Generación de energía por gradiente salino en la desembocadura del río Magdalena: un estudio de caso

dc.contributor.advisorLopera-Castro, Sergio Hernandospa
dc.contributor.authorCastro-Peláez, Karem Johannaspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativasspa
dc.date.accessioned2020-05-06T20:18:14Zspa
dc.date.available2020-05-06T20:18:14Zspa
dc.date.issued2019-08-31spa
dc.description.abstractA case study of the generation of energy by saline gradient at the mouth of the Magdalena River is presented, in which a sizing proposal is made for an installed capacity of 200 kW per container, in which an exergy analysis of the system is carried out to estimate the energy efficiency of this type of energy generation, and the evaluation of change in concentrations in the water discharge, in such a way that the estimation of the number of containers that could be used without making changes greater than 1% in the conditions of saline concentration and 1°C in marine biota.spa
dc.description.abstractSe presenta un caso de estudio de la generación de energía por gradiente salino en la desembocadura del río Magdalena, en el que se realiza una propuesta de dimensionamiento para una capacidad instalada de 200 kW por contenedor, en el cual se realiza un análisis exergético del sistema para estimar la eficiencia energética de este tipo de generación de energía, y la evaluación de cambio de concentraciones en la descarga del agua, de tal forma que se hace la estimación del número de contenedores que podrían ser utilizados sin realizar cambios superiores al 1% en las condiciones de concentración salina y 1°C en la biota marina.spa
dc.description.additionalLínea de Investigación: Generación de energía, Optimización energéticaspa
dc.description.degreelevelMaestríaspa
dc.format.extent80spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCastro Peláez, Karemspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77481
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesUnited Nations - UN, “The Ocean Conference,” New York, 2017.spa
dc.relation.referencesM. Melikoglu, “Current status and future of ocean energy sources: A global review,” Ocean Eng., vol. 148, pp. 563–573, 2018.spa
dc.relation.referencesUPME, “Informe Mensual de Variables de Generación y del Mercado Elétrico Colombiano - agosto de 2018,” Bogotá D.C, 2018.spa
dc.relation.referencesO. Alvarez-Silva, A. F. Osorio, and C. Winter, “Practical global salinity gradient energy potential,” Renew. Sustain. Energy Rev., vol. 60, pp. 1387–1395, 2016.spa
dc.relation.referencesJ. Veerman, “Reverse Electrodialysis design and optimization by modeling and experimentation,” University of Groningen, Groningen, 2010.spa
dc.relation.referencesJ. Moreno, S. Grasman, R. Van Engelen, and K. Nijmeijer, “Upscaling Reverse Electrodialysis,” Environ. Sci. Technol., vol. 52, no. 18, pp. 10856–10863, 2018.spa
dc.relation.referencesO. Alvarez-Silva and A. F. Osorio, “Salinity gradient energy potential in Colombia considering site specific constraints,” Renew. Energy, vol. 74, pp. 737–748, 2014.spa
dc.relation.referencesS. Vallejo, “Energy generation from salinity gradients through Reverse Electrodialysis and Capacitive Reverse Electrodialysis,” Universidad Nacional de Colombia - Sede Medellín, 2017.spa
dc.relation.referencesN. Y. Yip and M. Elimelech, “Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis,” Environ. Sci. Technol., vol. 48, no. 18, pp. 11002–11012, 2014.spa
dc.relation.referencesR. A. Tufa et al., “Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage,” Appl. Energy, vol. 225, no. May, pp. 290–331, 2018.spa
dc.relation.referencesM. Tedesco, H. V. M. Hamelers, and P. M. Biesheuvel, “Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes,” J. Memb. Sci., vol. 510, pp. 370–381, Jul. 2016.spa
dc.relation.referencesN. Y. Yip, D. Brogioli, H. V. M. Hamelers, and K. Nijmeijer, “Salinity gradients for sustainable energy: Primer, progress, and prospects,” Environ. Sci. Technol., vol. 50, no. 22, pp. 12072–12094, 2016.spa
dc.relation.referencesA. Cipollina et al., “Reverse electrodialysis: Applications,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 135–180.spa
dc.relation.referencesM. Tedesco, A. Cipollina, A. Tamburini, and G. Micale, “Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines,” J. Memb. Sci., vol. 522, pp. 226–236, 2016.spa
dc.relation.referencesJ. W. Post et al., “Towards implementation of reverse electrodialysis for power generation from salinity gradients,” Desalin. Water Treat., vol. 16, no. 1–3, pp. 182–193, 2010.spa
dc.relation.referencesJ.-Y. Nam et al., “Assessing the behavior of the feed-water constituents of a pilot-scale 1000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent,” Water Res., vol. 148, pp. 261–271, Jan. 2019.spa
dc.relation.referencesJ. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, “Reverse electrodialysis: A validated process model for design and optimization,” Chem. Eng. J., vol. 166, pp. 256–268, 2011.spa
dc.relation.referencesJ. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, “Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water,” J. Memb. Sci., vol. 327, pp. 136–144, 2009.spa
dc.relation.referencesD. a. Vermaas, M. Saakes, and K. Nijmeijer, “Doubled power density from salinity gradients at reduced intermembrane distance,” Environ. Sci. Technol., vol. 45, no. 16, pp. 7089–7095, 2011.spa
dc.relation.referencesM. Tedesco, A. Cipollina, A. Tamburini, W. van Baak, and G. Micale, “Modelling the Reverse ElectroDialysis process with seawater and concentrated brines,” Desalin. Water Treat., vol. 49, no. 1–3, pp. 404–424, 2012.spa
dc.relation.referencesS. Pawlowski, J. G. Crespo, and S. Velizarov, “Pressure drop in reverse electrodialysis: Experimental and modeling studies for stacks with variable number of cell pairs,” J. Memb. Sci., vol. 462, pp. 96–111, 2014.spa
dc.relation.referencesL. Gurreri, A. Tamburini, A. Cipollina, G. Micale, and M. Ciofalo, “Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study,” J. Memb. Sci., vol. 497, pp. 300–317, 2016.spa
dc.relation.referencesR. Ibañez, M. Fallanza, L. Gomez-Coma, R. Ortiz-Imedio, I. Ortiz, and A. Ortiz, “Comparative performance of Salinity Gradient Power-Reverse Electrodialysis under different operating conditions,” Desalination, vol. 457, no. December 2018, pp. 8–21, 2019.spa
dc.relation.referencesS. Vallejo-Castaño and C. I. Sánchez-Sáenz, “Design and optimization of a reverse electrodialysis stack for energy generation through salinity gradients,” DYNA, vol. 84, no. 202, pp. 84–91, Jul. 2017.spa
dc.relation.referencesO. Alvarez-Silva and A. F. Osorio, “Salinity gradient energy potential in Colombia considering site specific constraints,” Renew. Energy, vol. 74, pp. 737–748, Feb. 2015.spa
dc.relation.referencesM. Tedesco, A. Cipollina, A. Tamburini, I. D. L. Bogle, and G. Micale, “A simulation tool for analysis and design of reverse electrodialysis using concentrated brines,” Chem. Eng. Res. Des., vol. 93, no. May, pp. 441–456, 2015.spa
dc.relation.referencesG. D. I. E. FÍSICA, E. I. D. E. HIDRÁULICOS, and AMBIENTALES, “ANÁLISIS DEL POTENCIAL NETO DE GENERACIÓN DE ENERGÍA DE GRADIENTE SALINO EN LA DESEMBOCADURA DEL RÍO MAGDALENA,” Barranquilla, Colombia, 2015.spa
dc.relation.referencesC. S. Yentsch, “Estimates of ‘new production’ in the Mid-North Atlantic,” J. Plankton Res., vol. 12, no. 4, pp. 717–734, Jan. 1990.spa
dc.relation.referencesA. M. Davies, P. Hall, M. J. Howarth, and P. Knight, “Modelling and measuring the wind forced inflow to the Irish Sea through the North Channel,” Cont. Shelf Res., vol. 22, no. 5, pp. 749–777, Mar. 2002.spa
dc.relation.referencesF. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer 5th Edition with IHT2.0/FEHT with Users Guides, 5th ed. Wiley, 2001.spa
dc.relation.referencesA. Poisson and A. Papaud, “Diffusion coefficients of major ions in seawater,” Mar. Chem., vol. 13, no. 4, pp. 265–280, Oct. 1983.spa
dc.relation.referencesJ. L. Richardson et al., Sea Water Mass Diffusion Coefficient Studies. Applied Research Laboratories, Aeronautic Division, Philco Corporation, 1965.spa
dc.relation.referencesD. R. Caldwell, “Thermal and Fickian diffusion of sodium chloride in a solution of oceanic concentration,” Deep Sea Res. Oceanogr. Abstr., vol. 20, no. 11, pp. 1029–1039, Nov. 1973.spa
dc.relation.references“es.windfinder.com.” .spa
dc.relation.referencesC. S. Durst, “The relationship between current and wind,” Q. J. R. Meteorol. Soc., vol. 50, no. 210, pp. 113–119, Aug. 2007.spa
dc.relation.referencesJ. E. Weber and J. E. Weber, “Steady Wind- and Wave-Induced Currents in the Open Ocean,” J. Phys. Oceanogr., vol. 13, no. 3, pp. 524–530, Mar. 1983.spa
dc.relation.referencesI. V. (Igorʹ V. Lavrenov, Wind-waves in oceans : dynamics and numerical simulations. .spa
dc.relation.referencesH.-G. Ramming and Z. Kowalik, Numerical modelling of marine hydrodynamics : applications to dynamic physical processes. Elsevier Scientific Pub. Co., 1980.spa
dc.relation.referencesB. Henderson-Sellers, “The dependence of surface velocity in water bodies on wind velocity and latitude,” Appl. Math. Model., vol. 12, no. 2, pp. 202–203, Apr. 1988.spa
dc.relation.referencesS. D. Smith and E. G. Banke, “Variation of the sea surface drag coefficient with wind speed,” Q. J. R. Meteorol. Soc., vol. 101, no. 429, pp. 665–673, Jul. 1975.spa
dc.relation.referencesS. D. Smith, “Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature,” J. Geophys. Res., vol. 93, no. C12, p. 15467, Dec. 1988.spa
dc.relation.referencesH. K. (Henk K. Versteeg and W. (Weeratunge) Malalasekera, An introduction to computational fluid dynamics : the finite volume method. Pearson Education Ltd, 2007.spa
dc.relation.referencesM. H. Sharqawy, J. H. Lienhard, and S. M. Zubair, “Thermophysical properties of seawater: a review of existing correlations and data,” Desalin. Water Treat., vol. 16, no. 1–3, pp. 354–380, Apr. 2010.spa
dc.relation.referencesK. J. Beers, Numerical Methods for Chemical Engineering: Applications in MATLAB. Cambridge University Press, 2007.spa
dc.relation.referencesS. V. Patankar, Numerical heat transfer and fluid flow. Hemisphere Pub. Corp., 1980.spa
dc.relation.referencesH. P. Langtangen, Computational partial differential equations : numerical methods and Diffpack programming. Springer, 2003.spa
dc.relation.referencesY. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, 5th Ed. Boston, MA, 2006.spa
dc.relation.referencesA. Bejan and M. J. Moran, Thermal Design and Optimization. 1996.spa
dc.relation.referencesM. J. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynamics, 6th ed. John Wiley & Sons Australia, Limited, 2009.spa
dc.relation.referencesM. Fallah, S. M. S. Mahmoudi, and M. Yari, “A comparative advanced exergy analysis for a solid oxide fuel cell using the engineering and modified hybrid methods,” Energy Convers. Manag., vol. 168, pp. 576–587, 2018.spa
dc.relation.referencesL. Fitzsimons, B. Corcoran, P. Young, and G. Foley, “Desalination exergy models: A mathematical model comparison,” in 5th International Ege Energy Symposium and Exhibition (IEESE-5), 2010.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalGradiente salinospa
dc.subject.proposalSaline gradienteng
dc.subject.proposalEnergía azulspa
dc.subject.proposalBlue energyeng
dc.subject.proposalElectrodiálisis Inversa (RED)spa
dc.subject.proposalReverse Electrodialysis (RED)eng
dc.subject.proposalExergíaspa
dc.subject.proposalExergyeng
dc.titleGeneración de energía por gradiente salino en la desembocadura del río Magdalena: un estudio de casospa
dc.title.alternativePower generation by saline gradient at the mouth of the Magdalena river: a study casespa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
39191884.2019.pdf
Tamaño:
1.84 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: