Generación de energía por gradiente salino en la desembocadura del río Magdalena: un estudio de caso
| dc.contributor.advisor | Lopera-Castro, Sergio Hernando | spa |
| dc.contributor.author | Castro-Peláez, Karem Johanna | spa |
| dc.contributor.corporatename | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.contributor.researchgroup | Termodinámica Aplicada y Energías Alternativas | spa |
| dc.date.accessioned | 2020-05-06T20:18:14Z | spa |
| dc.date.available | 2020-05-06T20:18:14Z | spa |
| dc.date.issued | 2019-08-31 | spa |
| dc.description.abstract | A case study of the generation of energy by saline gradient at the mouth of the Magdalena River is presented, in which a sizing proposal is made for an installed capacity of 200 kW per container, in which an exergy analysis of the system is carried out to estimate the energy efficiency of this type of energy generation, and the evaluation of change in concentrations in the water discharge, in such a way that the estimation of the number of containers that could be used without making changes greater than 1% in the conditions of saline concentration and 1°C in marine biota. | spa |
| dc.description.abstract | Se presenta un caso de estudio de la generación de energía por gradiente salino en la desembocadura del río Magdalena, en el que se realiza una propuesta de dimensionamiento para una capacidad instalada de 200 kW por contenedor, en el cual se realiza un análisis exergético del sistema para estimar la eficiencia energética de este tipo de generación de energía, y la evaluación de cambio de concentraciones en la descarga del agua, de tal forma que se hace la estimación del número de contenedores que podrían ser utilizados sin realizar cambios superiores al 1% en las condiciones de concentración salina y 1°C en la biota marina. | spa |
| dc.description.additional | Línea de Investigación: Generación de energía, Optimización energética | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 80 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.citation | Castro Peláez, Karem | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77481 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.publisher.department | Departamento de Procesos y Energía | spa |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Ingeniería Química | spa |
| dc.relation.references | United Nations - UN, “The Ocean Conference,” New York, 2017. | spa |
| dc.relation.references | M. Melikoglu, “Current status and future of ocean energy sources: A global review,” Ocean Eng., vol. 148, pp. 563–573, 2018. | spa |
| dc.relation.references | UPME, “Informe Mensual de Variables de Generación y del Mercado Elétrico Colombiano - agosto de 2018,” Bogotá D.C, 2018. | spa |
| dc.relation.references | O. Alvarez-Silva, A. F. Osorio, and C. Winter, “Practical global salinity gradient energy potential,” Renew. Sustain. Energy Rev., vol. 60, pp. 1387–1395, 2016. | spa |
| dc.relation.references | J. Veerman, “Reverse Electrodialysis design and optimization by modeling and experimentation,” University of Groningen, Groningen, 2010. | spa |
| dc.relation.references | J. Moreno, S. Grasman, R. Van Engelen, and K. Nijmeijer, “Upscaling Reverse Electrodialysis,” Environ. Sci. Technol., vol. 52, no. 18, pp. 10856–10863, 2018. | spa |
| dc.relation.references | O. Alvarez-Silva and A. F. Osorio, “Salinity gradient energy potential in Colombia considering site specific constraints,” Renew. Energy, vol. 74, pp. 737–748, 2014. | spa |
| dc.relation.references | S. Vallejo, “Energy generation from salinity gradients through Reverse Electrodialysis and Capacitive Reverse Electrodialysis,” Universidad Nacional de Colombia - Sede Medellín, 2017. | spa |
| dc.relation.references | N. Y. Yip and M. Elimelech, “Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis,” Environ. Sci. Technol., vol. 48, no. 18, pp. 11002–11012, 2014. | spa |
| dc.relation.references | R. A. Tufa et al., “Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage,” Appl. Energy, vol. 225, no. May, pp. 290–331, 2018. | spa |
| dc.relation.references | M. Tedesco, H. V. M. Hamelers, and P. M. Biesheuvel, “Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes,” J. Memb. Sci., vol. 510, pp. 370–381, Jul. 2016. | spa |
| dc.relation.references | N. Y. Yip, D. Brogioli, H. V. M. Hamelers, and K. Nijmeijer, “Salinity gradients for sustainable energy: Primer, progress, and prospects,” Environ. Sci. Technol., vol. 50, no. 22, pp. 12072–12094, 2016. | spa |
| dc.relation.references | A. Cipollina et al., “Reverse electrodialysis: Applications,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 135–180. | spa |
| dc.relation.references | M. Tedesco, A. Cipollina, A. Tamburini, and G. Micale, “Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines,” J. Memb. Sci., vol. 522, pp. 226–236, 2016. | spa |
| dc.relation.references | J. W. Post et al., “Towards implementation of reverse electrodialysis for power generation from salinity gradients,” Desalin. Water Treat., vol. 16, no. 1–3, pp. 182–193, 2010. | spa |
| dc.relation.references | J.-Y. Nam et al., “Assessing the behavior of the feed-water constituents of a pilot-scale 1000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent,” Water Res., vol. 148, pp. 261–271, Jan. 2019. | spa |
| dc.relation.references | J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, “Reverse electrodialysis: A validated process model for design and optimization,” Chem. Eng. J., vol. 166, pp. 256–268, 2011. | spa |
| dc.relation.references | J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, “Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water,” J. Memb. Sci., vol. 327, pp. 136–144, 2009. | spa |
| dc.relation.references | D. a. Vermaas, M. Saakes, and K. Nijmeijer, “Doubled power density from salinity gradients at reduced intermembrane distance,” Environ. Sci. Technol., vol. 45, no. 16, pp. 7089–7095, 2011. | spa |
| dc.relation.references | M. Tedesco, A. Cipollina, A. Tamburini, W. van Baak, and G. Micale, “Modelling the Reverse ElectroDialysis process with seawater and concentrated brines,” Desalin. Water Treat., vol. 49, no. 1–3, pp. 404–424, 2012. | spa |
| dc.relation.references | S. Pawlowski, J. G. Crespo, and S. Velizarov, “Pressure drop in reverse electrodialysis: Experimental and modeling studies for stacks with variable number of cell pairs,” J. Memb. Sci., vol. 462, pp. 96–111, 2014. | spa |
| dc.relation.references | L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, and M. Ciofalo, “Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study,” J. Memb. Sci., vol. 497, pp. 300–317, 2016. | spa |
| dc.relation.references | R. Ibañez, M. Fallanza, L. Gomez-Coma, R. Ortiz-Imedio, I. Ortiz, and A. Ortiz, “Comparative performance of Salinity Gradient Power-Reverse Electrodialysis under different operating conditions,” Desalination, vol. 457, no. December 2018, pp. 8–21, 2019. | spa |
| dc.relation.references | S. Vallejo-Castaño and C. I. Sánchez-Sáenz, “Design and optimization of a reverse electrodialysis stack for energy generation through salinity gradients,” DYNA, vol. 84, no. 202, pp. 84–91, Jul. 2017. | spa |
| dc.relation.references | O. Alvarez-Silva and A. F. Osorio, “Salinity gradient energy potential in Colombia considering site specific constraints,” Renew. Energy, vol. 74, pp. 737–748, Feb. 2015. | spa |
| dc.relation.references | M. Tedesco, A. Cipollina, A. Tamburini, I. D. L. Bogle, and G. Micale, “A simulation tool for analysis and design of reverse electrodialysis using concentrated brines,” Chem. Eng. Res. Des., vol. 93, no. May, pp. 441–456, 2015. | spa |
| dc.relation.references | G. D. I. E. FÍSICA, E. I. D. E. HIDRÁULICOS, and AMBIENTALES, “ANÁLISIS DEL POTENCIAL NETO DE GENERACIÓN DE ENERGÍA DE GRADIENTE SALINO EN LA DESEMBOCADURA DEL RÍO MAGDALENA,” Barranquilla, Colombia, 2015. | spa |
| dc.relation.references | C. S. Yentsch, “Estimates of ‘new production’ in the Mid-North Atlantic,” J. Plankton Res., vol. 12, no. 4, pp. 717–734, Jan. 1990. | spa |
| dc.relation.references | A. M. Davies, P. Hall, M. J. Howarth, and P. Knight, “Modelling and measuring the wind forced inflow to the Irish Sea through the North Channel,” Cont. Shelf Res., vol. 22, no. 5, pp. 749–777, Mar. 2002. | spa |
| dc.relation.references | F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer 5th Edition with IHT2.0/FEHT with Users Guides, 5th ed. Wiley, 2001. | spa |
| dc.relation.references | A. Poisson and A. Papaud, “Diffusion coefficients of major ions in seawater,” Mar. Chem., vol. 13, no. 4, pp. 265–280, Oct. 1983. | spa |
| dc.relation.references | J. L. Richardson et al., Sea Water Mass Diffusion Coefficient Studies. Applied Research Laboratories, Aeronautic Division, Philco Corporation, 1965. | spa |
| dc.relation.references | D. R. Caldwell, “Thermal and Fickian diffusion of sodium chloride in a solution of oceanic concentration,” Deep Sea Res. Oceanogr. Abstr., vol. 20, no. 11, pp. 1029–1039, Nov. 1973. | spa |
| dc.relation.references | “es.windfinder.com.” . | spa |
| dc.relation.references | C. S. Durst, “The relationship between current and wind,” Q. J. R. Meteorol. Soc., vol. 50, no. 210, pp. 113–119, Aug. 2007. | spa |
| dc.relation.references | J. E. Weber and J. E. Weber, “Steady Wind- and Wave-Induced Currents in the Open Ocean,” J. Phys. Oceanogr., vol. 13, no. 3, pp. 524–530, Mar. 1983. | spa |
| dc.relation.references | I. V. (Igorʹ V. Lavrenov, Wind-waves in oceans : dynamics and numerical simulations. . | spa |
| dc.relation.references | H.-G. Ramming and Z. Kowalik, Numerical modelling of marine hydrodynamics : applications to dynamic physical processes. Elsevier Scientific Pub. Co., 1980. | spa |
| dc.relation.references | B. Henderson-Sellers, “The dependence of surface velocity in water bodies on wind velocity and latitude,” Appl. Math. Model., vol. 12, no. 2, pp. 202–203, Apr. 1988. | spa |
| dc.relation.references | S. D. Smith and E. G. Banke, “Variation of the sea surface drag coefficient with wind speed,” Q. J. R. Meteorol. Soc., vol. 101, no. 429, pp. 665–673, Jul. 1975. | spa |
| dc.relation.references | S. D. Smith, “Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature,” J. Geophys. Res., vol. 93, no. C12, p. 15467, Dec. 1988. | spa |
| dc.relation.references | H. K. (Henk K. Versteeg and W. (Weeratunge) Malalasekera, An introduction to computational fluid dynamics : the finite volume method. Pearson Education Ltd, 2007. | spa |
| dc.relation.references | M. H. Sharqawy, J. H. Lienhard, and S. M. Zubair, “Thermophysical properties of seawater: a review of existing correlations and data,” Desalin. Water Treat., vol. 16, no. 1–3, pp. 354–380, Apr. 2010. | spa |
| dc.relation.references | K. J. Beers, Numerical Methods for Chemical Engineering: Applications in MATLAB. Cambridge University Press, 2007. | spa |
| dc.relation.references | S. V. Patankar, Numerical heat transfer and fluid flow. Hemisphere Pub. Corp., 1980. | spa |
| dc.relation.references | H. P. Langtangen, Computational partial differential equations : numerical methods and Diffpack programming. Springer, 2003. | spa |
| dc.relation.references | Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, 5th Ed. Boston, MA, 2006. | spa |
| dc.relation.references | A. Bejan and M. J. Moran, Thermal Design and Optimization. 1996. | spa |
| dc.relation.references | M. J. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynamics, 6th ed. John Wiley & Sons Australia, Limited, 2009. | spa |
| dc.relation.references | M. Fallah, S. M. S. Mahmoudi, and M. Yari, “A comparative advanced exergy analysis for a solid oxide fuel cell using the engineering and modified hybrid methods,” Energy Convers. Manag., vol. 168, pp. 576–587, 2018. | spa |
| dc.relation.references | L. Fitzsimons, B. Corcoran, P. Young, and G. Foley, “Desalination exergy models: A mathematical model comparison,” in 5th International Ege Energy Symposium and Exhibition (IEESE-5), 2010. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
| dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | spa |
| dc.subject.ddc | 660 - Ingeniería química | spa |
| dc.subject.proposal | Gradiente salino | spa |
| dc.subject.proposal | Saline gradient | eng |
| dc.subject.proposal | Energía azul | spa |
| dc.subject.proposal | Blue energy | eng |
| dc.subject.proposal | Electrodiálisis Inversa (RED) | spa |
| dc.subject.proposal | Reverse Electrodialysis (RED) | eng |
| dc.subject.proposal | Exergía | spa |
| dc.subject.proposal | Exergy | eng |
| dc.title | Generación de energía por gradiente salino en la desembocadura del río Magdalena: un estudio de caso | spa |
| dc.title.alternative | Power generation by saline gradient at the mouth of the Magdalena river: a study case | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 39191884.2019.pdf
- Tamaño:
- 1.84 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.9 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

