Análisis técnico, regulatorio y financiero del cobro por la demanda de energía reactiva a los usuarios del servicio público domiciliario de energía eléctrica en Colombia, incluyendo lo concerniente a los subsidios y contribuciones que estén asociados con la demanda de este tipo de energía
dc.contributor.advisor | Cano Plata, Eduardo Antonio | |
dc.contributor.author | González Silva, Germán Eduardo | |
dc.date.accessioned | 2023-01-27T14:23:45Z | |
dc.date.available | 2023-01-27T14:23:45Z | |
dc.date.issued | 2022 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | Este trabajo se centra en el estudio de los aspectos técnicos, económicos y regulatorios que inciden actualmente en los cobros por conceptos de energía reactiva para los usuarios finales del servicio de electricidad, con el fin de determinar aspectos importantes que la regulación debe considerar para incentivar la mejora en la gestión de las variables asociadas a la energía reactiva y a la vez apalancar el desarrollo del sector eléctrico en Colombia. Para esto, se estudiaron los principales aspectos que tienen relación con los cobros que la regulación del sector eléctrico suele contemplar para los usuarios por causa del consumo o posible inyección de energía reactiva a las redes de los sistemas de potencia, y se analizó también la manera en que se facturan estos conceptos según los lineamientos regulatorios. Los resultados indican que oportuno realizar cambios en la manera de cobrar la energía reactiva, diferencia las condiciones de los usuarios a los cuales se les va a aplicar, y también es que pertinente replantear la aplicación de subsidios y contribuciones en general para la facturación de los usuarios del servicio público de electricidad. (Texto tomado de la fuente) | spa |
dc.description.abstract | This thesis focuses on the study of the technical, economic and regulatory aspects that currently affect the charges for reactive energy concepts for the final users of the electricity service, in order to determine important aspects that the regulation must consider to encourage the improvement in the management of the variables associated with reactive energy and at the same time leverage the development of the electricity sector in Colombia. The main aspects that are related to the charges that the regulation of the electricity sector usually contemplates for users due to the consumption or possible injection of reactive energy to the power system networks were studied, and the way in which these concepts are invoiced according to the regulatory guidelines. The results indicate that it is appropriate to make changes in the way reactive energy is charged, differentiates the conditions of the users to whom it is going to be applied, and it is also pertinent to rethink the application of subsidies and contributions in general for the billing of the users of the public electricity service. | eng |
dc.description.curriculararea | Eléctrica, Electrónica, Automatización Y Telecomunicaciones | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Eléctrica | spa |
dc.format.extent | xii, 63 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83162 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | Abdelmotteleb, I., Gomez, T., & Chaves-Avila, J. P. (2017). Benefits of PV inverter volt-var control on distribution network operation. 2017 IEEE Manchester PowerTech, Powertech 2017. https://doi.org/10.1109/PTC.2017.7981098 | spa |
dc.relation.references | Afkousi-Paqaleh, M., Abbaspour-Tehrani Fard, A., & Rashidinejad, M. (2010). Distributed generation placement for congestion management considering economic and financial issues. Electrical Engineering, 92(6), 193–201. https://doi.org/10.1007/s00202-010-0175-1 | spa |
dc.relation.references | Akhtar, Z., Amir Alavi, S., & Mehran, K. (2018). Voltage Control in LV Networks Using Electric Springs with Coordination. Canadian Conference on Electrical and Computer Engineering, 2018-May, 1–5. https://doi.org/10.1109/CCECE.2018.8447586 | spa |
dc.relation.references | Albarracin, R., & Alonso, M. (2013). Photovoltaic reactive power limits. 12th International Conference on Environment and Electrical Engineering, EEEIC 2013, 13–18. https://doi.org/10.1109/EEEIC.2013.6549630 | spa |
dc.relation.references | Amiel, I., Rajput, S., & Averbukh, M. (2021). Capacitive reactive power compensation to prevent voltage instabilities in distribution lines. International Journal of Electrical Power & Energy Systems, 131, 107043. https://doi.org/10.1016/j.ijepes.2021.107043 | spa |
dc.relation.references | Arango-Manrique, A. (2011). Caracterización del Esquema Remunerativo del Control de Tensión en el Mercado Eléctrico Colombiano. Universidad Nacional de Colombia - Sede Manizales. | spa |
dc.relation.references | Begovic, M., Peerzada, A., Mohan, S., Balog, R., & Rohouma, W. (2019). Impact of Large Distributed Solar PV Generation on Distribution Voltage Control. Proceedings of the 52nd Hawaii International Conference on System Sciences, 3473–3482. https://doi.org/10.24251/hicss.2019.420 | spa |
dc.relation.references | Bollen, M. H. J., & Hassan, F. (2011). Integration of Distributed Generation in the Power System. John Wiley & Sons, Inc. | spa |
dc.relation.references | Cabrera-Tobar, A., Bullich-Massagué, E., Aragüés-Peñalba, M., & Gomis-Bellmunt, O. (2016a). Capability curve analysis of photovoltaic generation systems. Solar Energy, 140, 255–264. https://doi.org/10.1016/j.solener.2016.11.014 | spa |
dc.relation.references | Cabrera-Tobar, A., Bullich-Massagué, E., Aragüés-Peñalba, M., & Gomis-Bellmunt, O. (2016b). Reactive power capability analysis of a photovoltaic generator for large scale power plants. 5th IET International Conference on Renewable Power Generation (RPG) 2016, 1–6. https://doi.org/10.1049/cp.2016.0574 | spa |
dc.relation.references | Calvas, R. (2010). Cuaderno Técnico No 141 Las perturbaciones eléctricas en BT. http://www.schneider-electric.com.co | spa |
dc.relation.references | Ceylan, O., Liu, G., & Tomsovic, K. (2018). Coordinated distribution network control of tap changer transformers, capacitors and PV inverters. Electrical Engineering, 100(2), 1133–1146. https://doi.org/10.1007/s00202-017-0563-x | spa |
dc.relation.references | Chapman, S. J. (2012). Electric machinery fundamentals (5th ed.). McGraw Hill. | spa |
dc.relation.references | Chen, T., Cheng, C., Cheng, H., Wang, C., & Mi, C. (2022a). A Multi-Load Capacitive Power Relay System With Load-Independent Constant Current Outputs. IEEE Transactions on Power Electronics, 37(5), 6144–6155. https://doi.org/10.1109/TPEL.2021.3123542 | spa |
dc.relation.references | Chen, T., Cheng, C., Cheng, H., Wang, C., & Mi, C. C. (2022b). Load-Independent Power-Repeater Capacitive Power Transfer System With Multiple Constant Voltage Outputs. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(5), 6358–6370. https://doi.org/10.1109/JESTPE.2022.3180029 | spa |
dc.relation.references | Resolución No. 030 de 2018, (2018). | spa |
dc.relation.references | Crismatt Campillo, Y. M. (2010). ANÁLISIS DE CALIDAD DE ENERGÍA Y DISEÑO DEL BANCO DE CONDENSADORES PARA LA CORRECCIÓN DEL FACTOR DE POTENCIA EN LA SUBESTACIÓN DE LA UNIVERSIDAD TECNOLÓGICA DE BOLÍVAR SEDE TERNERA. | spa |
dc.relation.references | Delgado Filho, M. A., F. T. S. Araújo, N. M., Maia, F. P., & Medina Tapia, G. I. (2018). A Brief Review on the Advantages, Hindrances and Economic Feasibility of Stirling Engines As a Distributed Generation Source and Cogeneration Technology. Revista de Engenharia Térmica, 17(1), 49. https://doi.org/10.5380/reterm.v17i1.62258 | spa |
dc.relation.references | Demirok, E., González, P. C., Frederiksen, K. H. B., Sera, D., Rodriguez, P., & Teodorescu, R. (2011). Local reactive power control methods for overvoltage prevention of distributed solar inverters in low-voltage grids. IEEE Journal of Photovoltaics, 1(2), 174–182. https://doi.org/10.1109/JPHOTOV.2011.2174821 | spa |
dc.relation.references | Dong, B., Chen, Y., Lian, J., & Qu, X. (2022). A Novel Compensation Circuit for Capacitive Power Transfer System to Realize Desired Constant Current and Constant Voltage Output. Energies, 15(4), 1523. https://doi.org/10.3390/en15041523 | spa |
dc.relation.references | Duque Sánchez, J. P. (2003). Compensación de Potencia Reactiva en Sistemas Eléctricos. | spa |
dc.relation.references | Edminister, J. A. (1965). Circuitos Eléctricos. | spa |
dc.relation.references | El-Ela, A. A. A., El-Sehiemy, R. A., & Abbas, A. S. (2018). Optimal Placement and Sizing of Distributed Generation and Capacitor Banks in Distribution Systems Using Water Cycle Algorithm. IEEE Systems Journal, 12(4), 3629–3636. https://doi.org/10.1109/JSYST.2018.2796847 | spa |
dc.relation.references | Fernanda, P., & Valdes, G. (2018). ESTUDIO DEL COMPORTAMIENTO DE LA POTENCIA REACTIVA EN SISTEMAS ZONALES Y PROPUESTA DE CRITERIOS PARA LA COMPENSACIÓN EN SUBESTACIONES AT/MT. Universidad de Chile. | spa |
dc.relation.references | Gandhi, O., Rodríguez-Gallegos, C. D., Gorla, N. B. Y., Bieri, M., Reindl, T., & Srinivasan, D. (2019). Reactive Power Cost From PV Inverters Considering Inverter Lifetime Assessment. IEEE Transactions on Sustainable Energy, 10(2), 738–747. https://doi.org/10.1109/TSTE.2018.2846544 | spa |
dc.relation.references | Gandhi, O., Rodriguez-Gallegos, C. D., Reindl, T., & Srinivasan, D. (2018). Locally-determined Voltage Droop Control for Distribution Systems. International Conference on Innovative Smart Grid Technologies, ISGT Asia 2018, 2(1), 425–429. https://doi.org/10.1109/ISGT-Asia.2018.8467784 | spa |
dc.relation.references | Garozzo, D., Tina, G. M., & Sera, D. (2018). Comparison of the reactive control strategies in low voltage network with photovoltaic generation and storage. Thermal Science, 22, 887–896. https://doi.org/10.2298/TSCI170814022G | spa |
dc.relation.references | Gers, J. M. (2013). Distribution System Analysis and Automation (1st ed.). The Institution of Engineering and Technology. https://doi.org/10.1049/PBPO068E | spa |
dc.relation.references | Hou, J., Chen, Q., Zhang, L., Xu, L., Wong, S.-C., & Tse, C. K. (2022). Compact Capacitive Compensation for Adjustable Load-Independent Output and Zero-Phase-Angle Input for High Efficiency IPT Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(4), 4923–4936. https://doi.org/10.1109/JESTPE.2022.3140593 | spa |
dc.relation.references | Hwang, J., & Lim, S. (2017). Current Measurement based Reactive Power Control to Mitigate Overvoltage of Primary Distribution Line. 66(11), 1547–1553. | spa |
dc.relation.references | Jahangiri, P., & Aliprantis, D. C. (2013). Distributed Volt/VAr control by PV inverters. IEEE Transactions on Power Systems, 28(3), 3429–3439. https://doi.org/10.1109/TPWRS.2013.2256375 | spa |
dc.relation.references | Ji, H., Wang, C., Li, P., Ding, F., & Wu, J. (2019). Robust Operation of Soft Open Points in Active Distribution Networks With High Penetration of Photovoltaic Integration. IEEE Transactions on Sustainable Energy, 10(1), 280–289. https://doi.org/10.1109/TSTE.2018.2833545 | spa |
dc.relation.references | Kakran, S., & Chanana, S. (2018). Smart operations of smart grids integrated with distributed generation: A review. Renewable and Sustainable Energy Reviews, 81(July 2017), 524–535. https://doi.org/10.1016/j.rser.2017.07.045 | spa |
dc.relation.references | Kundur, P. (1994). Power System Stability and Control (M. Hill, Ed.). | spa |
dc.relation.references | Kwac, J., & Rajagopal, R. (2013). Demand response targeting using big data analytics. Proceedings - 2013 IEEE International Conference on Big Data, Big Data 2013, 683–690. | spa |
dc.relation.references | Li, L., Hu, Z., Hu, M., Zheng, J., Zhu, L., He, L., & Zhang, C. (2012). HGPSO based reactive power optimization of distribution network with photovoltaic generation. Asia-Pacific Power and Energy Engineering Conference, APPEEC, 20110141110032, 1–4. https://doi.org/10.1109/APPEEC.2012.6307198 | spa |
dc.relation.references | Lian, J., & Qu, X. (2022). An LCLC-LC-Compensated Capacitive Power Transferred Battery Charger With Near-Unity Power Factor and Configurable Charging Profile. IEEE Transactions on Industry Applications, 58(1), 1053–1060. https://doi.org/10.1109/TIA.2021.3089448 | spa |
dc.relation.references | Lopes, J. A. P., Hatziargyriou, N., Mutale, J., Djapic, P., & Jenkins, N. (2007). Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electric Power Systems Research, 77(9), 1189–1203. https://doi.org/10.1016/j.epsr.2006.08.016 | spa |
dc.relation.references | Malekpour, A. R., Pahwa, A., & Das, S. (2013). Inverter-based var control in low voltage distribution systems with rooftop solar PV. 45th North American Power Symposium, NAPS 2013, 1–5. https://doi.org/10.1109/NAPS.2013.6666860 | spa |
dc.relation.references | Mohassel, R. R., Fung, A., Mohammadi, F., & Raahemifar, K. (2014). Electrical Power and Energy Systems A survey on Advanced Metering Infrastructure. International Journal of Electrical Power and Energy Systems, 63, 473–484. https://doi.org/10.1016/j.ijepes.2014.06.025 | spa |
dc.relation.references | Momeneh, A., Castilla, M., Miret, J., Martí, P., & Velasco, M. (2016). Comparative study of reactive power control methods for photovoltaic inverters in lowvoltage grids. IET Renewable Power Generation, 10(3), 310–318. https://doi.org/10.1049/iet-rpg.2014.0402 | spa |
dc.relation.references | Nilsson, J. W., Emerito, P., Riedel, S. A., Vuelapluma, T., Mexico, M. •, Santafe De Bogota, •, Buenos, •, Caracas, A. •, Lima, •, Montevideo, •, San, •, San, J., Santiago, J. •, Sao, •, & White Plains, P. •. (2005). CIRCUITOS ELECTRICOS. | spa |
dc.relation.references | Ramírez Castaño, S., & Cano Plata, E. A. (2006). Calidad del Servicio de Energía Eléctrica (1st ed.). Universidad Nacional de Colombia. | spa |
dc.relation.references | Ramírez, S. (2009). Redes de distribución de energía. In Redes de distribución de energía. Universidad Nacional de Colombia. https://doi.org/10.1109/PESGM.2014.6938875 | spa |
dc.relation.references | Rey Sizalima, Y. I. (2022). PLANIFICACIÓN ÓPTIMA DE COMPENSACIÓN REACTIVA MEDIANTE STATCOM CONSIDERANDO LA EXPANSIÓN DEL SISTEMA DE POTENCIA Y CONTINGENCIAS N-1. | spa |
dc.relation.references | Safayet, A., Fajri, P., & Husain, I. (2017). Reactive Power Management for Overvoltage Prevention at High PV Penetration in a Low-Voltage Distribution System. IEEE Transactions on Industry Applications, 53(6), 5786–5794. https://doi.org/10.1109/TIA.2017.2741925 | spa |
dc.relation.references | Schiavo, J. (2016). Distributed Energy Can Lead to Smarter Grid Planning. | spa |
dc.relation.references | Shah, N., & Chudamani, R. (2012). Grid interactive PV system with harmonic and reactive power compensation features using a novel fuzzy logic based MPPT. 2012 IEEE 7th International Conference on Industrial and Information Systems, ICIIS 2012, 1, 1–6. https://doi.org/10.1109/ICIInfS.2012.6304830 | spa |
dc.relation.references | Smith, J. W., Sunderman, W., Dugan, R., & Seal, B. (2011). Smart inverter volt/var control functions for high penetration of PV on distribution systems. 2011 IEEE/PES Power Systems Conference and Exposition, PSCE 2011, 1–6. https://doi.org/10.1109/PSCE.2011.5772598 | spa |
dc.relation.references | Wang, Y., Zhang, H., & Lu, F. (2022a). Review, Analysis, and Design of Four Basic CPT Topologies and the Application of High-Order Compensation Networks. In IEEE Transactions on Power Electronics (Vol. 37, Issue 5, pp. 6181–6193). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/TPEL.2021.3131625 | spa |
dc.relation.references | Wang, Y., Zhang, H., & Lu, F. (2022b). Capacitive Power Transfer With Series-Parallel Compensation for Step-Up Voltage Output. IEEE Transactions on Industrial Electronics, 69(6), 5604–5614. https://doi.org/10.1109/TIE.2021.3091925 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.proposal | Energía reactiva | spa |
dc.subject.proposal | Contribuciones | spa |
dc.subject.proposal | Regulación | spa |
dc.subject.proposal | Subsidios | spa |
dc.subject.proposal | Reactive energy | eng |
dc.subject.proposal | Contributions | eng |
dc.subject.proposal | Regulation | eng |
dc.subject.proposal | Subsidies | eng |
dc.subject.unesco | Consumo de energía | |
dc.subject.unesco | Energy consumption | |
dc.title | Análisis técnico, regulatorio y financiero del cobro por la demanda de energía reactiva a los usuarios del servicio público domiciliario de energía eléctrica en Colombia, incluyendo lo concerniente a los subsidios y contribuciones que estén asociados con la demanda de este tipo de energía | spa |
dc.title.translated | Technical, regulatory, and financial analysis of the charge for the demand of reactive energy to the users of the domiciliary public service of electrical energy in Colombia, including what concerns the subsidies and contributions that are associated with the demand for this type of energy | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Image | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053771435.2023.pdf
- Tamaño:
- 916.88 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: