Desarrollo de una red neuronal profunda para la extracción de campos de esfuerzos en imágenes multipolarizadas de fotoelasticidad

dc.contributor.advisorRestrepo Martínez, Alejandro
dc.contributor.authorEusse Naranjo, Diego
dc.contributor.orcidEusse-Naranjo, Diegospa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Diego-Eusse-Naranjospa
dc.contributor.researchgroupGrupo de Promoción E Investigación en Mecánica Aplicada Gpimaspa
dc.date.accessioned2024-01-24T19:28:55Z
dc.date.available2024-01-24T19:28:55Z
dc.date.issued2023-08-01
dc.description.abstractLa fotoelasticidad digital es una técnica experimental utilizada en el análisis y cuantificación de esfuerzos en materiales isótropos y birrefringentes sometidos a una carga, debido a que este tipo de materiales experimentan índices de refracción dobles cuando son cargados, lo que permite estimar la diferencia entre los esfuerzos principales en cada elemento del cuerpo, gracias a un retardo de fase en la luz que lo atraviesa, que puede ser demodulado para extraer un campo de esfuerzos completo. Tradicionalmente, los procedimientos de extracción de campos de esfuerzos en imágenes de fotoelasticidad eran difíciles de representar con simples regresiones matemáticas, además de que necesitaban montajes costosos, con altos requerimientos de precisión y en ocasiones, algoritmos complicados. En los últimos años, se han desarrollado unas primeras aproximaciones a la automatización de estos procesos por medio del uso de redes neuronales convolucionales para el procesamiento de imágenes isocromáticas en un solo estado de polarización. En esta tesis, se propone el uso de redes neuronales convolucionales profundas para procesar cuatro imágenes de diferentes estados de polarización. Para ello, se construye una colección de más de setenta mil imágenes analíticas en modelos clásicos de fotoelasticidad, utilizando las propiedades ópticas del material simulado, de la fuente de iluminación y de dos cámaras polarizadas encontradas en la literatura y en cuatro estados de polarización: 0°, 45°, 90° y 135°. Estas imágenes son utilizadas para el entrenamiento, validación y testeo de diferentes modelos de red neuronal, basados en arquitecturas clásicas encontradas en la literatura para el desenvolvimiento de fase. Con ello, se realiza un rediseño en las capas, funciones, filtros e hiper-parámetros de las redes estudiadas, en un proceso de optimización de una única arquitectura que alcance las mejores métricas para el problema desarrollado. La evaluación de los modelos se realiza por medio de métricas de calidad de imagen tales como MSE, SSIM, PSNR, entre otras consideradas. Finalmente, se desarrolla y explica la MultipolarNet, una red neuronal especializada en la extracción de campos de esfuerzos en imágenes multipolarizadas de fotoelasticidad. Los resultados abren la posibilidad de procesar imágenes reales generadas por una cámara multipolarizada, lo que representa una gran oportunidad para desarrollar evaluaciones de esfuerzo en tiempo real, predecir problemas de desenvolvimiento de fase en geometrías complejas, cargas dinámicas, o inconsistencias debidas a isoclínicos. (texto tomado de la fuente)spa
dc.description.abstractDigital photoelasticity is an experimental technique used in the analysis and quantification of stresses in isotropic and birefringent materials subjected to a load, due to the fact that this type of materials experience double refractive indices when loaded, which allows estimating the difference between the principal stresses in each element of the body, thanks to a phase delay in the light passing through it, which can be demodulated to extract a complete stress field. Traditionally, stress field extraction procedures in photoelasticity images were difficult to represent with simple mathematical regressions and required expensive setups with high accuracy requirements and sometimes complicated algorithms. In recent years, first approaches to automate these processes have been developed by using convolutional neural networks for processing isochromatic images in a single polarization state. In this thesis, we propose the use of deep convolutional neural networks to process four images of different polarization states. For this purpose, a collection of more than seventy thousand analytical images in classical photoelasticity models is built, using the optical properties of the simulated material, the illumination source and two polarized cameras found in the literature and in four polarization states: 0°, 45°, 90° and 135°. These images are used for training, validation and testing of different neural network models, based on classical architectures found in the literature for phase unwrapping. With this, a redesign is performed on the layers, functions, filters and general hyper-parameters of the studied networks, in a process of optimization of a single architecture that achieves the best metrics for the developed problem. The evaluation of the models is performed by means of image quality metrics such as MSE, SSIM, PSNR, among others considered. Finally, MultipolarNet, a neural network specialized in the extraction of stress fields in multipolarized photoelasticity images, is developed and explained. The results open the possibility of processing real images generated by a multipolarized camera, which represents a great opportunity to develop real-time stress evaluations, predict phase unwrapping problems in complex geometries, dynamic loads, or inconsistencies due to isoclinics.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Analíticaspa
dc.description.researchareaRedes Neuronales Convolucionales CNNsspa
dc.description.researchareaFotoelasticidad digitalspa
dc.format.extent125 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85422
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesJuan C. Briñez-de León, Alejandro Restrepo-Martínez y Francisco López Giraldo, Estudios de fotoelasticidad: desarrollos y aplicaciones, Revista Politécnica ISSN 1900-2351, Año 9, Número 16, Páginas 27-36, 2013.spa
dc.relation.referencesJuan C. Briñez-de León, Mateo Rico-García, and Alejandro Restrepo-Martínez, "PhotoelastNet: a deep convolutional neural network for evaluating the stress field by using a single-color photoelasticity image," Appl. Opt. 61, D50-D62 (2022).spa
dc.relation.referencesBriñez de León, Juan & Rico, Mateo & Branch, John & Restrepo-Martínez, Alejandro. (2020). StressNet: A deep convolutional neural network for recovering the stress field from isochromatic images. 23. 10.1117/12.2568609.spa
dc.relation.referencesTao Bo, Wang Yan, Qian Xinbo, Tong Xiliang, He Fuqiang, Yao Weiping, Chen Bin, Chen Baojia. Photoelastic Stress Field Recovery Using Deep Convolutional Neural Network, Frontiers in Bioengineering and Biotechnology, Volume 10, 2022spa
dc.relation.referencesRen, Zhangyu & Xie, Huimin & Ju, Yang. (2020). Quantification of photoelastic fringe orders using polarized light camera and continuous loading. Optics and Lasers in Engineering. 134. 106263. 10.1016/j.optlaseng.2020.106263.spa
dc.relation.referencesDubey, V. & Grewal, Gurtej & Claremont, D. (2007). Load Extraction from Photoelastic Images Using Neural Networks. Experimental Mechanics. 47. 263-270. 10.1007/s11340-006-9002-z.spa
dc.relation.referencesKetao Yan, Yingjie Yu, Chongtian Huang, Liansheng Sui, Kemao Qian, Anand Asundi, Fringe pattern denoising based on deep learning, Optics Communications, Volume 437, 2019, Pages 148-152, ISSN 0030-4018.spa
dc.relation.referencesWang, Kaiqiang & Li, Ying & Kemao, Qian & Di, Jianglei & Zhao, Jianlin. (2019). One-step robust deep learning phase unwrapping. Optics Express. 27. 15100. 10.1364/OE.27.015100.spa
dc.relation.referencesTeng Zhang, Shaowei Jiang, Zixin Zhao, Krishna Dixit, Xiaofei Zhou, Jia Hou, Yongbing Zhang, and Chenggang Yan, "Rapid and robust two-dimensional phase unwrapping via deep learning," Opt. Express 27, 23173-23185 (2019).spa
dc.relation.referencesJunchao Zhang, Xiaobo Tian, Jianbo Shao, Haibo Luo, and Rongguang Liang, "Phase unwrapping in optical metrology via denoised and convolutional segmentation networks," Opt. Express 27, 14903-14912 (2019).spa
dc.relation.referencesLin, Bowen & Fu, Shujun & Zhang, Caiming & Wang, Fengling & Li, Yuliang. (2019). Optical Fringe Patterns Filtering Based on Multi-Stage Convolution Neural Network.spa
dc.relation.referencesJuan C. Briñez de León, Ruben D. Fonnegra-Tarazona, and Alejandro Restrepo-Martínez "Generalized adversarial networks for stress field recovering processes from photoelasticity images", Proc. SPIE 11510, Applications of Digital Image Processing XLIII, 115100S (21 August 2020).spa
dc.relation.referencesKetao Yan, Yingjie Yu, Tao Sun, Anand Asundi, Qian Kemao, Wrapped phase denoising using convolutional neural networks, Optics and Lasers in Engineering, Volume 128, 2020.spa
dc.relation.referencesPerera, Malsha & de Silva, Ashwin. (2020). A Joint Convolutional and Spatial Quad-Directional LSTM Network for Phase Unwrapping. IEEE International Conference on Acoustics, Speech and Signal Processing. (ICASSP).spa
dc.relation.referencesAlan Reyes-Figueroa, Victor H. Flores, and Mariano Rivera, "Deep neural network for fringe pattern filtering and normalization," Appl. Opt. 60, 2022-2036 (2021).spa
dc.relation.referencesCywińska, Maria & Brzeski, Filip & Krajnik, Wiktor & Patorski, Krzysztof & Zuo, Chao & Trusiak, Maciej. (2021). DeepDensity: Convolutional neural network based estimation of local fringe pattern density. Optics and Lasers in Engineering. 145. 106675. 10.1016/j.optlaseng.2021.106675.spa
dc.relation.referencesYao, Pengcheng & Gai, Shaoyan & Da, Feipeng. (2021). Coding-Net: A multi-purpose neural network for Fringe Projection Profilometry. Optics Communications. 489. 126887. 10.1016/j.optcom.2021.126887.spa
dc.relation.referencesYandong Gao, Guanghui Wang, Geng Wang, Tao Li, Shubi Zhang, Shijin Li, Yansuo Zhang, Tao Zhang, Two-dimensional phase unwrapping method using a refined D-LinkNet-based unscented Kalman filter, Optics and Lasers in Engineering, Volume 152, 2022.spa
dc.relation.referencesJavier Gurrola-Ramos, Oscar Dalmau, Teresa Alarcón, U-Net based neural network for fringe pattern denoising, Optics and Lasers in Engineering, Volume 149, 2022.spa
dc.relation.referencesHieu Nguyen, Erin Novak, Zhaoyang Wang, Accurate 3D reconstruction via fringe-to-phase network, Measurement, Volume 190, 2022.spa
dc.relation.referencesYue Sun, Yinxu Bian, Hua Shen, Rihong Zhu, High-accuracy simultaneous phase extraction and unwrapping method for single interferogram based on convolutional neural network, Optics and Lasers in Engineering, Volume 151, 2022.spa
dc.relation.referencesTao Bo, Wang Yan, Qian Xinbo, Tong Xiliang, He Fuqiang, Yao Weiping, Chen Bin, Chen Baojia, Photoelastic Stress Field Recovery Using Deep Convolutional Neural Network, Frontiers in Bioengineering and Biotechnology, Volume 10, 2022.spa
dc.relation.referencesK. Ramesh, Sachin Sasikumar, Digital photoelasticity: Recent developments and diverse applications, Optics and Lasers in Engineering, Volume 135, 2020, 106186, ISSN 0143-8166.spa
dc.relation.referencesW. Shang, H. Li, J. Liu, and J. Liu, "Algorithm and its application for automatic measurement of the full-field isoclinic parameter by digital phase-shifting photoelasticity," Appl. Opt. 61, 10433-10438 (2022).spa
dc.relation.referencesBriñez-de León, J. C., Branch-Bedoya, J. W., and Restrepo-Martínez, A., “Toward photoelastic sensors: a hybrid proposal for imaging the stress field through load stepping methods" in OSA Imaging and Applied Optics Congress.spa
dc.relation.referencesRodríguez-Marmolejo, Héctor Ulises; Muñoz-Jiménez, Yuliana del R.; Rodríguez, Ulises Mateo; Rodríguez, Saulo Mauricio Demodulación de Patrón de Franjas Cerradas por Corrimiento de Fase Conciencia Tecnológica, núm. 53, 2017 Instituto Tecnológico de Aguascalientes, México.spa
dc.relation.referencesQinnan Zhang, Shengyu Lu, Jiaosheng Li, Dong Li, Xiaoxu Lu, Liyun Zhong, Jindong Tian, Phase-shifting interferometry from single frame in-line interferogram using deep learning phase-shifting technology, Optics Communications, Volume 498, 2021, 127226, ISSN 0030-4018, https://doi.org/10.1016/j.optcom.2021.127226.spa
dc.relation.referencesH. Fandiño-Toro, Y. Aristizábal-López, A. Restrepo-Martínez, and J. Briñez-de León, "Fringe pattern analysis to evaluate light sources and sensors in digital photoelasticity," Appl. Opt. 62, 2560-2568 (2023).spa
dc.relation.referencesBriñez de León, Juan & Restrepo-Martinez, Alejandro & Branch, John. (2018). Computational hybrid phase shifting technique applied to digital photoelasticity. Optik - International Journal for Light and Electron Optics. 157. 287-297. 10.1016/j.ijleo.2017.11.060.spa
dc.relation.referencesQuiroga, J. and Gonzalez-Cano, A., “Separation of isoclinics and isochromatics from photoelastic data with a regularized phase-tracking technique" Applied optics 39(17), 2931-2940 (2000).spa
dc.relation.referencesPandey, A. and Ramesh, K., “Development of a new normalization technique for twelve fringe photoelasticity (tfp)" in [Advancement of Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3], 177-180, Springer (2019).spa
dc.relation.referencesJuan Carlos Briñez-de León, Alejandro Restrepo-Martínez, John W. Branch-Bedoya, Computational analysis of Bayer colour filter arrays and demosaicking algorithms in digital photoelasticity, Optics and Lasers in Engineering, Volume 122, 2019, Pages 195-208, ISSN 0143-8166, https://doi.org/10.1016/j.optlaseng.2019.06.004.spa
dc.relation.referencesBriñez-de León, J. C., Rico-García, M., Restrepo-Martínez, A., and Branch-Bedoya, J. W., “Isochromatic-art: a computational dataset for evaluating the stress distribution of loaded bodies by digital photoelasticity." Mendeley Data, v4 (2020).spa
dc.relation.referencesGurton, Kristan & Yuffa, Alex & Videen, Gorden. (2014). Enhanced facial recognition for thermal imagery using polarimetric imaging. Optics letters. 39. 3857-3859. 10.1364/OL.39.003857.spa
dc.relation.referencesChang, Jintao & He, Honghui & He, Chao & Ma, Hui. (2016). DoFP polarimeter based polarization microscope for biomedical applications. 97070W. 10.1117/12.2210896.spa
dc.relation.referencesLi Xiaobo, Han Yilin, Wang Hongyuan, Liu Tiegen, Chen Shih-Chi, Hu Haofeng. Polarimetric Imaging Through Scattering Media: A Review. Frontiers in Physics. Volume 10. 2022. 10.3389/fphy.2022.815296. 2296-424X.spa
dc.relation.referencesTimoshenko, S. and Goodier, J.N. (1951) Theory of Elasticity. 2nd Edition, McGraw-Hill, New York.spa
dc.relation.referencesKramer, Sharlotte Lorraine Bolyard (2009) Phase-Shifting Full-Field Interferometric Methods for In-Plane Tensorial Stress Determination for Fracture Studies. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/M9NV-T722.spa
dc.relation.referencesHuaizi Tang, Jiuzhou Huang, Jinyuan He, Wen Hua, Shiming Dong, Stress intensity factors for a centrally cracked Brazilian disk under non-uniformly distributed pressure, Theoretical and Applied Fracture Mechanics, Volume 114, 2021, 103001, ISSN 0167-8442.spa
dc.relation.referencesRamesh, K., Shins, K. Stress field equations for a disk subjected to self-equilibrated arbitrary loads: revisited. Granular Matter 24, 49 (2022).spa
dc.relation.referencesOlaf Ronneberger, Philipp Fischer, Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. ArXiv. abs/1505.04597. 2015.spa
dc.relation.referencesW. Zhao, G. Zhang, and J. Li, "Accuracy improvement of demodulating the stress field with StressUnet in photoelasticity," Appl. Opt. 61, 8678-8687 (2022).spa
dc.relation.referencesJ. Zhao, L. Liu, T. Wang, X. Wang, X. Du, R. Hao, J. Liu, Y. Liu, and J. Zhang, "VDE-Net: a two-stage deep learning method for phase unwrapping," Opt. Express 30, 39794-39815 (2022).spa
dc.relation.referencesKaiqiang Wang, Qian Kemao, Jianglei Di, Jianlin Zhao, "Deep learning spatial phase unwrapping: a comparative review," Adv. Photon. Nexus 1(1) 014001 (3 August 2022)spa
dc.relation.referencesZuo, C., Qian, J., Feng, S. et al. Deep learning in optical metrology: a review. Light Sci Appl 11, 39 (2022).spa
dc.relation.referencesPark, Seonghwan & Kim, Youhyun & Moon, Inkyu. (2021). Automated phase unwrapping in digital holography with deep learning. Biomedical Optics Express. 12. 10.1364/BOE.440338.spa
dc.relation.referencesMohamad Zaim Awang Pon, & Krishna Prakash K. (2021). Hyperparameter Tuning of Deep learning Models in Keras. Sparklinglight Transactions on Artificial Intelligence and Quantum Computing (STAIQC), 1(1), 36–40.spa
dc.relation.referencesHertel, Lars & Collado, Julian & Sadowski, Peter & Ott, Jordan & Baldi, Pierre. (2020). Sherpa: Robust hyperparameter optimization for machine learning. SoftwareX. 12. 100591. 10.1016/j.softx.2020.100591.spa
dc.relation.referencesA. Mittal, A. K. Moorthy and A. C. Bovik, "No-Reference Image Quality Assessment in the Spatial Domain," in IEEE Transactions on Image Processing, vol. 21, no. 12, pp. 4695-4708, Dec. 2012, doi: 10.1109/TIP.2012.2214050.spa
dc.relation.referencesW. Zhang, K. Ma, J. Yan, D. Deng, and Z. Wang, "Blind Image Quality Assessment Using a Deep Bilinear Convolutional Neural Network," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 1, pp. 36-47, Jan. 2020, doi: 10.1109/TCSVT.2018.2886771.spa
dc.relation.referencesTalebi, Hossein & Milanfar, Peyman. (2017). NIMA: Neural Image Assessment. IEEE Transactions on Image Processing. PP. 10.1109/TIP.2018.2831899.spa
dc.relation.referencesChao Ma, Chih-Yuan Yang, Xiaokang Yang, Ming-Hsuan Yang, Learning a no-reference quality metric for single-image super-resolution, Computer Vision and Image Understanding, Volume 158, 2017, Pages 1-16, ISSN 1077-3142.spa
dc.relation.referencesH. Zheng, H. Yang, J. Fu, Z. Zha and J. Luo, "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment," in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021 pp. 10222-10231. doi: 10.1109/ICCV48922.2021.01008spa
dc.relation.referencesK. Ding, K. Ma, S. Wang and E. P. Simoncelli, "Image Quality Assessment: Unifying Structure and Texture Similarity," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 5, pp. 2567-2581, 1 May 2022, doi: 10.1109/TPAMI.2020.3045810.spa
dc.relation.referencesR. Zhang, P. Isola, A. Efros, E. Shechtman and O. Wang, "The Unreasonable Effectiveness of Deep Features as a Perceptual Metric," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 2018 pp. 586-595. doi: 10.1109/CVPR.2018.00068spa
dc.relation.referencesBrieva Sarmiento, María Angélica, (2011). Estudio de tensiones residuales mediante fotoelasticidad en piezas de poliestireno cristal moldeadas por inyección. Universidad de Cartagena. Facultad de Ingeniería.spa
dc.relation.referencesBFS-U3-51S5PC-C USB 3.1 Blackfly® S, polarized color camera. Edmund Optics Worldwide. Available at: https://www.edmundoptics.com/p/bfs-u3-51s5pc-c-usb3-blackflyr-s-polarized-color-camera/41901/ (Accessed: 04 July 2023).spa
dc.relation.referencesVCXU-50MP. Industrial cameras / CX series | Baumer USA. Available at: https://www.baumer.com/us/en/p/38833 (Accessed: 04 July 2023).spa
dc.relation.referencesC2410Y/Z CMOS 5 MP with Polarization Filters. GigE Vision® with Power over Ethernet (PoE) (pp. 1–2). (2019). 6421 Congress Ave., Boca Raton, FL 33487, USA: IMPERX Industrial Cameras & Imaging Systems. Recuperado de https://www.cosyco.de/kameras/flaechenkameras/imperx/Datenblaetter_20200923/cheetah_c2410YZ_poe_r2_2019_w.pdfspa
dc.relation.referencesRohatgi A: WebPlotDigitizer. 2019. Available at: https:// automeris.io/WebPlotDigitizer/images/wpd.png. Accessed July 4, 2023.spa
dc.relation.referencesJunior, Pedro & Magalhães, Cristina & Neto, Perrin. (2012). New Numerical Method for the Photoelastic Technique. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 34. 531-542. 10.1590/S1678-58782012000400015.spa
dc.relation.referencesTokovyy, Yuriy & Hung, K.-M & Ma, Chien-Ching. (2010). Determination of stresses and displacements in a thin annular disk subjected to diametral compression. Journal of Mathematical Sciences. 165. 342-354. 10.1007/s10958-010-9803-6.spa
dc.relation.referencesVedel, Mathieu & Lechocinski, Nicolas & Breugnot, Sebastien. (2010). Paper Title: Compact and robust Linear Stokes polarization camera -Description and Applications. EPJ Web of Conferences. 5. 01005. 10.1051/epjconf/20100501005.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.proposalFotoelasticidadspa
dc.subject.proposalRedes Neuronales Convolucionalesspa
dc.subject.proposalAprendizaje Profundospa
dc.subject.proposalDesenvolvimiento de Fasespa
dc.subject.proposalAnálisis de Franjasspa
dc.subject.proposalPolarizaciónspa
dc.subject.proposalPhotoelasticityeng
dc.subject.proposalConvolutional Neural Networkseng
dc.subject.proposalDeep Learningeng
dc.subject.proposalPhase Unwrappingeng
dc.subject.proposalFringe analysiseng
dc.subject.proposalPolarizationeng
dc.subject.wikidataAprendizaje profundo
dc.subject.wikidataRed neuronal
dc.subject.wikidataProcesamiento digital de imágenes
dc.titleDesarrollo de una red neuronal profunda para la extracción de campos de esfuerzos en imágenes multipolarizadas de fotoelasticidadspa
dc.title.translatedDevelopment of a deep neural network for stress field extraction in multipolarized photoelasticity imagingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037655233.2023.pdf
Tamaño:
7.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: