Control mediante la presión y la temperatura de las propiedades ópticas en cristales fotónicos

dc.contributor.advisorVinck Posada, Herbert
dc.contributor.authorSegovia Chaves, Francis Armando
dc.date.accessioned2021-04-08T20:56:21Z
dc.date.available2021-04-08T20:56:21Z
dc.date.issued2020-12
dc.description.abstractLos cristales fotónicos son estructuras dieléctricas los cuales permiten el control de la propagación de la luz. En este trabajo presentamos los resultados teóricos referentes a las estructura de bandas fotónicas en cristales con patrones de periodicidad en una y dos dimensiones. Las propiedades ópticas de los cristales fotónicos se investigan solucionando las ecuaciones de Maxwell a través de métodos teóricos como matriz de transferencia, expansión en ondas planas y expansión en modos guiados. El mé\-todo de la matriz de transferencia es usado para el cálculo del espectro de transmitancia en cristales fotónicos unidimensionales, mientras que el método de expansión en ondas planas es formulado para el cálculo de la estructura de bandas fotónica en cristales fotónicos unidimensionales y bidimensionales. Al asumir la dependencia con la presión hidrostática y temperatura de la constante dieléctrica del material semiconductor constituyente del cristal; los resultados obtenidos revelan que la sintonización de la estructura de bandas es debido principalmente a la presión hidrostática en lugar de la temperatura. El método de expansión en modos guiados es usado para el cálculo de la estructura de bandas fotónica en un slab fotónico donde el confinamiento de la luz es en las tres direcciones espaciales. En particular, abordamos el problema de la determinación del factor de calidad en slabs fotónicos con cavidades L1 y L3, donde se muestra un decrecimiento del factor de calidad con el incremento en la presión hidrostática. (Texto tomado de la fuente)spa
dc.description.abstractPhotonic crystals are dielectric structures that allow the control of light propagation. We present theoretical results concerning the photonic band structure in crystals with periodicity patterns in one and two dimensions. The optical properties of photonic crystals are investigated by solving Maxwell's equations through theoretical methods such as transfer matrix, plane-wave expansion, and guided-mode expansion. The transfer matrix method is used for the calculation of the transmittance spectrum in one-dimensional photonic crystals. In contrast, the plane-wave expansion method is formulated for the calculation of the photonic band structure in one- and two-dimensional photonic crystals. By assuming the dependence on hydrostatic pressure and temperature of the dielectric constant of the semiconductor material constituent of the crystal, the results obtained reveal that the tuning of the band structure is mainly due to hydrostatic pressure rather than temperature. The guided mode expansion method is used for the calculation of the photonic band structure in a photonic slab where the confinement of light is in all three spatial directions. In particular, we address the problem of determining the quality factor in photonic slabs with L1 and L3 cavities, where a decrease of the quality factor with increasing hydrostatic pressure is shown.eng
dc.description.degreelevelDoctoradospa
dc.description.researchareaCristales fotónicosspa
dc.format.extent1 recurso en línea (77 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional UNspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79389
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.references[1] J. Joannopoulos, S. Johnson, and R. Meade. Photonic crystals: molding the flow of light. Princenton University Press, 2007.spa
dc.relation.references[2] N. Aschcroft, D. Mermin, and D. Wei. Solid state Physics. Revised Edition, Cengage Learning Asia, 2016.spa
dc.relation.references[3] E. Yablanovitch. Photonic crystals: semiconductors of light. Sci. Amer., 285:46–55, 201.spa
dc.relation.references[4] R. H. Lipson and C. Lu. Photonic crystals: a unique partnership between light and matter. Eur. J. Phys., 30:S33, 2009.spa
dc.relation.references[5] E. Yablanovitch. Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett., 58:2059, 1987.spa
dc.relation.references[6] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58:2486, 1987.spa
dc.relation.references[7] K. Leung and Y. Liu. Photon band structures: The plane-wave method. Phys. Rev. B, 41:10188–10190, 1990.spa
dc.relation.references[8] K. Ho, C. Chan, and C. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett., 65:3152–3155, 1990.spa
dc.relation.references[9] P. Vukusic and J. Roy. Photonic structures in biology. Nature, 424:852–855, 2003.spa
dc.relation.references[10] J. Pol Vigneron and J. Roy. Natural layer-by-layer photonic structurein the squamae of hoplia coerulea (coleoptera). Phys. Rev. E, 72:061904, 2005.spa
dc.relation.references[11] J. Pol Vigneron and P. Simonis. Natural photonic crystals. Physica B, 407:4032–4036, 2012.spa
dc.relation.references[12] P. Vukusic. Structural colour: elusive iridescence strategies brought to light. Curr. Biol.,21:R187–R189, 2011.spa
dc.relation.references[13] G. Luna-Acosta, H. Schanze, U. Kuhl, and H. St ockmann. Impurity effects on the band structure of one-dimensional photonic crystals: experiment and theory. New J. Phys.,10:043005, 2008.spa
dc.relation.references[14] H. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Ye, S. Matsuo, and H. Misawa. Microcavities in polymeric photonic crystals. Appl. Phys. Lett., 79:1–3, 2001.spa
dc.relation.references[15] M. Mahmoud, G. Bassoy, A. Taalbi, and Z. Chekroun. Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun., 258:368–372, 2012.spa
dc.relation.references[16] H. Altug, D. Englund, and J. Vuckovic. Ultrafast photonic crystal nanocavity laser. Nat. phys., 2:484–488, 2006.spa
dc.relation.references[17] S. Noda. Photonic crystal lasers-ultimate nanolasers and broad-area coherent lasers. J. Opt. Soc. Am. B, 27:B1–B8, 2010.spa
dc.relation.references[18] E. Miyai, O. Okano, M. Mochizuki, and S. Noda. Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide. Appl. Phys. Lett., 81:3729–3731, 2002.spa
dc.relation.references[19] S. Johnson, P. Villenueve, S. Fan, and J. Joannopoulos. Linear waveguide in photonic crystal slabs. Phys. Rev. B, 62:8212, 2000.spa
dc.relation.references[20] I. Bayn, B. Meyler, A. Lahav, J. Salzman, and R. Kalish. Processing of photonic crystal nanocavity for quantum information in diamond. Diam. Relat. Mater, 20:937–943, 2011.spa
dc.relation.references[21] D. Angelakis, M. Santos, V. Yannopapas, and A. Ekert. A proposal for the implementation of quantum gates with photonic-crystal waveguide. Phys. Lett. A, 362:377–380, 2007.spa
dc.relation.references[22] J. Lourtoiz, H. Benisty, V. Berger, J. Gerard, D. Maystre, and A. Tchelnokov. Photonic Crystals: Towards Nanoscale Photonic Devices. Springer-Veralag, Berlin, 2005.spa
dc.relation.references[23] R. Meade, A. Devenyi, J. Joannopoulos, O. Alerhand, D. Smith, and K. Kash. Novel applications of photonic ban gap materials: Low-loss bends and high q cavities. J. Appl. Phys., 75:4753, 1994.spa
dc.relation.references[24] P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos. Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity. III Proc. Optoelectron., 145:384, 1998.spa
dc.relation.references[25] C. Weisbuch, H. Benisty, S. Olivier, M. Rattier, C. Smith, and T. Krauss. Advances in photonic crystals. Phys. Stat. Sol., 221:93, 2000.spa
dc.relation.references[26] L. Midolo, T. Pregnolato, G. Kirsanske, and S. Stobbe. Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics. Nanotechnology, 26:484002, 2015.spa
dc.relation.references[27] N. Le Thomas, H. Zhang, J. Jagerska, V. Zabelin, R. Houdre, and A. Talneau I. Sagnes, and. Light transport regimes in slow light photonic crystal waveguide. Phys. Rev. B, 80:125332, 2009.spa
dc.relation.references[28] Z. Diao. Investigation of 2D photonic crystals and their applications on Terahertz quantum cascade lasers, optical trapping and sensing. Ph. D thesis, Ecole Polytechnique Federale de Lausanne, Suisse, 2013.spa
dc.relation.references[29] J. Manzanares-Martinez, F. Ramos-Mendieta, and P. Halevi. Temperature tuning of two-dimensional photonic crystals in the presence of phonons and a plasma of electrons and holes. Phys. Rev. B, 72:035336, 2005.spa
dc.relation.references[30] H. Elsayed, S. El-Naggar, and A. Aly. Thermal properties and two-dimensional photonic band gaps. Journal of Modern Optics, 61:385–389, 2014.spa
dc.relation.references[31] N. Porras-Montenegro and C. Duque. Temperature and hydrostatic pressure effects on the photonic band structure of a 2D honeycomb lattice. Physica E, 42:1865, 2010.spa
dc.relation.references[32] C. Duque and M. Mora-Ramos. The two-dimensional square and triangular photonic lattice under the effects of magnetic field, hydrostatic pressure, and temperature. Opt. Quant. Electron., 44:375–392, 2012.spa
dc.relation.references[33] A. Aly and F. Sayed. THz cutoff frequency and multifunction Ti2 Ba2 Ca2 Cu3 O10 /GaAs photonic bandgap materials. Int. J. Mod. Phys. B, 34:2050091–1, 2020.spa
dc.relation.references[34] J. Hao, L. Ju, W. Du, K. Gu, and H. Yang. Research on transmission characteristics of two-dimensional superconducting photonic crystal in THz-waves. Plasmonics, 15:1083–1089, 2020.spa
dc.relation.references[35] A. Ahmed, M. Shaban, and A. Aly. Electro-optical tenability properties of defective one-dimensional photonic crystal. Optik, 145:121–129, 2017.spa
dc.relation.references[36] A. Aly, H. Elsayed, and S. El-Naggar. Tuning the flow of light in two-dimensional metallic photonic crystals based on Faraday effect. Journal of Modern Optics, 64:74–80, 2017.spa
dc.relation.references[37] M. Tefelska, M. Chychlowski, A. Czapla, and R. Dabrowski et al. Hydrostatic pressure effects in photonic liquid crystal fibers. Proc. SPIE, 7120:712008, 2008.spa
dc.relation.references[38] T. Wolinski, A. Czapla, M. Tefelska, A. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski. Photonic liquid crystal fibers for sensing applications. IEEE T. Instrum. Meas., 57:1796–1802, 2008.spa
dc.relation.references[39] Z. Liu, M. Tse, C. Wu, D. Chen, C. Lu, and H. Tam. Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor. Opt. Express, 20:21749–21757, 2012.spa
dc.relation.references[40] C. Wu, H. Fu, K. Qureshi, B. Guan, and H. Tam. High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber. Optic. Lett., 36:412–414, 2011.spa
dc.relation.references[41] S. Olyaee and A. Dehghani. High resolution and wide dynamic range pressure sensor based on two-dimensional photonic crystal. Photonic Sens., 2:92–96, 2012.spa
dc.relation.references[42] F. Berghmans, T. Geernaert, and S. Sulejmani. Photonic crystal fiber Bragg grating based sensors—opportunities for applications in healthcare. Proc. of SPIE-OSA-IEEE Asia Communications and Photonics, 8311:831102, 2011.spa
dc.relation.references[43] H. Fu, C. Wu, and M. Tse. High pressure sensor based on photonic crystal fiber for downhole application. App. Optics, 49:2639–2643, 2010.spa
dc.relation.references[44] A. Arsenault, T. Clark, and G. von Freymann. From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat. Mate., 5:179, 2006.spa
dc.relation.references[45] A. Lawson and T. Tang. A diamond bomb for obtaining powder pictures at high pressures. Rev. Sci. Instruments, 21:815, 1950.spa
dc.relation.references[46] M Cardona A. Gono, K. Syassen. Effect of pressure on the refractive index of Ge and GaAs. Phys. Rev. B, 41:10104, 1990.spa
dc.relation.references[47] G. Samara. Temperature and pressure dependences of the dielectric constants of semiconductors. Phys. Rev. B, 27:3494, 1983.spa
dc.relation.references[48] I. Strzalkowski, S. Joshi, and C. Crowell. Dielectric constant and its temperature dependece for GaAs, CdTe, and ZnSe. Appl. Phys. Lett., 28:350, 1976.spa
dc.relation.references[49] W. Bassett, A. Shen, M. Bucknum, and I. Chou. A new diamond anvil cell for hydrothermal studies to 2.5 GPa, and from -190 to 1200 C. Rev. Sci. Instrum., 64:2340, 1993.spa
dc.relation.references[50] C. Duque, N. Porras, Z. Barticevic, M. Pacheco, and L. Oliveira. Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots. J. Phys. Condens. Matter, 18:1877, 2006.spa
dc.relation.references[51] H. Oyoko, C. Duque, and N. Porras. Uniaxial stress dependence of the binding energy of shallow donor impurities in GaAs-(Ga, Al)As quantum dots. J. Appl. Phys., 90:819, 2001.spa
dc.relation.references[52] J. Jackson. Classical Electrodynamics. 3er ed. John Wiley and Sons, New York, 1999.spa
dc.relation.references[53] C. Kittel. Introduction to solid state physics. John Wiley and Sons, New York, 2005.spa
dc.relation.references[54] P. Yeh. Optical Waves in Layered Media. Wiley-Interscience, 2005.spa
dc.relation.references[55] E. Chow, S. Lin, S. Johnson, J. Joannopoulos P. Villenueve, J. Wendt, G. Vawter, W. Zubrzycki, H. Hou, and A. Alleman. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature, 407:983, 2000.spa
dc.relation.references[56] S. McNab, N. Moll, and Y. Vlasov. Ultra-low photonic integrated circuit with membrane-type photonic crystal waveguide. Opt. Express, 11:2927–2939, 2003.spa
dc.relation.references[57] D. Gerace. Photonic modes and radiation -matter interaction in photonic crystal slabs. Ph. D thesis, University of Pavia, 2005.spa
dc.relation.references[58] A. Yariv and P. Yeh. Photonics: optical electronics in modern communications. Oxford University Press, 2006.spa
dc.relation.references[59] K. Dong, D. Chen, H. You, Y. Wang, Y. Zhang, and X. Wang. Growth and characteristic of SiO2 /Si3 N4 photonic crystal filter with anti-reflection coating. Nanosci. Nanotech.Let., 11:834–838, 2019.spa
dc.relation.references[60] M. Calvo, O. Sobrado, G. Lozano, and H. Miguez. Molding with nanoparticle-based one-dimensional photonic crystals: a route to flexible ant transferable bragg mirrors of high dielectric contrast. J. Mater. Chem., 11:3144–3148, 2009.spa
dc.relation.references[61] Q. Chen and D. Allsopp. One dimensional coupled cavities photonic crystal filters with tapered Bragg mirrors. Opt. Commun., 281:5771–5774, 2008.spa
dc.relation.references[62] A. Zain, N. Johnson, M. Sorel, and M. Richard. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI). Opt. Express., 16:12084–12089, 2008.spa
dc.relation.references[63] W. Rao, Y. Song, M. Liu, and C. Jin. All-optical switch based on photonic crystal microcavity with multi-resonan modes. Optik, 121:1934–1936, 2010.spa
dc.relation.references[64] L. Wu, F. Zhuang, and S. He. Degenerancy analysis for a supercell of a photonic crystal and its applications to the creation of band gaps. Phys. Rev. E, 67:026612, 2003.spa
dc.relation.references[65] A. Herrera, J. Calero, and N. Porras-Montenegro. Pressure, temperature, and thickness dependence of transmittance in a 1D superconductor-semiconductor photonic crystal. J. Appl. Phys., 123:033101, 2018.spa
dc.relation.references[66] R. Wesche. Physical properties of high-temperature superconductors. Wiley series, 2015.spa
dc.relation.references[67] A. Yamamoto, N. Takeshita, C. Terakura, and Y. Tokura. High pressure effects revisited for the cuprate superconductor family with highest critical temperature. Nat. commun., 6:R2999, 2015.spa
dc.relation.references[68] C. Panagopoulos, J. Cooper, G. Peacock, I. Gameason, P. Edwards, W. Schmid-bauer, and J. Hodby. Anisotropic magnetic penetration depth of grain-aligned HgBa2 Ca2 Cu3 O8+d . Phys. Rev. B, 53:R2999, 1996.spa
dc.relation.references[69] N. Takeshita, A. Yamamoto, A. Iyo, and H. Eisaki. Zero resistivity above 150 K in HgBa2 Ca2 Cu3 O8+δ at high pressure. J. Phys. Soc. Jpn., 82:023711, 2013.spa
dc.relation.references[70] A. Elabsy. Hydrostatic pressure dependence of binding energies for donors in quantum well heterostructures. Phys. Scripta, 48:376, 1993.spa
dc.relation.references[71] J. Winn, R. Meade, and J. Joannopoulos. Two-dimensional photonic band-gap materials. J. Mod. Optics, 41:257–273, 1994.spa
dc.relation.references[72] P. Villenueve and M. Pich ́. Photonic band gaps in two-dimensional square and hexagonal lattices. Phys. Rev. B, 46:4969, 1992.spa
dc.relation.references[73] R. Meade, K. Brommer, A. Rappe, and J. Joannopoulos. Existence of a photonic band gap in two dimensional. Appl. Phys. Lett., 61:495–497, 1992.spa
dc.relation.references[74] R. Padjen, J. Gerard, and J. Marzin. Analysis of the filling pattern dependence of the photonic bandgap for two-dimensional system. J. Mod. Optics, 41:295–310, 1994.spa
dc.relation.references[75] R. Hillebrand and W. Hergert. Band gap studies of triangular 2D photonic crystals with varying pore roundness. Solid State Commun., 115:227–232, 2000.spa
dc.relation.references[76] T. Takizawa, S. Arai, and M. Nakahara. Fabrication of vertical and uniform -size porous InP structure by electrochemical anodization. Jpn. J. Appl. Phys., 33:L643–L645, 1994.spa
dc.relation.references[77] T. Baba and M. Koma. Possibility of InP based 2 d-dimensional photonic crystal: An approach by the anodization method. Jpn. J. Appl. Phys., 34:1405–1408, 1995.spa
dc.relation.references[78] M. Loncar, T. Doll, J. Vuckovic, and A. Scherer. Design and fabrication of silicon photonic crystal optical waveguide. IEEE J. Lightwave Technol., 18:1402, 2000.spa
dc.relation.references[79] T. Baba, T. Iwai A. Motegi, N. Fukaya, Y. Watanabe, and A. Sakai. Light propagation characteristic of straight single-line-defect waveguide in photonic crystals fabricated into a silicon-on-insulator substrate. IEEE J. Quantum Electron., 38:743, 2002.spa
dc.relation.references[80] A. Talneau, L. Gouezigou, and N. Bouadma. Quantitative measurement of low propagation losses at 1.55 μm on planar photonic crystal waveguide. Opt. Lett., 26:1259, 2001.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembFotónica
dc.subject.lembElectromagnetismo
dc.subject.lembPhotonic
dc.subject.lembElectromagnetism
dc.subject.proposalCristales fotónicosspa
dc.subject.proposalPhotonic crystaleng
dc.subject.proposalPresiónspa
dc.subject.proposalPressureeng
dc.subject.proposalTemperaturaspa
dc.subject.proposalTemperatureeng
dc.titleControl mediante la presión y la temperatura de las propiedades ópticas en cristales fotónicosspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
13071107.2021.pdf
Tamaño:
5.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: