Estudio de las propiedades biofuncionales del camu-camu (Myrciaria dubia (Kunth) McVaugh) y aplicación en un producto alimenticio

dc.contributor.advisorOsorio Roa, Coralia
dc.contributor.authorGarcía Chacón, Juliana María
dc.contributor.cvlacGARCIA CHACON, JULIANA MARIAspa
dc.contributor.googlescholarGARCIA CHACON, JULIANAspa
dc.contributor.orcidGARCIA CHACON, JULIANA MARIA [0000-0002-8248-9107]spa
dc.contributor.researchgateGARCIA CHACON, JULIANA MARIAspa
dc.contributor.researchgroupGrupo aditivos naturales de aroma y color- GANACspa
dc.contributor.scopusGARCIA CHACON, JULIANA MARIAspa
dc.coverage.countryColombia
dc.coverage.countryPerú
dc.coverage.regionAmazonía
dc.date.accessioned2023-07-05T15:04:35Z
dc.date.available2023-07-05T15:04:35Z
dc.date.issued2023-06
dc.descriptionilustraciones, fotografías a colorspa
dc.description.abstractEn esta tesis se presenta el estudio de las propiedades sensoriales y biofuncionales del fruto de camu-camu (Myrciaria dubia) proveniente de la Amazonía Colombiana. El aroma de la fruta se estudió en un extracto de volátiles obtenido mediante la técnica SAFE (Solvent Assisted Flavor Evaporation), el cual se analizó por GC-O (cromatografía de gases acoplada a olfatometría) y por GC-MS (cromatografía de gases acoplada a espectrometría de masas), identificando cuatro compuestos activos olfativamente en el aroma de esta fruta: acetato de isoamilo, -pineno, limoneno y B-cariofileno. Posteriormente se evaluó la inhibición de la enzima ACE-1 (actividad antihipertensiva) y de la a-amilasa y a-glucosidasa, encontrando que la actividad antihiperglicémica de esta fruta era bastante promisoria. Por lo tanto, se realizó una partición sucesiva del extracto polar de la fruta (pulpa y cáscara) con solventes de polaridad creciente (pentano, diclorometano, acetato de etilo, butanol y agua). A partir del fraccionamiento bioguiado, y análisis por HPLC-MS se identificaron el ácido (S)-4-butoxi- 2-hidroxi-4-oxo-butanoico y el ácido (S)-4-butoxi-3-hidroxi-4-oxo-butanoico, como potentes inhibidores de la a−amilasa y la a−glucosidasa. El uso de herramientas de docking- molecular demostró que la actividad antihiperglicémica del ácido málico de la fruta se potenciaba por la presencia de los grupos alquilo en los correspondientes esteres. A partir de la fruta se obtuvieron sólidos por liofilización y por spray-drying. En el proceso de microencapsulación, se utilizó un diseño experimental 3x2 con tres tipos de agente encapsulante (maltodextrina, suero proteico y mezcla 1:1 de los dos) y dos temperaturas de entrada (150 y 180 C). Se realizó la caracterización fisicoquímica, morfológica y biofuncional de los sólidos. Con base en el contenido de los compuestos bioactivos (antocianinas, ácido ascórbico y ácido málico), se seleccionaron tres sólidos que fueron incorporados en dos tipos de bebidas (un yogurt y mosto de uva blanca) que se sometieron a evaluación sensorial. El estudio de la bioaccesibilidad de los sólidos usando el modelo estático de digestión gastrointestinal in vitro, mostró una mayor retención de compuestos bioactivos, y una adecuada liberación de los compuestos en el tracto gastrointestinal. Así se concluye que la deshidratación de la fruta permite aumentar su vida útil y preservar las propiedades biofuncionales de la fruta. (Texto tomado de la fruta)
dc.description.abstractThis thesis presents the study of the sensory and biofunctional properties of the camu-camu fruit (Myrciaria dubia) from the Colombian Amazon. The aroma of the fruit was studied in a volatile extract obtained using the SAFE (Solvent Assisted Flavor Evaporation) technique, which was analyzed by GC-O (gas chromatography coupled to olfactometry) and by GC-MS (gas chromatography coupled to mass spectrometry), identifying four olfactory active compounds in the aroma of this fruit: isoamyl acetate,  -pinene, limonene and  -caryophyllene. Subsequently, the inhibition of the ACE-1 enzyme (antihypertensive activity) and of -amylase and -glucosidase was evaluated, finding that the antihyperglycemic activity of this fruit was quite promising. Therefore, a successive partitioning of the polar extract of the fruit (pulp and peel) was carried out with solvents of increasing polarity (pentane, dichloromethane, ethyl acetate, butanol, and water). From bioguided fractionation, and HPLC-MS analysis, (S)-4-butoxy-2-hydroxy-4-oxo-butanoic acid and (S)-4-butoxy-3- hydroxy-4- oxo-butanoic were isolated and identified, as potent inhibitors of -amylase and -glucosidase. The use of molecular-docking tools demonstrated that the antihyperglycemic activity of fruit malic acid was enhanced by the presence of alkyl groups in the corresponding esters. Different powders were obtained from the fruit by lyophilization and by spray-drying. In the microencapsulation process, a 3x2 experimental design was used with three types of encapsulating agent (maltodextrin, whey protein, and a 1:1 mixture of both) and two inlet temperatures (150 and 180 C). The physicochemical, morphological and biofunctional characterization of the solids was carried out. Based on the content of bioactive compounds (anthocyanins, ascorbic acid, and malic acid), three solids were selected to be incorporated into two types of beverages (a yogurt and white grape juice) that were subjected to sensory evaluation. The study of the bioaccessibility of camu-camu powders using the static model of gastrointestinal digestion in vitro, showed a greater retention of bioactive compounds, and an adequate release of the compounds in the gastrointestinal tract. Thus, it was concluded that the dehydration processes allow to increase the fruit shelf-life and preserve its biofunctional properties.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Ciencia y Tecnología de Alimentosspa
dc.description.researchareaCiencia y Tecnología de Productos Agroalimentariosspa
dc.description.sponsorshipMinisterio de Ciencia, Tecnología e Innovación/Fulbright Colombia/ Asociación Universitaria Iberoamericana de Postgrado (AUIP)spa
dc.format.extentxxvii, 216 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84142
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Doctorado en Ciencia y Tecnología de Alimentosspa
dc.relation.referencesAlianza Región (2021). Contexto, tendencias y oportunidades del mercado de los derivados lácteos en Antioquia, 2021, Cámara de Industria y Comercio Colombio-alemana. Consultado el 04 de octubre de 2022. https://www.camaramedellin.com.co/Portals/0/Documentos/2021/ESTUDIO%20DE%20TENDENCIAS%20DERIVADOS%20LACTEOS%202021%20abril%2012.pdf?ver=2021-04-13-140402-407spa
dc.relation.referencesAnnunziata, G., Jiménez-García, M., Capó, X., Moranta, D., Arnone, A., Tenore, G.C., Sureda, A., Tejada, S. (2020). Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the management of diabetes. Food and Chemical Toxicology, 139, 111248. doi: 10.1016/j.fct.2020.111248spa
dc.relation.referencesCunha-Santos, E.C.M, Viganó, J., Neves, D.A., Martínez, J., Godoy, H.T. (2019). Vitamin C in camu-camu [Myrciaria dubia (H.B.K.) McVaugh]: evaluation of extraction and analytical methods. Food Research International, 115, 160-166. doi: 10.1016/j.foodres.2018.08.031spa
dc.relation.referencesDonado-Pestana, C. M., Moura, M.H, Araujo, R.L., Lima Santiago, G., Barros, H. R. M., Genovese, M. I. (2018). Polyphenols from Brazilian native Myrtaceae fruits and their potential health benefits against obesity and its associated complications. Current Opinion in Food Science, 19, 42–49. doi: 10.1016/j.cofs.2018.01.001spa
dc.relation.referencesFracassetti, D., Costa, C., Moulay, L., Tomás-Barberán, F. A. (2013). Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia). Food Chemistry, 139, 578–588. doi: 10.1016/j.foodchem.2013.01.121spa
dc.relation.referencesFernandes, I., Oliveira, H., Marques, C., Faria, A., Calhau, C., Mateus, N., Freitas, V. (2020). Dietary Anthocyanins. Dietary Polyphenols, 245–282. Portico. doi: 10.1002/9781119spa
dc.relation.referencesFeng, Y., Ma, X., Kong, B., Chen, Q., Liu, Q. (2021). Ethanol induced changes in structural, morphological, and functional properties of whey proteins isolates: Influence of ethanol concentration. Food Hydrocolloids, 111, 106379. doi: 10.1016/j.foodhyd.2020.1063spa
dc.relation.referencesFidelis, M., Viera do Carmo, M. A., da Cruz, T. M., Azevedo, L., Myoda, T., Miranda Furtado, M., Boscacci Marques, M., Sant’Ana, A. S., Genovese, M. I., Young Oh, W., Wen, M., Shahidi, F., Zhangh, L., Franchin, M., de Alencar, S. M., Rosalen, P. L., Granato, D. (2020). Camu-camu seed (Myrciaria dubia) – From side stream to an antioxidant, antihyperglycemic, antiproliferative, antimicrobial, antihemolytic, anti-inflammatory, and antihypertensive ingredient. Food Chemistry, 310, 125909. doi: 10.1016/j.foodchem.2019.125spa
dc.relation.referencesGaravito, G., Clavijo, R., Luengas, P., Palacios, P., Arias, M. H. (2021). Assessment of biodiversity goods for the sustainable development of the chagra in an indigenous community of the Colombian Amazon: local values of crops. Journal of Ethnobiology and Ethnomedicine, 17, 23. doi: 10.1186/s13002-021-00453-0spa
dc.relation.referencesHernández, M. S., Barrera, J.A. (2010). Camu camu: Instituto Amazónico de Investigaciones Científicas - Sinchi. Consultado el 24 de septiembre de 2022. https://www.sinchi.org.co/files/publicaciones/publicaciones/pdf/Camu%20camu%20baja.pdfspa
dc.relation.referencesMincetur (2020). Ministerio de Comercio Exterior y Turismo: Exportaciones de camu camu alcanzaron récord histórico en 2020. Consultado el 24 de septiembre de 2022. https://www.gob.pe/institucion/mincetur/noticias/345752-exportaciones-de-camu-camu-alcanzaron-record-historico-en-2020spa
dc.relation.referencesOMS (2019). Noncommunicable diseases: WHO. Consultado el 24 de septiembre de 2022. https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ncd-mortalityspa
dc.relation.referencesRay, S., Raychaudhuri, U., Chakraborty, R. (2016). An overview of encapsulation of active compounds used in food products by drying technology. Food Bioscience, 13, 76–83. doi: 10.1016/j.fbio.2015.12.009spa
dc.relation.referencesSIEA (2021). Sistema Integrado de Estadística Agraria: Calendario de cosechas de camu camu (%). Consultado el 24 de septiembre de 2022. https://siea.midagri.gob.pe/portal/calendario/spa
dc.relation.referencesZanatta, C.F., Mercadante, A.Z. (2007). Carotenoid composition from the Brazilian tropical fruit camu-camu (Myrciaria dubia). Food Chemistry, 101, 1526–1532. doi: 10.1016/j.foodchem.2006.04.004spa
dc.relation.referencesbdelsattar, A.S., Dawoud, A., Helal, M.A. (2020). Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies. Nanotoxicology, 1, 66-95. doi: 10.1080/17435390.2020.1842537spa
dc.relation.referencesAbot, A., Brochot, A., Pomié, N., Wemelle, E., Druart, C., Régnier, M., Delzenne, N. M., de Vos, W.M., Knauf, C., Cani, P. D. (2022). Camu-camu reduces obesity and improves diabetic profiles of obese and diabetic mice: A dose-ranging study. Metabolites, 12, 301. doi: 10.3390/metabo12040301spa
dc.relation.referencesAguiar, J. P. L., & Souza, F. C. A. (2016). Camu-Camu super fruit (Myrciaria dubia (H.B.K) Mc Vaugh) at different maturity stages. African Journal of Agricultural Research, 11(28), 2519-2523. doi: 10.5897/AJAR2016.11167spa
dc.relation.referencesAguirre-Neira, J.C., Sedrez dos Reis. M., Rojas Cardozo, M.A., Raz, L., Clement, C.R. (2020). Physical and chemical variability of Camu-camu fruits in cultivated and uncultivated areas of the Colombian Amazon. Revista Brasileira de Fruticultura, 42, e-545. doi: 10.1590/0100-29452020545spa
dc.relation.referencesAkter, M.S., Oh, S., Eun, J. B., Ahmed, M. (2011). Nutritional compositions and health promoting phytochemicals of camu-camu (Myrciaria dubia) fruit: A review. Food Research International, 44, 1728–1732. doi: 10.1016/j.foodres.2011.03.045spa
dc.relation.referencesAlakolanga, A. G. A. W., Savitri Kumar, N., Jayasinghe, L., Fujimoto. Y. (2015). Antioxidant property and  -glucosidase, -amylase and lipase inhibiting activities of Flacourtia inermis fruits: characterization of malic acid as an inhibitor of the enzymes. Journal of Food Science and Technology, 52, 8383-8388. doi: 10.1007/s13197-015-1937- 6.spa
dc.relation.referencesAlbuquerque, B. R., Pereira, C., Calhelha, R. C., Alves, M. J., Abreu, R. M. V., Barros, L., Oliveira, M. B. P. P., Ferreira, I. C. F. R. (2020). Jabuticaba residues (Myrciaria jaboticaba (Vell.) Berg) are rich sources of valuable compounds with bioactivespa
dc.relation.referencesAndrade, J. K. S., Barros, R. G. C., Pereira, U. C., Gualberto, N. C., de Oliveira, C. S., Shanmugam, S., & Narain, N. (2022). α-Amylase inhibition, cytotoxicity and influence of the in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds in the peel and seed of Theobroma grandiflorum. Food Chemistry, 373, 131494. doi: 10.1016/j.foodchem.2021.131494spa
dc.relation.referencesAnnunziata, G., Jiménez-García, M., Capó, X., Moranta, D., Arnone, A., Tenore, G.C., Sureda, A., Tejada, S. (2020). Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the managementof diabetes. Food and Chemical Toxicology, 139, 111248. doi: 10.1016/j.fct.2020.111248spa
dc.relation.referencesAraújo, P.A.C., Garcia, V.A.S., Osiro, D., França, D.S., Vanin, F.M., Carvalho, R.A. (2022). Active compounds from the industrial residue of dry camu-camu. Food Science of Technology, 42, e0532. doi: 10.1590/fst.05321spa
dc.relation.referencesAzevedo, L., de Araujo Ribeiro, P. F., de Carvalho Oliveira, J. A., Correia, M. G., Ramos, F. M., de Oliveira, E. B., Stringheta, P. C. (2019). Camu-camu (Myrciaria dubia) from commercial cultivation has higher levels of bioactive compounds than native cultivation (Amazon Forest) and presents antimutagenic effects in vivo. Journal of the Science of Food and Agriculture, 90, 624–631. doi: 10.1002/jsfa.9224spa
dc.relation.referencesBalisteiro, D.M., de Araujo, R.L., Giacaglia; L.R., Genovese, M.I. (2017). Effect of clarified Brazilian native fruit juices on postprandial glycemia in healthy subjects. Food Research International, 100, 196–203. doi: 10.1016/j.foodres.2017.08.044spa
dc.relation.referencesCaldas Moura, M.H., Cunha, M.G., Roquim Alezandro, M., Genovese, M.I. (2018). Phenolic-rich jaboticaba (Plinia jaboticaba (Vell.) Berg) extracts prevent high-fat- sucrose diet-induced obesity in C57BL/6 mice. Food Research International, 107, 48-60. doi: 10.1016/j.foodres.2018.01.071spa
dc.relation.referencesCamargo Neves, L., da Silva, V.X., Alves Pontis, J., Flach, A., Ruffo Roberto, S. (2015). Bioactive compounds and antioxidant activity in pre-harvest camu-camu [Myrciaria dubia (H.B.K.) Mc Vaugh] fruits. Scientia Horticulturae, 186, 223–229. doi: 10.1016/j.scienta.2015.02.031spa
dc.relation.referencesCampelo, P. H., Alves Filho, E. G., Silva, L. M. A., de Brito, E. S., Rodrigues, S., Fernandes, F. A. N. (2020). Modulation of aroma and flavor using dielectric barrier discharge plasma technology in a juice rich in terpenes and sesquiterpenes. LWT, 130, 109644. doi: 10.1016/j.lwt.2020.109644spa
dc.relation.referencesCarmo, M. A. V. D., Fidelis, M., Girotto Pressete, C., Marques, M. J., Castro-Gamero, A. M., Myoda, T., Granato, D., Azevedo, L. (2019). Hydroalcoholic Myrciaria dubia (camu-camu) seed extracts prevent chromosome damage and act as antioxidant and cytotoxic agents. Food Research International, 125, 108551. doi: 10.1016/j.foodres.2019.108551spa
dc.relation.referencesCastro, J. C., Maddox, J. D., Cobos, M., & Imán, S. A. (2018). Myrciaria dubia “Camu Camu” Fruit: Health-promoting phytochemicals and functional genomic characteristics. En J. R. Soneji, & M. Nageswara-Rao (Eds.), Breeding and Health Benefits of Fruit and Nut Crops. IntechOpen. doi: 10.5772/intechopen.73213spa
dc.relation.referencesCastro, J. C., Maddox, J. D., Cobos, M., Paredes, J. D., Marapara, J. L., Braga, J., Imán, S. A., Rodríguez, H. N., & Castro, C. G. (2020). Bioactive compounds of camu- Camu (Myrciaria dubia (Kunth) McVaugh). En: Murthy, H., Bapat, V. (eds) Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry. Springer, Cham. (pp. 329–352). https://doi.org/10.1007/978-3-030-30182-8_21spa
dc.relation.referencesConceição, N., Albuquerque, B. R., Pereira, C., Corrêa, R.C.G., Lopes, C. B., Calhelha, R. C., Alves, M.J., Barros, L., Ferreira, I. C. F. R. (2020). By-products of Camu-Camu [Myrciaria dubia (Kunth) McVaugh] as promising sources of bioactive high added- value food ingredients: Functionalization of yogurts. Molecules, 25, 70. doi: 10.3390/molecules25010070spa
dc.relation.referencesCunha-Santos, E.C.M, Viganó, J., Neves, D.A., Martínez, J., Godoy, H.T. (2019). Vitamin C in camu-camu [Myrciaria dubia (H.B.K.) McVaugh]: evaluation of extraction and analytical methods. Food Research International, 115, 160-166. doi: 10.1016/j.foodres.2018.08.031spa
dc.relation.referencesDas, S., Dutta, M., Chaudhury, K., De, B. (2016). Metabolomic and chemometric study of Achras sapota L. fruit extracts for identification of metabolites contributing to the inhibition of α‐amylase and α‐glucosidase. European Food Research and Technology, 242, 733–743. doi: 10.1007/s00217-015-2581-0.spa
dc.relation.referencesdo Amaral Souza, F. das Ch., Silva, E. P., Lopes Aguiar, J.P. (2020). Vitamin characterization and volatile composition of camu-camu (Myrciaria dubia (HBK) McVaugh, Myrtaceae) at different maturation stages. Food Science Technology (Campinas), 41 (4), 961-966. doi: 10.1590/fst.27120spa
dc.relation.referencesde Ancos, B.; Cilla, A.; Barberá, R.; Sánchez-Moreno, C.; Cano, M. P. (2017). Influence of orange cultivar and mandarin postharvest storage on polyphenols, ascorbic acid and antioxidant activity during gastrointestinal digestion. Food Chemistry, 225, 114– 124. doi: 10.1016/j.foodchem.2016.12.098spa
dc.relation.referencesde Azevêdo, J. C. S., Fujita, A., de Oliveira, E. L., Genovese, M. I., Correia, R. T. P. (2014). Dried camu-camu (Myrciaria dubia H.B.K. McVaugh) industrial residue: A bioactive- rich Amazonian powder with functional attributes. Food Research International, 62, 934–940. doi: 10.1016/j.foodres.2014.05.0spa
dc.relation.referencesde Sales, P. M., de Souza, P. M., Dartora, M., Resck, I. S., Simeoni, L. A., Fonseca-Bazzo, Y. M., de Oliveira Magalhães. (2017). Pouteria torta epicarp as a useful source of -amylase inhibitor in the control of type 2 diabetes. Food and Chemical Toxicology, 109, 962–969. doi: 10.1016/j.fct.2017.03.015spa
dc.relation.referencesde Souza Schmidt Gonçalves, A. E., Lellis-Santos, C., Curi, R., Lajolo, F. M., Genovese, M. I. (2014). Frozen pulp extracts of camu-camu (Myrciaria dubia McVaugh) attenuate the hyperlipidemia and lipid peroxidation of Type 1 diabetic rats. Food Research International, 64, 1–8. doi: 10.1016/j.foodres.2014.05.0spa
dc.relation.referencesDjaharuddin, I., Munawwarah, S., Nurulita, A., Ilyas, M., Tabri, N. A., Lihawa, N. (2021). Comorbidities and mortality in COVID-19 patients. Gaceta Sanitaria, 35, S530- S532. doi: 10.1016/j.gaceta.2021.10.085spa
dc.relation.referencesDoseděl, M., Jirkovský, E., Macáková, K., Krčmová, L.K., Javorská, L., Pourová, J., Mercolini, L., Remião, F., Nováková, L., Mladěnka, P. (2021). Vitamin C—Sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients, 13(2), 615. doi: 10.3390/nu13020615spa
dc.relation.referencesDonado-Pestana, C.M., Moura, M.H, Araujo, R.L., Lima Santiago, G., Barros, H.R.M., Genovese, M.I. (2018). Polyphenols from Brazilian native Myrtaceae fruits and their potential health benefits against obesity and its associated complications. Current Opinion in Food Science, 19, 42–49. doi: 10.1016/j.cofs.2018.01.001spa
dc.relation.referencesDu, Q., Tang, J., Xu, M., Lyu, F., Zhang, J., Qiu, Y., Ding, Y. (2021). Whey protein and maltodextrin-stabilized oil-in-water emulsions: Effects of dextrose equivalent. Food Chemistry, 339, 128094. doi: 10.1016/j.foodchem.2020.1spa
dc.relation.referencesrukainure, O. L., Sanni, O., Islam, S. (2018). Clerodendrum volubile: Phenolics and Applications to Health. En Polyphenols: Mechanisms of Action in Human Health and Disease. chapter 6 (2nd ed., pp. 53–68). Elsevier Inc. doi: 10.1016/B978-0- 12-813006-3.00006-4spa
dc.relation.referencesFarias, D. P., Fernández de Araújo, F., Neri-Numa, I.A., Pastore, G.M. (2021). Antidiabetic potential of dietary polyphenols: A mechanistic review. Food Research International, 145, 110383. doi: 10.1016/j.foodres.2021.110383spa
dc.relation.referencesFelkle, D., Jarczynski, M., Zięba, K., Nazimek, K. (2022). The immunomodulatory effects of antihypertensive therapy: A review. Biomedicine & Pharmacotherapy, 153, 113287. doi: 10.1016/j.biopha.2022.113287spa
dc.relation.referencesFernandes de Araújo, F., Neri-Numa, I. A, de Paulo Farias, D., Miranda Castro da Cunha, G.R., Pastore, G.M. (2019). Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Research International, 121, 57-72. doi: 10.1016/j.foodres.2019.03.018spa
dc.relation.referencesFernandes, I., Oliveira, H., Marques, C., Faria, A., Calhau, C., Mateus, N., Freitas, V. (2020). Dietary Anthocyanins. En: Dietary Polyphenols, eds F.A. Tomás-Barberán, A. González-Sarrías and R. García-Villalba. Pp. 245–282. Portico. doi: 10.1002/9781119spa
dc.relation.referencesFerreira, L.G., Dos Santos, R.N., Oliva, G., Andricopulo, A.D. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20(7), 13384-13421. doi: 10.3390/molecules200713384spa
dc.relation.referencesFeyza, M. S., Selin, S., Ece, A. S. (2022). Fundamentals of molecular docking and comparative analysis of protein–small-molecule docking approaches. En (Ed.), Molecular Docking - Recent Advances. IntechOpen. doi: 10.5772/intechopen.105815spa
dc.relation.referencesFidelis, M., Sousa, J., Bragueto, G., Vieira, M., Azevedo, L., Cristina, M., & Granato, D. (2018). In vitro antioxidant and antihypertensive compounds from camu-camu (Myrciaria dubia McVaugh, Myrtaceae) seed coat: A multivariate structure-activity study. Food and Chemical Toxicology, 120, 479–490. doi: 10.1016/j.fct.2018.07.043spa
dc.relation.referencesFigueiredo, J. A., Andrade Teixeira, M., Campelo, P. H., Lago, A. M.T., Pereira de Souza, T., Yoshida, M. I., Rodrigues de Oliveira, C., Pereira, A. P. A., Pastore, M. G., Sanches, E. A., Alvarenga Botrel, D., Vilela Borges, S. (2020). Encapsulation of camu-camu extracts using prebiotic biopolymers: controlled release of bioactive compounds and effect on their physicochemical and thermal properties. Food Research International, 137, 109563. doi: 10.1016/j.foodres.2020.109563spa
dc.relation.referencesFranco, M.R., Shibamoto, T. (2000). Volatile composition of some Brazilian fruits: umbu- caja (Spondias citherea), camu-camu (Myrciaria dubia), Araça-boi (Eugenia stipitata), and Cupuaçu (Theobroma grandiflorum). Journal of Agricultural Food Chemistry, 8(4), 1263-5. doi: 10.1021/jf9900074. PMID: 10775382.spa
dc.relation.referencesFujita, A., Sarkar, D., Wu, S., Kennelly, E., Shetty, K., Genovese, M.I. (2015). Evaluation of phenolic-linked bioactives of camu-camu (Myrciaria dubia Mc.Vaugh) for antihyperglycemia, antihypertension, antimicrobial properties and cellular rejuvenation. Food Research International, 77, 194–203. doi: 10.1016/j.foodres.2015.07.009spa
dc.relation.referencesFujita, A., Sarkar, D., Ines, M., Shetty, K. (2017). Improving anti-hyperglycemic and anti- hypertensive properties of camu- camu (Myriciaria dubia Mc. Vaugh) using lactic acid bacterial fermentation. Process Biochemistry, 59, 133–140. doi: 10.1016/j.procbio.2017.05.017spa
dc.relation.referencesGarcía, J. M., Giuffrida, D., Dugo, P., Mondello, L., Osorio, C. (2018). Development and characterisation of carotenoid-rich microencapsulates from tropical fruit by- products and yellow tamarillo (Solanum betaceum Cav.). Powder Technology, 339, 702-709. doi: 10.1016/j.powtec.2018.08spa
dc.relation.referencesGarcía-Chacón, J. M., Marín-Loaiza, J. C., & Osorio, C. (2023). Camu Camu (Myrciaria dubia (Kunth) McVaugh): An Amazonian Fruit with Biofunctional Properties–A Review. ACS Omega, 8 (6), 5169–5183. doi: 10.1021/acsomega.2c07245spa
dc.relation.referencesGómez Soto, J. A., Sánchez Toro, Ó. J. (2019). Producción de galactooligosacáridos: alternativa para el aprovechamiento del lactosuero. Una revisión. Ingeniería y Desarrollo, 37(1), 129–158. doi: 10.14482/inde.37.1.637spa
dc.relation.referencesGonzález‐Sarrías, A., Tomás‐Barberán, F. A., García‐Villalba, R. (2020). Structural diversity of polyphenols and distribution in foods. En: Dietary Polyphenols, eds F.A. Tomás-Barberán, A. González-Sarrías and R. García-Villalba. Pp. 1–29. doi: 10.1002/9781119563754.ch1spa
dc.relation.referencesGothai, S., Ganesan, P., Park, S.-Y., Fakurazi, S., Choi, D.-K., Arulselvan, P. (2016). Natural phyto-bioactive compounds for the treatment of type 2 diabetes: inflammation as a target. Nutrients, 8, 461. doi: 10.3390/nu8080461spa
dc.relation.referencesGou, L., Zhan, Y., Lee, J., Li, X., Lü, Z-R., Zhou, H-M., Lu, H., Wang, X-Y., Park, Y.D., Yang, J-M. (2015). Effects of L-malic acid on alpha-glucosidase: inhibition kinetics and computational molecular dynamics simulations. Applied Biochemistry and Biotechnology, 175, 2232–2245. doi: 10.1007/s12010-014-1429-6spa
dc.relation.referencesGranvogl, M., Schieberle, P. (2022). Chapter two-The sensomics approach: a useful tool to unravel the genuine aroma blueprint of foods and aroma changes during food processing. Comprehensive Analytical Chemistry, 96, 41-68. doi: 10.1016/bs.coac.2021.10.002spa
dc.relation.referencesGrigio, M. L.; Chagas, E. A.; Rathinasabapathi, B.; Cardoso Chagas, P.; Vieria da Silva, A. R.; Moreira Sobral, S. T.; Rodrigues de Oliveira, R. (2017). Qualitative evaluation and biocompounds present in different parts of camu-camu (Myrciaria dubia) fruit. African Journal of Food Science, 11, 124−129. doi: 10.5897/AJFS2016.1574spa
dc.relation.referencesGrigio, M.L., de Moura, E.A., Alves Chagas, E., Berlingieri Durigan, M.F., Cardoso Chagas, P., Ferreira de Carvalho, G., Zanchetta, J.J. (2021). Bioactive compounds in and antioxidant activity of camu- camu fruits harvested at different maturation stages during postharvest storage. Acta Scientiarum. Agronomy, 43, e50997. doi: 10.4025/actasciagron.v43i1.50997spa
dc.relation.referencesGrgić, J., Šelo, G., Planinić, M., Tišma, M., Bucić-Kojić, A. (2020). Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants, 9, 923. doi: 10.3390/antiox9100923spa
dc.relation.referencesHernández, M.S., Barrera, J.A. (2010). Camu camu: Instituto Amazónico de Investigaciones Científicas - Sinchi. Consultado el 24 de septiembre de 2022. https://www.sinchi.org.co/files/publicaciones/publicaciones/pdf/Camu%20camu% 20baja.pdfspa
dc.relation.referencesLa República (2021). Colanta, Alpina y Nestlé, las empresas de lácteos y derivados más vendedoras de 2020. Consultado el 22 de octubre de 2022. https://www.larepublica.co/empresas/colanta-alpina-y-nestle-las-empresas-de- lacteos-y-derivados-mas-vendedoras-de-2020-3191078spa
dc.relation.referencesLabuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International, 107, 227–247. doi: 10.1016/j.foodres.2018.02.026spa
dc.relation.referencesLankatillake, C., Luo, S., Flavel, M. et al. (2021). Screening natural product extracts for potential enzyme inhibitors: protocols, and the standardization of the usage of blanks in α-amylase, α-glucosidase, and lipase assays. Plant Methods, 17, 3. doi: 10.1186/s13007-020-00702-5spa
dc.relation.referencesLeite, K.F.A., Fonteles, T. V., Miguel, T. B.A.R., Silvestre da Silva, G., Sousa de Brito, E., Alves Filho, E. G., Fernandes, F. A. N., Rodrigues, S. (2021). Atmospheric cold plasma frequency imparts changes on cashew apple juice composition and improves vitamin C bioaccessibility. Food Research International, 147, 110479. doi: 10.1016/j.foodres.2021.11spa
dc.relation.referencesLi, J., Wang, B., He, Y., Wen, L., Nan, H., Zheng, F., Liu, H., Wu, M., Zhang, H. (2020). A review of the interaction between anthocyanins and proteins. Food Science and Technology International, 27(5), 470-482. doi:10.1177/1082013220962613spa
dc.relation.referencesLi, X.; Bai, Y., Jin, Z., Svensson, B. (2022). Food-derived non-phenolic -amylase and - glucosidase inhibitors for controlling starch digestion rate and guiding diabetes- friendly recipes. LWT, 153, 112455. doi: 10.1016/j.lwt.2021.112455spa
dc.relation.referencesLima Santos, I., Freire Miranda, L.C., da Cruz Rodrigues, A.M, Meller da Silva, L.H, Amante, E.R. (2022). Camu-camu [Myrciaria dubia (HBK) McVaugh]: A review of properties and proposals of products for integral valorization of raw material. Food Chemistry, 372, 131290. doi: 10.1016/j.foodchem.2021.131290spa
dc.relation.referencesLópez-Fernández, O., Domínguez, R., Pateiro, M., Munekata, P.E.S., Rocchetti, G., Lorenzo, J.M. (2020). Determination of polyphenols using Liquid Chromatography– Tandem Mass Spectrometry Technique (LC–MS/MS): A Review. Antioxidants, 9, 479. doi: 10.3390/antiox9060479spa
dc.relation.referencesMalik, J. A., Ahmed, S., Shinde, M., Almermesh, M. H. S, Alghamdi, S., Hussain, A., Anwar, S. (2022). The impact of COVID-19 on comorbidities: A review of recent updates for combating it. Saudi Journal of Biological Science, 29, 3586-3599. doi: 10.1016/j.sjbs.2022.02.006spa
dc.relation.referencesMattioli, R., Francioso, A., Mosca, L., Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809. doi: 10.3390/molecules25173809spa
dc.relation.referencesMehra, R., Kumar, H., Kumar, N., Ranvir, S., Jana, A., Singh Buttar, H., Telessy, I.G., Godswill Awuchi, C., Odilichukwu, C., Okpalag, R., Korzeniowskag, M., Guiné, R. P. F. (2021). Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. Journal of Functional Foods, 87, 104760. doi: 10.1016/j.jff.2021.104760spa
dc.relation.referencesMinekus, M., Alminger, M., Alvito, P., Balance, S., Bohn, T., Bourlieu, C., et al (2014). A standardised static in vitro digestion method suitable for food-an international consensus. Food and Function, 5(6), 1113–24. doi: 10.1039/c3fo60702jspa
dc.relation.referencesMinSalud Colombia (2020). Tres de cada 100 colombianos tienen diabetes. Consultado el 25 de septiembre de 2022. https://www.minsalud.gov.co/Paginas/Tres-de-cada-100-colombianos-tienen-diabetes.aspxspa
dc.relation.referencesMiyagusuku-Cruzado, G., Jiménez-Flores, R., Giusti, M.M. (2021). Whey protein addition and its increased light absorption and tinctorial strength of model solutions colored with anthocyanins. Journal of Dairy Science, 104(6), 6449-6462. doi: 10.3168/jds.2020-19690.spa
dc.relation.referencesNeri-Numa, I. A., Soriano Sancho, R. A., Pereira, A. P. A., Pastore, G. M. (2018). Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Research International, 103, 345–360. doi: 10.1016/j.foodres.2017.10.053spa
dc.relation.referencesNi, W., Yang, X., Yang, D., Bao, J., Li, R., Xiao, Y., Hou, C., Wang, H., Liu, J., Yang, D., Xu, Y., Cao, Z., Gao, Z. (2020). Role of Angiotensin-Converting Enzyme 2 (ACE-2) in COVID-19. Critical Care, 24(1), 422. doi: 10.1186/s13054-020-03120-0spa
dc.relation.referencesNishanthi, M., Chandrapala, J., Vasiljevic, T. (2017). Properties of whey protein concentrate powders obtained by spray drying of sweet, salty and acid whey under varying storage conditions. Journal of Food Engineering, 214, 137–146. doi: 10.1016/j.jfoodeng.2017.00spa
dc.relation.referencesOMS (2019). The top 10 causes of death. Consultado el 09 de Marzo de 2023. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.spa
dc.relation.referencesOzkan, G., Franco, P., De Marcob, I., Xiaoc, J., Capanoglu, E. (2017). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272, 494-506. https://doi.org/10.1016/j.foodchem.2018.07.205spa
dc.relation.referencesPeña Hidalgo., M., Espinoza Campos, F.O., Ramirez, M.D., Villacrés-Vallejo, J., Vásquez Torres, D. (2021). Toxic and antidiabetic effect of three Amazonian plants in balb/c mice induced with streptozotocin. UNAP, 9(2), 21 – 32. doi: 10.22386/ca.v9i2.338spa
dc.relation.referencesQuatrin, A., Rampelotto, C., Pauletto, R., Maurer, L. H., Nichelle, S. M., Klein, B., Emanuelli, T. (2020). Bioaccessibility and catabolism of phenolic compounds from jaboticaba (Myrciaria trunciflora) fruit peel during in vitro gastrointestinal digestion and colonic fermentation. Journal of Functional Foods, 65, 103714. doi: 10.1016/j.jff.2019.103714spa
dc.relation.referencesRiaz, M., Zia-Ul-Haq, M., Saad, B. (2016a). Introduction to anthocyanins. En: Anthocyanins and Human Health: Biomolecular and Therapeutic Aspects. SpringerBriefs in Food, Health, and Nutrition. Springer, Cham. doi: 10.1007/978-3-319-26456-1_2spa
dc.relation.referencesRiaz, M., Zia-Ul-Haq, M., Saad, B. (2016b). Anthocyanins, absorption and metabolism. En: Anthocyanins and Human Health: Biomolecular and Therapeutic Aspects. SpringerBriefs in Food, Health, and Nutrition. Springer, Cham. doi: 10.1007/978-3-319-26456-1_5spa
dc.relation.referencesSalvo-Romero E, Alonso-Cotoner C, Pardo-Camacho C, Casado-Bedmar M, Vicario M. (2015). Función barrera intestinal y su implicación en enfermedades digestivas. Revista Española de Enfermería Digestiva, 107, 686-696.spa
dc.relation.referencesShahidi, F., Peng, H. (2018). Bioaccessibility and bioavailability of phenolic compounds. Journal of Food Bioactives, 4, 11–68. doi: 10.31665/JFB.2018.4162spa
dc.relation.referencesSilva da Costa, J., Andrade, W.M.S., de Figueiredo, R.O., Santos, P.V.L., da Silva Freitas, J.J., Setzer, W. N., da Silva, J. K. R., Maia, J. G. S., Figueiredo, P. L. B. (2022). Chemical composition and variability of the volatile components of Myrciaria species growing in the Amazon region. Molecules, 27 (7), 2234. doi: 10.3390/molecules27072234spa
dc.relation.referencesSouza, A., Oliveira, T., Mattietto, R., Nascimento, W., Lopes, A. (2018). Bioactive compounds in the peel of camu-camu genotypes from Embrapa’s active germplasm bank. Food Science of Technololgy, Campinas, 38(1), 67-71. doi: 10.1590/1678-457X.33716spa
dc.relation.referencesSviech, F., Ubbink, J., Prata, A. S. (2021). Analysis of the effect of sugars and organic acids on the ice-melting behavior of pitanga and araza pulp by differential scanning calorimetry (DSC). Thermochimica Acta, 700, 178934. doi: 10.1016/j.tca.2021.178934spa
dc.relation.referencesTarone, A. G., Goupy, P., Ginies, C., Marostica Junior, M. R., Dufour, C. (2021). Advanced characterization of polyphenols from Myrciaria jaboticaba peel and lipid protection in vitro gastrointestinal digestion. Food Chemistry, 359, 129959. doi: 10.1016/j.foodchem.2021.129959spa
dc.relation.referencesTontul, I., Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91–102. doi: 10.1016/j.tifs.2017.03.009spa
dc.relation.referencesTundis R.; Loizzo M. R.; Menichini F. (2010). Natural products as -amylase and -glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini-Reviews in Medicinal Chemistry, 10(4), 315-331. doi: 10.2174/138955710791331007spa
dc.relation.referencesVictoria-Campos, C. I., Ornelas-Paz, J. J., Rocha-Guzmán, N. E., Gallegos-Infante J. A., Failla, M. L., Pérez-Martínez, J. D., Rios-Velasco, C., Ibarra-Junquera, V. (2022). Gastrointestinal metabolism and bioaccessibility of selected anthocyanins isolated from commonly consumed fruits. Food Chemistry, 383, 132451. doi: 10.1016/j.foodchem.2022.132451spa
dc.relation.referencesVinholes, J., Lemos, G., Barbieri, R. L., Franzon, R. C., Vizzotto, M. (2017). In vitro assessment of the antihyperglycemic and antioxidant properties of araçá, butiá and pitanga. Food Bioscience, 19, 92–100. doi: 10.1016/j.fbio.2017.06.005spa
dc.relation.referencesYaman, M., Çatak, J., Uğur, H., Gürbüz, M., Belli, İ., Tanyıldız, S. N., Yaldız, M. C. (2021). The bioaccessibility of water-soluble vitamins: A review. Trends in Food Science & Technology, 109, 552–563. doi: 10.1016/j.tifs.2021.01.056spa
dc.relation.referencesZapata, S. M., Dufour, J.P. (1993). Camu-Camu Myrciaria dubia (HBK) McVaugh: Chemical composition of fruit. Journal of the Science and Food of Agriculture, 61, 349-351. doi: 10.1002/jsfa.2740610310.  spa
dc.relation.referencesAbraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19-25. doi: 10.1016/j.softx.2015.06.001spa
dc.relation.referencesActis-Goretta, L., Ottaviani, J. I., Keen, C. L., Fraga, C. G. (2003). Inhibition of angiotensin converting enzyme (ACE) activity by flavan-3-ols and procyanidins. FEBS Letters, 555 (3), 597-600. doi: 10.1016/s0014-5793(03)01355-3spa
dc.relation.referencesAguirre-Neira, J.C., Sedrez dos Reis. M., Rojas Cardozo, M.A., Raz, L., Clement, C.R. (2020). Physical and chemical variability of Camu-camu fruits in cultivated and uncultivated áreas of the Colombian Amazon. Revista Brasileira de Fruticultura, 42, e-545. doi: 10.1590/0100-29452020545spa
dc.relation.referencesAkter, M.S., Oh, S., Eun, J.B., Ahmed, M. (2011). Nutritional compositions and health promoting phytochemicals of camu-camu (Myrciaria dubia) fruit: A review. Food Research International, 44, 1728–1732. doi: 10.1016/j.foodres.2011.03.045spa
dc.relation.referencesAOAC - Association of Official Analytical Chemists. (2015). Official Methods of Analysis. Consultado el 26 de septiembre de 2022. http://www.aoac.org/iMIS15_Prod/AOACspa
dc.relation.referencesAsgar, M.A. (2013). Anti-diabetic potential of phenolic compounds: A review. International Journal of Food Properties, 16, 91-103. doi: 10.1080/10942912.2011.595864spa
dc.relation.referencesBalisteiro, D.M., de Araujo, R. L., Giacaglia, L. R., Genovese, M. I. (2017). Effect of clarified Brazilian native fruit juices on postprandial glycemia in healthy subjects. Food Research International, 100, 196–203. doi: 10.1016/j.foodres.2017.08.044spa
dc.relation.referencesBento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., Krüger, F. A., Light, Y., Mak, L., McGlinchey, S., Nowotka, M., Papadatos, G., Santos, R., Overington, J. P. (2014). The ChEMBL bioactivity database: an update. Nucleic Acids Research, 42, D1083–D1090. doi: 10.1093/nar/gkt1031spa
dc.relation.referencesBitencourt-Ferreira, G. & de Azevedo, W.F Jr. (2019). Molegro virtual docker for docking. Methods in Molecular Biology, 2053, 149-167. doi: 10.1007/978-1-4939-9752-7_10spa
dc.relation.referencesBlare, T. & Donovan, J. (2016). Building value chains for indigenous fruits: lessons from camu-camu in Peru. Renewable Agriculture and Food Systems, 33(1), 6–18. doi: 10.1017/s174217051600018spa
dc.relation.referencesBrahmkshatriya, P. P., Brahmkshatriya, P. S. (2013). Terpenes: Chemistry, Biological Role, and Therapeutic Applications. En: Natural Products. (1st ed.). Ramawat, K., Mérillon, JM. (eds). Springer, Berlin, Heidelberg, Germany. doi: 0.1007/978-3-642-22144-6_120spa
dc.relation.referencesBrown, G. D., Bauer, J., Osborn, H. M. I., Kuemmerle, R. (2018). A solution NMR approach to determine the chemical structures of carbohydrates using the hydroxyl groups as starting points. ACS Omega, 3 (12), 17957–17975. doi: 10.1021/acsomega.8b02136spa
dc.relation.referencesCaner, S., Zhang, X., Jiang, J., Chen, H.-M., Nguyen, N.T., Overkleeft, H., Brayer, G.D., Withers, S. G. (2016). Glucosyl epi-cyclophellitol allows mechanism-based inactivation and structural analysis of human pancreatic -amylase. FEBS Letters, 590, 1143-1151. doi: 10.1002/1873-3468.12143spa
dc.relation.referencesCarmo, M. A. V. D., Fidelis, M., Girotto Pressete, C., Marques, M. J., Castro-Gamero, A. M., Myoda, T., Granato, D., Azevedo, L. (2019). Hydroalcoholic Myrciaria dubia (camu-camu) seed extracts prevent chromosome damage and act as antioxidant and cytotoxic agents. Food Research International, 125, 108551. doi: 10.1016/j.foodres.2019.108551spa
dc.relation.referencesChen, L., Wang, L., Shu, G., Li, J. (2021). Antihypertensive potential of plant foods: research progress and prospect of plant-derived Angiotensin-Converting Enzyme inhibition compounds. Journal of Agricultural and Food Chemistry, 69(18), 5297-5305. doi: 10.1021/acs.jafc.1c02117spa
dc.relation.referencesDojindo (2022). ACE Kit – WST Technical Manual. Consultado el 26 de septiembre de 2022. https://www.dojindo.eu.com/TechnicalManual/Manual_A502.pdfspa
dc.relation.referencesDos Santos Dias, E. B., Vargas Camilo, Y. M., Barboza de Souza, E. R., Ferri, P. H. (2021). Essential oil variability in Eugenia dysenterica fruits. Natural Products Research, 6, 1–4. doi: 10.1080/14786419.2021.1947273spa
dc.relation.referencesElbandrawy, M.M., Sweef, O., Elgamal, D., Mohamed, T.M., EhabTousson, Elgharabawy, R.M. (2022). Ellagic acid regulates hyperglycemic state through modulation of pancreatic IL-6 and TNF- α immunoexpression. Saudi Journal of Biological Sciences, 29, 3871–3880. doi: 10.1016/j.sjbs.2022.03.016spa
dc.relation.referencesEmpereur-Mot, C., Zagury, J-F., Montes, M. (2016). Screening explorer-an interactive tool for the analysis of screening results. Journal of Chemical Information and Modeling, 56(12), 2281-2286. doi: 10.1021/acs.jcim.6b00283spa
dc.relation.referencesEngel, W., Bahr, W., & Schieberle, P. (1999). Solvent assisted flavour evaporation - a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. European Food Research and Technology, 209, 237–241. doi: 10.1007/s002170050486spa
dc.relation.referencesFeyza, M. S., Selin, S., Ece, A. S. (2022). Fundamentals of molecular docking and comparative analysis of protein–small-molecule docking approaches. En: (Ed.), Molecular Docking - Recent Advances. IntechOpen. doi: 10.5772/intechopen.105815spa
dc.relation.referencesFelkle, D., Jarczynski, M., Zięba, K., Nazimek, K. (2022). The immunomodulatory effects of antihypertensive therapy: A review. Biomedicine & Pharmacotherapy, 153, 113287. doi: 10.1016/j.biopha.2022.113287spa
dc.relation.referencesFranco, M. R. B., Shibamoto, T. (2000). Volatile composition of some Brazilian fruits: Umbu-caja (Spondias citherea), camu-camu (Myrciaria dubia), araça-boi (Eugenia stipitata), and cupuaçu (Theobroma grandiflorum). Journal of Agricultural and Food Chemistry, 48, 1263–1265. doi: 10.1021/jf9900074.spa
dc.relation.referencesGao, C., Tello, E., Peterson, D.G. (2021). Identification of coffee compounds that suppress bitterness of brew. Food Chemistry, 350(6), 129225. doi: 10.1016/j.foodchem.2021.129225.spa
dc.relation.referencesGagnon, J. K., Law, S. M., Brooks III, C. L. (2016). Flexible CDOCKER: Development and application of a pseudo-explicit structure-based docking method within CHARMM. Journal of Computational Chemistry, 37, 753– 762. doi: 10.1002/jcc.24259spa
dc.relation.referencesGarcía-Chacón, J., Forero, D. P., G. Peterson, D., Osorio, C. (2023). Aroma characterization and in vitro antihypertensive activity of Amazonian camu-camu (Myrciaria dubia) fruit. Journal of Food Bioactives, 21. doi: 10.31665/JFB.2023.18339spa
dc.relation.referencesGarcía-Chacón, J. M., Tello, E., Coy-Barrera, E., Peterson, D. G., Osorio, C. (2022). Mono-n-butyl malate-derived compounds from camu-camu (Myrciaria dubia) malic acid: The alkyl-dependent antihyperglycemic-related activity. ACS Omega, 7 (43), 39335-39346. doi: 10.1021/acsomega.2c05551spa
dc.relation.referencesGong, L., Feng, D., Wang, T., Ren, Y., Liu, Y., & Wang, J. (2020). Inhibitors of amylase and  ‐glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Science & Nutrition, 8(12), 6320–6337. doi: 10.1002/fsn3.1987spa
dc.relation.referencesGou, L., Zhan, Y., Lee, J., Li, X., Lü, Z-R., Zhou, H-M., Lu, H., Wang, X-Y., Park, Y.D., Yang, J-M. (2015). Effects of L-malic acid on alpha-glucosidase: inhibition kinetics and computational molecular dynamics simulations. Applied Biochemistry and Biotechnology, 175, 2232–2245. doi: 10.1007/s12010-014-1429-6spa
dc.relation.referencesGronbach, M., Kraußer, L., Broese, T., Oppermann, C., Kragl, U. (2021). Sublimation for enrichment and identification of marker compounds in fruits. Food Analytical Methods, 14, 1087–1098. doi: 10.1007/s12161-020-01954-6.spa
dc.relation.referencesGrosch, W. (1994). Determination of potent odorants in foods by Aroma Extract Dilution Analysis (AEDA) and calculation of odour activity values (OAVs). Flavour Fragrances Journal, 9, 147–158. doi: 10.1002/ffj.2730090403spa
dc.relation.referencesHelmer, A., Slater, N., Smithgall S. (2018). A review of ACE Inhibitors and ARBs in black patients with hypertension. Annals of Pharmacotherapy, 52(11), 1143-1151. doi:10.1177/1060028018779082spa
dc.relation.referencesHess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463-1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-Hspa
dc.relation.referencesICONTEC Instituto Colombiano de Normas Técnicas y Certificación (2021). Norma técnica Colombiana, Análisis Sensorial. Metodología. Métodos del perfil del sabor, NTC 3929.spa
dc.relation.referencesIOFI Working Group on Methods of Analysis. (2011). Guidelines for the quantitative gas chromatography of volatile flavouring substances, from the Working Group on Methods of Analysis of the International Organization of the Flavor Industry (IOFI). Flavour Fragrances Journal, 26, 297–299. doi: 10.1002/ffj.2061spa
dc.relation.referencesIsaza, J. H., Ito, H., Yoshida, T. (2004). Oligomeric hidrolizable tannins from Monochaetum multiflorum. Phytochemistry, 65, 359-367. doi: 10.1016/j.phytochem.2003.11.017spa
dc.relation.referencesJennings, W. B (1975). Chemical shift nonequivalence in prochiral groups. Chemistry Review, 3, 3017-322. doi: 10.1021/cr60295a003.spa
dc.relation.referencesJones, G., Willett, P., Glen, R. C., Leach, A. R., Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 3, 727-748. doi: 10.1006/jmbi.1996.0897spa
dc.relation.referencesKanwal, K. M. K., Chigurupati, S., Ali, F., Younus, M., Albubayan, M., Wadood, A., Khan, H., Taha, M., Perveen, S. (2021). Indole-3-acetamides: As potential antihyperglycemic and antioxidant agents; synthesis, in vitro α-amylase inhibitory activity, structure–activity relationship, and in silico studies. ACS Omega, 3, 2264-2275. doi: 10.1021/acsomega.0c05581spa
dc.relation.referencesLaaraj, N., Bouhrim, M., Kharchoufa, L., Tiji, S., Bendaha, H., Addi, M., Drouet, S., Hano, C., Lorenzo, J.M., Bnouham, M., et al. (2022). Phytochemical analysis, α-glucosidase and α-amylase inhibitory activities and acute toxicity studies of extracts from pomegranate (Punica granatum) bark, a valuable agro-industrial by-product. Foods, 11, 1353. doi: 10.3390/ foods11091353spa
dc.relation.referencesLawless, H. T., Heymann, H. (2010). Descriptive Analysis. En: Sensory Evaluation of Food. Food Science Text Series. Springer, New York, NY, pp. 227–257. doi:10.1007/978-1-4419-6488-5_10spa
dc.relation.referencesLeite, K.F.A., Fonteles, T. V., Miguel, T. B.A.R., Silvestre da Silva, G., Sousa de Brito, E., Alves Filho, E. G., Rodrigues, S. (2021). Atmospheric cold plasma frequency imparts changes on cashew apple juice composition and improves vitamin C bioaccessibility. Food Research International, 147, 110479. doi: 10.1016/j.foodres.2021.11spa
dc.relation.referencesLeffingwell & Associates. (2008). Odor detection thresholds and references. http://www.leffingwell.com/odorthre.htm. Consultado en marzo de 2023.spa
dc.relation.referencesLv, Q.-Q., Cao, J.-J., Liu, R., Chen, H.-Q. (2021). Structural characterization, -amylase and -glucosidase inhibitory activities of polysaccharides from wheat bran. Food Chemistry, 128218. doi: 10.1016/j.foodchem.2020.128218spa
dc.relation.referencesMendoza García, Y., Cruz Ramos, A. L. C., Cardoso Clemente Filha Ferreira de Paula, A., do Nascimento, M. H., Augusti, R., Linhares Bello de Araújo, R., Pinto de Lemos, E. E.,Ferreira Melo, J. O. (2021). Chemical physical characterization and profile of fruit volatile compounds from different accesses of Myrciaria floribunda (H. West Ex Wild.) O. Berg through polyacrylate fiber. Molecules, 26(17), 5281. doi: 10.3390/molecules26175281spa
dc.relation.referencesMiyashita, T., Koizumi, R., Myoda, T., Sagane, Y., Niwa, K., Watanabe, T., Minami, K. (2018). Data on a single oral dose of camu-camu (Myrciaria dubia) pericarp extract on flow-mediated vasodilation and blood pressure in young adult humans. Data in Brief, 16, 993–999. doi: 10.1016/j.dib.2017.12.009spa
dc.relation.referencesMysinger, M. M., Carchia, M., Irwin, J. J., Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55, 6582-6594. doi: 10.1021/jm300687espa
dc.relation.referencesPalacio-Rodríguez, K., Lans, I., Cavasotto, C.N., Cossio, P. (2019). Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Scientific Reports, 9, 5142. doi: 0.1038/s41598-019-41594-3spa
dc.relation.referencesPlagemann, I., Krings, U., Berger, R. G., Marostica, M. R. Jr. (2012). Volatile constituents of jabuticaba (Myrciaria jaboticaba (Vell.) O. Berg) fruits. Journal of Essential Oil Research, 24(1), 45-51. doi: 10.1080/10412905.2012.645651spa
dc.relation.referencesRao, S. N., Head, M. S., Kulkarni, A., LaLonde, J. M. (2007). Validation studies of the site-directed docking program LibDock. Journal of Chemical Information and Modeling, 47, 2159-2171. doi: 10.1021/ci6004299spa
dc.relation.referencesRodríguez-Pulido, F.J., Gordillo, B., Heredia, F.J., Gonzalez-Miret, M.L. (2021). CIELAB – Spectral image MATCHING: An app for merging colorimetric and spectral images for grapes and derivatives. Food Control, 15, 108038. doi: 10.1016/j.foodcont.2021.108038spa
dc.relation.referencesRoig-Zamboni, V., Cobucci-Ponzano, B., Iacono, R., Ferrara, M. C., Germany, S., Bourne, Y., Parenti, G., Moracci, M., Sulzenbacher, G. (2017). Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease. Nature Communications, 8, 1111. doi: 10.1038/s41467-017-01263-3spa
dc.relation.referencesSantos Silva, J., Damiani, C., da Cunha, M. C., Nunes Carvalho, E. E., de Barros Vilas Boas, E. V. (2019). Volatile profiling of pitanga fruit (Eugenia uniflora L.) at different ripening stages using solid-phase microextraction and mass spectrometry coupled with gas chromatography. Scientia Horticulturae, 250, 366–370. doi: 10.1016/j.scienta.2019.02.076spa
dc.relation.referencesSeeliger, D., de Groot, B.L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24, 417–422. doi: 10.1007/s10822-010-9352-6spa
dc.relation.referencesSchieberle, P. (1995). Recent developments in methods for analysis of flavor compounds and their precursors. En: Characterization of Food: Emerging Methods; Gaonkar, A., (Ed.). Elsevier: Amsterdam, The Netherlands, pp. 403–431.spa
dc.relation.referencesSchieberle, P., Hofmann, T. (2014). Elucidation of the chemosensory code of food by means of a SENSOMICS approach. En: Flavour Science, Proceedings of the XIV Weurman Flavour Research Symposium; Taylor, A.J., Mottram, D.S., Eds.; Context Products Ltd.: Leicestershire, UK, 3–18.spa
dc.relation.referencesSigma-Aldrich Co. (2022a). Technical Bulletin -Amylase Activity Assay Kit. Catalog number MAK009. Consultado el 26 de septiembre de 2022. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/377/793/mak009bul.pdfspa
dc.relation.referencesSigma-Aldrich Co. (2022b).Technical Bulletin -Glucosidase Activity Assay Kit. Catalog number MAK123. Consultado el 26 de septiembre de 2022. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/286/096/mak123bul.pdfspa
dc.relation.referencesSilva da Costa, J., Andrade, W. M. S., de Figueiredo, R. O., Santos, P. V. L., da Silva Freitas, J. J., Setzer, W. N., da Silva, J. K. R., Maia, J. G. S., Figueiredo, P. L. B. (2022). Chemical composition and variability of the volatile components of Myrciaria species growing in the Amazon region. Molecules, 27, 2234. doi: 10.3390/molecules27072234spa
dc.relation.referencesSilva de Azevêdo, J. C. S., Fujita, A., de Oliveira, E. L., Genovese, M. I., Correia, R. T. P. (2014). Dried camu-camu (Myrciaria dubia H.B.K. McVaugh) industrial residue: A bioactive-rich Amazonian powder with functional attributes. Food Research International, 62, 934–940. DOI: 10.1016/j.foodres.2014.05.0spa
dc.relation.referencesStashenko, E. E., Martínez, J. R. (2010). Algunos aspectos prácticos para la identificación de analitos por cromatografía de gases acoplada a espectrometría de masas. Scientia Chromatographica, 2(1), 28-46.spa
dc.relation.referencesTriballeau, N., Acher, F., Brabet, I., Pin, J-P., Bertrand, H-O. (2005). Virtual screening workflow development guided by the ”receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. Journal of Medicinal Chemistry, 48, 2534-2547. doi: 10.1021/jm049092jspa
dc.relation.referencesWestermaier, Y., Barril, X., Scapozza, L. (2015). Virtual screening: An in silico tool for interlacing the chemical universe with the proteome. Methods, 71, 44-57. doi: 10.1016/j.ymeth.2014.08.001spa
dc.relation.referencesYousefi, M., Shadnoush, M., Khorshidian, N., Mortazavian, A. M. (2020). Insights to potential antihypertensive activity of berry fruits. Phytotherapy Research, 35 (2): 846–863. doi: 10.1002/ptr.6877spa
dc.relation.referencesAlakolanga, A. G. A. W., Savitri Kumar, N., Jayasingh, L., Fujimoto. Y (2015). Antioxidant property and -glucosidase, -amylase and lipase inhibiting activities of Flacourtia inermis fruits: characterization of malic acid as an inhibitor of the enzymes. Journal of Food Science and Technology, 52, 8383–8388. doi: 10.1007/s13197-015-1937-6spa
dc.relation.referencesAlvarado, Y., Muro, C., Illescas, J., Díaz, M.d.C., Riera, F. (2019). Encapsulation of antihypertensive peptides from whey proteins and their releasing in gastrointestinal conditions. Biomolecules, 9(5), 164. doi: 10.3390/biom9050164spa
dc.relation.referencesAMR- Allied Marker Reseach (2022). Yogurt Market Research, 2031. Consultado el 22 de octubre de 2022. https://www.alliedmarketresearch.com/yogurt-market.spa
dc.relation.referencesAnnunziata, G., Jiménez-García, M., Capó, X., Moranta, D., Arnone, A., Tenore, G.C., Sureda, A., Tejada, S. (2020). Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the management of diabetes. Food and Chemical Toxicology, 139, 111248. doi: 10.1016/j.fct.2020.111248spa
dc.relation.referencesAnuyahong, T., Chusak, C., Adisakwattana, S. (2020). Incorporation of anthocyanin-rich riceberry rice in yogurts: Effect on physicochemical properties, antioxidant activity and in vitro gastrointestinal digestion. LWT, 129, 109571. doi: 10.1016/j.lwt.2020.109571spa
dc.relation.referencesBechara, N., Flood, V. M. Flood, Gunton, J. E. (2022). A systematic review on the role of vitamin C in tissue healing. Antioxidants, 11(8), 1605. doi: 10.3390/antiox11081605spa
dc.relation.referencesBOE (2022). Código del Sector de Productos Lácteos. Agencia Estatal Boletín Oficial del Estado de España. Consultado el 13 de octubre de 2022. https://www.boe.es/biblioteca_juridica/codigos/codigo.php?id=197&modo=2&nota=0&tab=2spa
dc.relation.referencesCDGC (2021). Cifras de contexto ganadero Caquetá 2021. Comité Departamental de Ganaderos del Caquetá – CDGC. Consultado el 27 de abril de 2023. https://issuu.com/rafaeltorrijos/docs/contexto_2021spa
dc.relation.referencesCorrochano, A. R., Buckin, V., Kelly, P. M., Giblin, L. (2018). Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways. Journal of Dairy Science, 101(6), 4747–4761. doi: 10.3168/jds.2017-13618spa
dc.relation.referencesDa Silva Haas, I. C., Toaldo, I. M., Gomes, T. M., Luna, A. S., de Gois, J. S., Bordignon-Luiz, M. T. (2018). Polyphenolic profile, macro- and microelements in bioaccessible fractions of grape juice sediment using in vitro gastrointestinal simulation. Food Bioscience, 27, 66-74. doi: 10.1016/j.fbio.2018.11.002spa
dc.relation.referencesDurmus, N., Capanoglu, E., Kilic-Akyilmaz, M. (2021). Activity and bioaccessibility of antioxidants in yoghurt enriched with black mulberry as affected by fermentation and stage of fruit addition. International Dairy Journal, 117, 105018. doi: 10.1016/j.idairyj.2021.105018spa
dc.relation.referencesEuromonitor (2022). Drinking Milk Products in Colombia. Consultado el 22 de octubre de 2022. https://www.euromonitor.com/drinking-milk-products-in-colombia/reportspa
dc.relation.referencesHofman, D. L., van Buul, V. J., Brouns, F. J. P. H. (2015). Nutrition, health, and regulatory aspects of digestible maltodextrins. Critical Reviews in Food Science and Nutrition, 56(12), 2091–2100. doi: 10.1080/10408398.2014.94041spa
dc.relation.referencesFEV (2022). Federación Española del Vino. El sector en cifras. Consultado el 22 de octubre de 2022. http://www.fev.es/sector-cifras/spa
dc.relation.referencesIgual, M., García-Martínez, E., Camacho, M.M., Martínez-Navarrete N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118(2), 291–299. doi: 10.1016/j.foodchem.2009.04.118spa
dc.relation.referencesKhalifa, I., Li, M., Mamet, T., Li, C. (2019). Maltodextrin or gum arabic with whey proteins as wall-material blends increased the stability and physiochemical characteristics of mulberry microparticles. Food Bioscience, 31, 100445. doi: 10.1016/j.fbio.2019.100445spa
dc.relation.referencesLopes Aguiar, J. P., do Amaral Souza, F. das Ch. (2015). Camu-Camu (Myrciaria dubia HBK): Yogurt processing, formulation, and sensory assessment. American Journal of Analytical Chemistry, 6, 377-381. doi: 10.4236/ajac.2015.65036spa
dc.relation.referencesManoj Kumar, C. T., Mondal, S., Prasad, W. G., Rathod, G. S., Raghu, H. V., Kokkiligadda, A. (2022). Evaluation of physicochemical and functional attributes of whey powder incorporated with pomegranate peel extract. Food Chemistry Advances, 1, 100088. doi: 10.1016/j.focha.2022.100088spa
dc.relation.referencesNorkaew, O., Thitisut, P., Mahatheeranont, S., Pawin, B., Sookwong, P., Yodpitak, S., Lungkaphin, A. (2019). Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food Chemistry, 294, 493-502. doi: 10.1016/j.foodchem.2019.05.086spa
dc.relation.referencesOsorio, C., Acevedo, B., Hillebrand, S., Carriazo, J., Winterhalter, P., Morales, A. L. (2010). Microencapsulation by spray-drying of anthocyanin pigments from corozo (Bactris guineensis) fruit. Journal of Agricultural and Food Chemistry, 58(11), 6977–6985. doi: 10.1021/jf100536gspa
dc.relation.referencesOsorio, C., Carriazo, J. G., Barbosa, H. (2011). Thermal and structural study of guava (Psidium guajava L.) powders obtained by two dehydration methods. Quimica Nova, 34(4), 636-640. doi: 10.1590/S0100-40422011000400016spa
dc.relation.referencesQuatrin, A., Rampelotto, C., Pauletto, R., Maurer, L.H., Nichelle, S. M., Klein, B., Fritzsche Rodrigues, R., Maróstica Junior, M. R.;,de Souza Fonseca, B., Ragagnin de Menezes, C., de Oliveira Mello, R., Rodrigues, E., Caetano Bochi, V., Emanuelli,T. (2020). Bioaccessibility and catabolism of phenolic compounds from jaboticaba (Myrciaria trunciflora) fruit peel during in vitro gastrointestinal digestion and colonic fermentation. Journal of Functional Foods, 65, 103714. doi: 10.1016/j.jff.2019.103714spa
dc.relation.referencesRighi da Rosa, J., Cezimbra Weis, G. C., Bolson Moro, K. I., Sasso Robalo, S., Elias Assmann, C., Picolli da Silva, L., Severo da Rosa, C. (2021). Effect of wall materials and storage temperature on anthocyanin stability of microencapsulated blueberry extract. LWT, 142, 111027. doi: 10.1016/j.lwt.2021.111027spa
dc.relation.referencesRodríguez-Roque, M. J., de Ancos, B., Sánchez-Moreno, C., Cano, M. P., Elez-Martínez, P., & Martín-Belloso, O. (2015). Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. Journal of Functional Foods, 14, 33–43. doi: 10.1016/j.jff.2015.01.020spa
dc.relation.referencesSaadatkhah, N., Garcia, A. C., Ackermann, S., Leclerc, P., Latifi, M., Samih, S., Chaouki, J. (2019). Experimental methods in chemical engineering: Thermogravimetric Analysis—TGA. The Canadian Journal of Chemical Engineering, 98, 34-43. doi: 10.1002/cjce.23673spa
dc.relation.referencesSantana Andrade, J. K., Chagas Barros, R. G., Corrêa Pereira, U., Gualberto, N. C., Santos de Oliveira, C., Shanmugam, S., Narain, N. (2022). a-Amylase inhibition, cytotoxicity and influence of the in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds in the peel and seed of Theobroma grandiflorum. Food Chemistry, 373, 131494. doi: 10.1016/j.foodchem.2021.131494spa
dc.relation.referencesSengul, H., Surek, E., Nilufer-Erdil, D. (2014). Investigating the effects of food matrix and food components on bioaccessibility of pomegranate (Punica granatum) phenolics and anthocyanins using an in-vitro gastrointestinal digestion model. Food Research International, 62, 1069–1079. doi: 10.1016/j.foodres.2014.05.055spa
dc.relation.referencesStinco, C. M., Sentandreu, E., Mapelli-Brahm, P., Navarro, J. L., Vicario, I. M., Meléndez-Martínez, A. J. (2020). Influence of high-pressure homogenization and pasteurization on the in vitro bioaccessibility of carotenoids and flavonoids in orange juice. Food Chemistry, 331, 127259. doi: 10.1016/j.foodchem.2020.127259spa
dc.relation.referencesTetrapack (2021). Tendencias de consumo de yogur y lo que significan para los productores. Consultado el 22 de octubre de 2022. https://www.tetrapak.com/es/insights/cases-articles/consumer-yoghurt-trends.spa
dc.relation.referencesUSDA (2019). United States Department of Agriculture. Oranges, raw, all commercial varieties. Consultado el 20 de marzo de 2023. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169097/nutrientsspa
dc.relation.referencesVictoria-Campos, C.I., Ornelas-Paz, J. de J., Rocha-Guzmán, N. E., Gallegos-Infante, J.A., Failla, M. L., Pérez-Martínez, J. D.; Rios-Velasco, C., Ibarra-Junquera, V. (2022). Gastrointestinal metabolism and bioaccessibility of selected anthocyanins isolated from commonly consumed fruits. Food Chemistry, 383, 132451. doi: 10.1016/j.foodchem.2022.132451spa
dc.relation.referencesVillacrez, J. L., Carriazo, J. G., Osorio, C. (2013). Microencapsulation of Andes Berry (Rubus glaucus Benth.) aqueous extract by spray drying. Food and Bioprocess Technology, 7(5), 1445–1456. doi: 10.1007/s11947-013-1172-yspa
dc.relation.referencesYadav, K., Bajaj, R.K., Mandal, S., Mann, B. (2020). Encapsulation of grape seed extract phenolics using whey protein concentrate, maltodextrin and gum arabica blends. Journal of Food Science and Technology, 57(2), 426-434. doi: 10.1007/s13197-019-04070-4.spa
dc.relation.referencesYaman, M., Mızrak, Ö. F., Çatak, J., Sargın, H. S. (2019). In vitro bioaccessibility of added folic acid in commercially available baby foods formulated with milk and milk products. Food Science and Biotechnology, 28(6), 1837-1844. doi: 10.1007/s10068-019-00625-5.spa
dc.relation.referencesYaman, M., Çatak, J., Uğur, H., Gürbüz, M., Belli, İ., Tanyıldız, S. N., et al. (2021). The bioaccessibility of water-soluble vitamins: A review. Trends in Food Science & Technology, 109, 552–563. doi: 10.1016/j.tifs.2021.01.056spa
dc.relation.referencesZambrano, A., Castellar, G., Vallejo, W., Piñeres, I., Cely, M.M., Valencia, J. (2017). Aproximación conceptual al análisis térmico y sus principales aplicaciones, “Conceptual approach to thermal analysis and its main applications”. Prospectiva, 15 (2), 117-125. doi: 10.15665/rp.v15i2.1166spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.lembPlantas medicinalesspa
dc.subject.lembMedicinal planteng
dc.subject.lembPlantas útilesspa
dc.subject.lembPlants, usefuleng
dc.subject.proposalactividad antihiperglicémicaspa
dc.subject.proposalMicroencapsulaciónspa
dc.subject.proposalVitamina Cspa
dc.subject.proposalÁcido málicospa
dc.subject.proposalBioaccesibilidadspa
dc.titleEstudio de las propiedades biofuncionales del camu-camu (Myrciaria dubia (Kunth) McVaugh) y aplicación en un producto alimenticiospa
dc.title.translatedStudy of the biofunctional properties of camu-camu (Myrciaria dubia (Kunth) McVaugh) and application in a food product.eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleContrato Marco de Acceso de Recursos Genéticos y sus Productos Derivados No. 357 del 17 de Noviembre de 2022spa
oaire.fundernameANLA y Ministerio de Ambiente y Desarrollo Sosteniblespa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020773803.2023.pdf
Tamaño:
10.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencia y Tecnología de Alimento

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: