. Wood and Fiber Science, 32(1), 88-104 | spa |
dc.relation.references | Henriksson, G., Gatenholm, P., Johansson, M., Persson, P. V., & Lindström, M. (2007). Enzyme-based modification of the surface of natural fibers for composite materials. Composites Part A: Applied Science and Manufacturing, 38(5), 1475- 1480 | spa |
dc.relation.references | Beaumont, J. (2002). Rotational molding technology. Society of Plastics Engineers. | spa |
dc.relation.references | Programa de las Naciones Unidas para el Desarrollo. (n.d.). Objetivos de Desarrollo Sostenible. UNDP. https://www.undp.org/es/sustainable-development- goals | spa |
dc.relation.references | Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). An analysis of the circular economy in Italy: A model for the European Union. Journal of Cleaner Production, 114, 209-219. | spa |
dc.relation.references | Vilela, C., Vieira, M., & Nunes, M. (2018). Cocoa shell waste: An overview of its application and potential benefits in sustainable product design. Journal of Sustainable Development, 11(4), 89-105 | spa |
dc.relation.references | Azevedo, D. C., Alves, S., & Carvalho, R. (2017). The use of cocoa shell fibers as reinforcement in polymeric matrices: A review. Journal of Cleaner Production, 164, 122-135 | spa |
dc.relation.references | Bocken, N. M. P., de Pauw, I., Bakker, C., & van der Grinten, B. (2016). Product design and business model strategies for a circular economy. Journal of Industrial and Production Engineering, 33(5), 305-316. | spa |
dc.relation.references | Kumar, S., Choi, S., & Adams, K. (2018). Life cycle assessment of natural fiber-reinforced composites: A review. Journal of Cleaner Production, 184, 471-485 | spa |
dc.relation.references | Santos, R. A., Almeida, M., & Silva, T. F. (2020). Environmental impact of cocoa production and the potential of cocoa shell as a resource. Resources, Conservation and Recycling, 154, 104629. | spa |
dc.relation.references | FAOSTAT. (2023). Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/ | spa |
dc.relation.references | Plastics Europe. (2023). Plastics - The Facts 2023. Association of Plastics Manufacturers. https://plasticseurope.org/ | spa |
dc.relation.references | Fedecacao. (2023). Informe anual de producción de cacao en Colombia. Federación Nacional de Cacaoteros. https://www.fedecacao.com.co/ | spa |
dc.relation.references | AOAC. (2000). Official Methods of Analysis (17th ed.). The Association of Official Analytical Chemists | spa |
dc.relation.references | ASTM International. (2021). ASTM D3418-21: Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM International | spa |
dc.relation.references | ASTM International. (2022). ASTM D638-22: Standard test method for tensile properties of plastics. ASTM International. | spa |
dc.relation.references | CristianGar. (2023, abril 7). Ensayos de tensión manufacturas. Ingeniería mecánica blog. https://ingenieriamecanicacol.blogspot.com/2023/04/ensayos-de- tension-manufacturas.html | spa |
dc.relation.references | ASTM International. (2017). ASTM D790-17: Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International | spa |
dc.relation.references | CristianGar. (2023a, abril 7). Ensayos de flexión manufactura. Ingeniería mecánica blog. https://ingenieriamecanicacol.blogspot.com/2023/04/ensayos-de- flexion-manufactura.html | spa |
dc.relation.references | ASTM International. (2018). ASTM D3045-18: Standard practice for heat aging of plastics without load. ASTM International. | spa |
dc.relation.references | ICONTEC. (2006). NTC 4384:2006. Productos de plásticos. Tanques de polietileno para almacenamiento fabricados por el proceso de rotomoldeo. Instituto Colombiano de Normas Técnicas y Certificación. | spa |
dc.relation.references | ASTM International. (2021). ASTM D1998-21: Standard specification for polyethylene upright storage tanks. ASTM International. | spa |
dc.relation.references | Abdul Khalil, H. P. S., Saurabh, C. K., Tye, Y. Y., Lai, T. K., Easa, A. M., Rosamah, E., Fazita, M. R. N., Syakir, M. I., & Adnan, A. S. (2017). A review on chitosan and lignocellulosic biomass: A comprehensive study of their blend and composites. Carbohydrate Polymers, 157, 1287-1295. | spa |
dc.relation.references | Sathishkumar, T. P., Navaneethakrishnan, P., Subramaniam, S., Rajasekar, R., & Rajini, N. (2013). Characterization of natural fiber and composites - A review. Journal of Reinforced Plastics and Composites, 32(20), 1457-1476. | spa |
dc.relation.references | Callister, W. D., & Rethwisch, D. G. (2018). Materials science and engineering: An introduction (10th ed.). Wiley. | spa |
dc.relation.references | Ravi, P., & Karthikeyan, R. (2018). Polymer matrix composites: Materials, process, and properties. Elsevier. | spa |
dc.relation.references | ASTM International. (2019). ASTM D4442-19: Standard test methods for direct moisture content measurement of wood and wood-based materials. ASTM International. | spa |
dc.relation.references | Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose- based fibers. Progress in Polymer Science, 24(2), 221-274. | spa |
dc.relation.references | Zhao, X., et al. (2013). Surface modification of natural fibers with silane coupling agents and their effects on the interfacial properties of fiber/polymer composites. Composites Science and Technology, 74, 82-90. https://doi.org/10.1016/j.compscitech.2012.10.002 | spa |
dc.relation.references | Sreekala, M. S., et al. (2000). Oil palm fiber reinforced phenol formaldehyde composites: Influence of fiber surface modifications on mechanical properties. Composites Science and Technology, 60(3), 385-397. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 670 - Manufactura::679 -Otros productos de materiales específicos | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
dc.subject.ddc | 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales | spa |
dc.subject.proposal | Polietileno | spa |
dc.subject.proposal | Cascarilla de cacao | spa |
dc.subject.proposal | Biocompuesto | spa |
dc.subject.proposal | Rotomoldeo | spa |
dc.subject.proposal | Sostenibilidad | spa |
dc.subject.proposal | Polyethylene | eng |
dc.subject.proposal | Cocoa husk | eng |
dc.subject.proposal | Biocomposite | eng |
dc.subject.proposal | Rotomolding | eng |
dc.subject.proposal | Sustainability | eng |
dc.subject.unesco | Ingeniería de la producción | spa |
dc.subject.unesco | Production engineering | eng |
dc.subject.unesco | Gestión industrial | spa |
dc.subject.unesco | Industrial management | eng |
dc.subject.unesco | Química | spa |
dc.subject.unesco | Chemistry | eng |
dc.title | Estudio y caracterización de un biocompuesto elaborado a partir de polietileno (LLDPE) y fibra natural producido por moldeo rotacional | spa |
dc.title.translated | Study and characterization of a biocomposite made from polyethylene (LLDPE)and natural fiber produced by rotational molding | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Toptec S.A | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1060655300.2025.pdf
- Tamaño:
- 3.67 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: